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OVERVIEW 

INTRODUCTION: 

The IOT concept was coined by a member of the  Radio Frequency Identification (RFID) development 

community in 1999, and  it has recently become more relevant to the practical world largely because of the growth 

of mobile  devices, embedded and ubiquitous communication, cloud computing and data analytics.  

Imagine a world where billions of objects can sense, communicate and share information, all interconnected 

over public or private Internet Protocol (IP) networks. These interconnected objects have data regularly collected, 

analyzed and used to initiate action, providing a wealth of intelligence for planning, management and decision 

making. This is the world of the Internet of Things (IOT). 

DEFINITION: 

Internet of things (IOT) is a network of physical objects. The internet is not only a network of computers, but 

it has evolved into a network of device of all type and sizes , vehicles, smart phones, home appliances, toys, cameras, 

medical instruments and industrial systems, animals, people, buildings, all connected ,all communicating & sharing 

information based on stipulated protocols in order to achieve smart reorganizations, positioning, tracing, safe & 

control & even personal real time online monitoring , online upgrade, process control & administration. 

We define IOT into three categories as below:  

Internet of things is an internet of three things:  

(1). People to people,  

(2). People to machine /things, 

(3). Things /machine to things /machine, Interacting through internet. 

 

 

 

 

 

 

 

 

 

  
 

Internet Of Things 

Internet of Things Vision :  Internet of Things (IoT) is a concept and a paradigm that considers pervasive presence in 

the environment of a variety of things/objects that through wireless and wired connections and unique addressing 

schemes are able to interact with each other and cooperate with other things/objects to create new 

applications/services and reach common goals. In this context the research and development challenges to create a 
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smart world are enormous. A world where the real, digital and the virtual are converging to create smart 

environments that make energy, transport, cities and many other areas more intelligent. 

Internet of Things is refer to the general idea of things, especially everyday objects, that are readable, recognizable, 

locatable, addressable through information sensing device and/or controllable via the  Internet, irrespective  of the 

communication means (whether via RFID, wireless LAN, wide area networks, or other means). Everyday objects 

include not only the electronic devices we encounter or the products of higher technological development such as 

vehicles and equipment but things that we do not ordinarily think of as electronic at all - such as food , clothing, 

chair, animal, tree, water etc. 

Internet of Things is a new revolution of the Internet. Objects make themselves recognizable and they obtain 

intelligence by making or enabling context related decisions thanks to the fact that they can communicate 

information about themselves. They can access information that has been aggregated by other things, or they can be 

components of complex services. This transformation is concomitant with the emergence of cloud computing 

capabilities and the transition of the Internet towards IPv6 with an almost unlimited addressing capacity. 

The goal of the Internet of Things is to enable things to be connected anytime, anyplace, with anything and anyone 

ideally using any path/network and any service. 

 

CHARACTERISTICS 

 

Interconnectivity:  
 

 Anything can be interconnected with the global information and communication infrastructure.   
 

Things-related services: 
 

 The IoT is capable of providing thing-related services within the constraints of things, such as privacy 

protection and semantic consistency between physical things and their associated virtual things. In order to provide 

thing-related services within the constraints of things, both the technologies in physical world and information world 

will change.  
   

Heterogeneity:  
 

 The devices in the IoT are heterogeneous as based on different hardware platforms and networks. They can 

interact with other devices or service platforms through different networks.  
   

Dynamic changes:  
 

The state of devices change dynamically, e.g., sleeping and waking up, connected and/or disconnected as 

well as the context of devices including location and speed. Moreover, the number of devices can change 

dynamically.  
   

Enormous scale: 
 

The number of devices that need to be managed and that communicate with each other will be at least an 

order of magnitude larger than the devices connected to the current Internet.     

Even more critical will be the management of the data generated and their interpretation for application purposes. 

This relates to semantics of data, as well as efficient data handling.   
   

Safety:  
 

 As we gain benefits from the IoT, we must not forget about safety. As both the creators and recipients of the 

IoT, we must design for safety. This includes the safety of our personal data and the safety of our physical well-being. 

Securing the endpoints, the networks, and the data moving across all of it means creating a security paradigm that 

will scale.  
   

Connectivity:  
 

 Connectivity enables network accessibility and compatibility. Accessibility is getting on a network while 

compatibility provides the common ability to consume and produce data. 



SUBJECT INCHARGE: S.RAMADASS  3 

 

 

IOT ARCHITECTURE 

 

 

 

IOT architecture consists of different layers of technologies supporting IOT. It serves to illustrate how various 

technologies relate to each other and to communicate the scalability, modularity and configuration of IOT 

deployments in different scenarios. Figure 4 shows detailed architecture of IOT.  

The functionality of each layer is described below, 

A. smart device / sensor layer:   
             

  The lowest layer is made up of smart objects integrated with sensors. The sensors enable the 

interconnection of the physical and digital worlds allowing real-time information to be collected and processed. 

There are various types of sensors for different purposes. The sensors have the capacity to take measurements such 

as temperature, air quality, speed, humidity, pressure, flow, movement and electricity etc. In some cases, they may 

also have a degree of memory, enabling them to record a certain number of measurements. A sensor can measure 

the physical property and convert it into signal that can be understood by an instrument. Sensors are grouped 

according to their unique purpose such as environmental sensors, body sensors, home appliance sensors and vehicle 

telematics sensors, etc.   

 Most sensors require connectivity to the sensor gateways.  This can be in the form of a Local Area Network 

(LAN) such as Ethernet and Wi-Fi connections or Personal Area Network (PAN) such as ZigBee, Bluetooth and Ultra 

Wideband (UWB). For sensors that do not require connectivity to sensor aggregators, their connectivity  to backend 

servers/applications  can be provided using Wide Area Network (WAN) such as  GSM,  GPRS and LTE. Sensors that 

use low power and low data rate connectivity, they typically form networks commonly known as wireless sensor 

networks (WSNs). WSNs are gaining popularity as they can accommodate far more sensor nodes while retaining 

adequate battery life and covering large areas. 
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B. Gateways and Networks  

             Massive volume of data will be produced by these tiny sensors and this requires a robust and high 

performance wired or wireless network infrastructure as a transport medium. Current networks, often tied with very 

different protocols, have been used to support machine-to-machine (M2M) networks and their applications. With 

demand needed to serve a wider range of IOT services and applications such as high speed transactional services, 

context-aware applications, etc, multiple networks with various technologies and access protocols are needed to 

work with each other in a heterogeneous configuration.  These networks can be in the form of a private, public or 

hybrid models and are built to support the communication requirements for latency, bandwidth or security. Various 

gateways (microcontroller, microprocessor...) & gateway networks (WI-FI, GSM, GPRS…)   

C. Management Service Layer   

             The management service renders the processing of information possible through analytics, security controls, 

process modeling and management of devices. 

             One of the important features of the management service layer is the business and process rule engines. IOT 

brings connection and interaction of objects and systems together providing information in the form of events or 

contextual data such as temperature of goods, current location and traffic data. Some of these events require 

filtering or routing to postprocessing systems such as capturing of periodic sensory data, while others require 

response to the immediate situations such as reacting to emergencies on patient’s health conditions.  The rule 

engines support the formulation of decision logics and trigger interactive and automated processes to enable a more 

responsive IOT system.   

             In the area of analytics, various analytics tools are used to extract relevant information from massive amount 

of raw data and to be processed at a much faster rate. Analytics such as inmemory analytics allows large volumes of 

data to be cached in random access memory (RAM) rather than stored in physical disks. In-memory analytics reduces 

data query time and augments the speed of decision making. Streaming analytics is another form of analytics where 

analysis of data, considered as data-in-motion, is required to be carried out in real time so that decisions can be 

made in a matter of seconds.  

             Data management is the ability to manage data information flow. With data management in the 

management service layer, information can be accessed, integrated and controlled. Higher layer applications can be 

shielded from the need to process unnecessary data and reduce the risk of privacy disclosure of the data source.  

Data filtering techniques such as data anonymisation, data integration and data synchronization, are used to hide 

the details of the information while providing only essential information that is usable for the relevant applications. 

With the use of data abstraction, information can be extracted to provide a common business view of data to gain 

greater agility and reuse across domains. Security must be enforced across the whole dimension of the IOT 

architecture right from the smart object layer all the way to the application layer. Security of the system prevents 

system hacking and compromises by unauthorized personnel, thus reducing the possibility of risks.   

D. Application Layer  

             The IoT application covers “smart” environments/spaces in domains such as: Transportation, Building, City, 

Lifestyle, Retail, Agriculture, Factory, Supply chain, Emergency, Healthcare, User interaction, Culture and tourism, 

Environment and Energy. 

APPLICATION AREAS 
  

A. IOsL (Internet of smart living):   
  

Remote Control Appliances: Switching on and off remotely appliances to avoid accidents and save energy. 
 

Weather: Displays outdoor weather conditions such as humidity, temperature, pressure, wind speed and rain levels 

with ability to transmit data over long distances. 

Smart Home Appliances: Refrigerators with LCD screen telling what’s inside, food that’s about to expire, ingredients 

you need to buy and with all the information available on a Smartphone app. Washing machines allowing you to 

monitor the laundry remotely, and. Kitchen ranges with interface to a Smartphone app allowing remotely adjustable 

temperature control and monitoring the oven’s self-cleaning feature. 

Safety Monitoring: cameras, and home alarm systems making people feel safe in their daily life at home. 

Intrusion Detection Systems: Detection of window and door openings and violations to prevent intruders, Energy 

and Water Use: Energy and water supply consumption monitoring to obtain advice on how to save cost and 

resources, & many more… 
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B. IOsC ( Internet of smart cities):  
  

Structural Health: Monitoring of vibrations and material conditions in buildings, bridges and historical monuments, 

Lightning: intelligent and weather adaptive lighting in street lights. 

Safety: Digital video monitoring, fire control management, public announcement systems. 

Transportation: Smart Roads and Intelligent High-ways with warning messages and diversions according to climate 

conditions and unexpected events like accidents or traffic jams. 

Smart Parking: Real-time monitoring of parking spaces availability in the city making residents able to identify and 

reserve the closest available spaces.  

Waste Management: Detection of rubbish levels in containers to optimize the trash collection routes. Garbage cans 

and recycle bins with RFID tags allow the sanitation staff to see when garbage has been put out. 

C. IOsE (Internet of smart environment):  
  

Air Pollution monitoring: Control of CO2 emissions of factories, pollution emitted by cars and toxic gases generated 

in farms. 

Forest Fire Detection: Monitoring of combustion gases and preemptive fire conditions to define alert zones. 

Weather monitoring: weather conditions monitoring such as humidity, temperature, pressure, wind speed and rain, 

Earthquake Early Detection. 

Water Quality: Study of water suitability in rivers and the sea for eligibility in drinkable use.  

River Floods: Monitoring of water level variations in rivers, dams and reservoirs during rainy days. 

Protecting wildlife: Tracking collars utilizing GPS/GSM modules to locate and track wild animals and communicate 

their coordinates via SMS.  

D. IOsI (Internet of smart industry):  
  

Explosive and Hazardous Gases: Detection of gas levels and leakages in industrial environments, surroundings of 

chemical factories and inside mines, Monitoring of toxic gas and oxygen levels inside chemical plants to ensure 

workers and goods safety, Monitoring of water, oil and gas levels in storage tanks and Cisterns. 

Maintenance and repair: Early predictions on equipment malfunctions and service maintenance can be automatically 

scheduled ahead of an actual part failure by installing sensors inside equipment to monitor and send reports.  

  

E. IOsH (Internet of smart health):   
  
Patients Surveillance: Monitoring of conditions of patients inside hospitals and in old people’s home. 

Medical Fridges: Control of conditions inside freezers storing vaccines, medicines and organic elements. 

Fall Detection: Assistance for elderly or disabled people living independent. 

Dental: Bluetooth connected toothbrush with Smartphone app analyzes the brushing uses and gives information on 

the brushing habits on the Smartphone for private information or for showing statistics to the dentist. 

Physical Activity Monitoring: Wireless sensors placed across the mattress sensing small motions, like breathing and 

heart rate and large motions caused by tossing and turning during sleep, providing data available through an app on 

the Smartphone.  

 

F. IOsE (internet of smart energy):  
  
Smart Grid: Energy consumption monitoring and management. 

Wind Turbines/ Power house: Monitoring and analyzing the flow of energy from wind turbines & power house, and 

two-way communication with consumers’ smart meters to analyze consumption patterns. 

Power Supply Controllers: Controller for AC-DC power supplies that determines required energy, and improve 

energy efficiency with less energy waste for power supplies related to computers, telecommunications, and 

consumer electronics applications. 

Photovoltaic Installations: Monitoring and optimization of performance in solar energy plants.    

G. IOsA  (internet of smart agriculture):  

  

Green Houses: Control micro-climate conditions to maximize the production of fruits and vegetables and its quality. 

Compost: Control of humidity and temperature levels in alfalfa, hay, straw, etc. to prevent fungus and other 

microbial contaminants. 

Animal Farming/Tracking: Location and identification of animals grazing in open pastures or location in big stables, 

Study of ventilation and air quality in farms and detection of harmful gases from excrements. 
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Offspring Care: Control of growing conditions of the offspring in animal farms to ensure its survival and health. 

field Monitoring: Reducing spoilage and crop waste with better monitoring, accurate ongoing data obtaining, and 

management of the agriculture fields, including better control of fertilizing, electricity and watering. 
 

The IOT application area is very diverse and IOT applications serve different users. Different user categories have 

different driving needs. From the IOT perspective there are three important user categories:  

(1) The individual citizens 

(2) Community of citizens (citizens of a city, a region, country or society as a whole) 

(3) The enterprises. 

 

THE TECHNOLOGY OF THE INTERNET OF THINGS 

 

Internet Of things (IOT) is a global infrastructure for the information society, enabling advanced services by 

interconnecting (physical and virtual) things based on existing and evolving interoperable information and 

communication technologies.   

 

The Internet of Things the communication is extended via Internet to all the things that surround us. The Internet of 

Things is much more than machine to machine communication, wireless sensor networks, sensor networks , 

2G/3G/4G,GSM,GPRS,RFID, WI-FI, GPS, microcontroller, microprocessor etc. These are considered as being the 

enabling technologies that make “Internet of Things” applications possible.   

 

Enabling technologies for the Internet of Things are grouped by three categories: 

 

 (1) technologies that enable “things” to acquire contextual information  

 (2) technologies that enable “things” to process contextual information  

 (3) technologies to improve security and privacy.  

 

The first two categories can be jointly understood as functional building blocks required building “intelligence” into 

“things”, which are indeed the features that differentiate the IoT from the usual Internet. The third category is not a 

functional but rather a de facto requirement, without which the penetration of the IoT would be severely reduced.   
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The Internet of Things is not a single 

technology, but it is a mixture of 

different hardware & software 

technology. The Internet of Things 

provides solutions based on the 

integration of information technology, 

which refers to hardware and software 

used to store, retrieve, and process 

data and communications technology 

which includes electronic systems used 

for communication between individuals 

or groups. 

There is a heterogeneous mix of 

communication technologies, which 

need to be adapted in order to address 

the needs of IoT applications such as 

energy efficiency, speed, security, and 

reliability. In this context, it is possible 

that the level of diversity will be scaled 

to a number a manageable connectivity 

technologies that address the needs of 

the IoT applications, are adopted by the 

market, they have already proved to be serviceable, supported by a strong technology alliance. Examples of 

standards in these categories include wired and wireless technologies like Ethernet, WI-FI, Bluetooth, ZigBee, GSM, 

and GPRS. 

SMARTS OBJECTS IN IOT: 

 The concept of smart in IoT is used for physical objects that are active, digital, networked, can operate to 

some extent autonomously, reconfigurable and has local control of the resources. The smart objects need 

energy, data storage, etc. 

 A smart object is an object that enhances the interaction with other smart objects as well as with people 

also. The world of IoT is the network of interconnected heterogeneous objects (such as smart devices, smart 

objects, sensors, actuators, RFID, embedded computers, etc.) uniquely addressable and based on standard 

communication protocols. 

In a day to day life, people have a lot of object with internet or wireless or wired connection. Such as: 

 Smartphone 

 Tablets 

 TV computer 
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These objects can be interconnected among them and facilitate our daily life (smart home, smart cities) no matter 

the situation, localization, accessibility to a sensor, size, scenario or the risk of danger. 

 

Smart objects are utilized widely to transform the physical environment around us to a digital world using the 

Internet of things (IoT) technologies. 

A smart object carries blocks of application logic that make sense for their local situation and interact with human 

users. A smart object sense, log, and interpret the occurrence within themselves and the environment, and 

intercommunicate with each other and exchange information with people. 

The work of smart object has focused on technical aspects (such as software infrastructure, hardware platforms, 

etc.) and application scenarios. Application areas range from supply-chain management and enterprise applications 

(home and hospital) to healthcare and industrial workplace support. As for human interface aspects of smart-object 

technologies are just beginning to receive attention from the environment. 

 

IOT DEVICES: 
 

 Internet of Things Devices is non-standard 

devices that connect wirelessly to a network with each 

other and able to transfer the data. The IoT devices are 

enlarging the internet connectivity beyond standard 

devices such as smart phones, laptops, tablets, and 

desktops. Embedding these devices with technology 

enables us to communicate and interact over the 

networks and they can be remotely monitored and 

controlled. 

              There are large varieties of IoT devices available 

based on IEEE 802.15.4 standard. These devices range 

from wireless motes, attachable sensor-boards to 

interface-board which are useful for researchers and 

developers. 

IoT devices include computer devices, software, wireless sensors, and actuators. These IoT devices are connected 

over the internet and enabling the data transfer among objects or people automatically without human intervention. 

Some of the common and popular IoT devices are given below: 

Arduino Device: 

Arduino devices are the microcontrollers and microcontroller kit for building digital devices that can 

be sense and control objects in the physical and digital world. Arduino boards are furnished with a set 

of digital and analog input/output pins that may be interfaced to various other circuits. Some Arduino 

boards include USB (Universal Serial Bus) used for loading programs from the personal computer. 

Intel Galileo:  

The Intel Galileo Gen 2 Board includes the parts such as Intel Quark SoC processor, 256MB RAM, 

multiple ports and supports for Arduino device. 

Samsung Gear Fit: 

A Samsung Gear Fir device is a dustproof, water-resistant with fitness tracker features, a curved 

display, and long-lasting battery. This device receives alerts about emails and text messages, and it 

integrates with Samsung's S Health app. 
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Sensor: 

A sensor is a device that reads the surrounding temperature, humidity, light, air quality control etc. 

There are different types of sensors available that reads different types of data. The sensors transmit 

these data over the networks or through which it is connected. 

Bluetooth Low Energy (BLE) Intelligent Beacon: 

A Bluetooth low energy beacon device is used to track the object located at a real time. Many 

companies use it to track the location of employees, assets, patients, and more in real time. This 

service primarily focuses on manufacturing, retail, and healthcare services.  

 

Some of the essential properties of IoT devices are mention below: 

 Sense: The devices that sense its surrounding environment in the form of temperature, movement, and 

appearance of things, etc.  

 Send and receive data: IoT devices are able to send and receive the data over the network connection. 

 Analyze: The devices can able to analyze the data that received from the other device over the internet 

networks. 

 Controlled: IoT devices may control from some endpoint also. Otherwise, the IoT devices are themselves 

communicate with each other endlessly leads to the system failure. 
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DESIGN PRINCIPLES FOR CONNECTED DEVICES 

What is IoT design? 

Designing for the Internet of Things (IoT) is the designing of connected products. IoT systems combine 

physical and digital components that collect data from physical devices and deliver actionable, operational insights.  

These components include:  physical devices, sensors, data extraction and secured communication, 

gateways, cloud servers, analytics, and dashboards.  

 
 

1. Interoperability 

At the most fundamental level, a connected system requires sensors, machines, equipment, and sites, to 

communicate and exchange data. Interoperability is the underlying principle throughout all Industry 4.0 design 

processes. 

2. Information transparency 

The rapid growth of connected devices means continuous bridging between the physical and digital worlds. 

In this context, information transparency means that physical processes should be recorded and stored virtually, 

creating a Digital Twin. 

3. Technical assistance 

A driving benefit of IoT, technical assistance refers to the ability of connected systems to provide and display 

data that helps people to make better operational decisions and solve issues faster. In addition, IoT-enabled 

things should assist people in laborious tasks to improve productivity and safety. 

4. Decentralized decisions 

The final principle of Industry 4.0 design is for the connected system to go beyond assisting and exchanging 

data, to be able to make decisions and execute requirements according to its defined logic. 

Designing with a Purpose 

In order for the Industrial IoT system to effectively fill its purpose, it must be designed with the relevant solution in 

mind.  

https://www.seebo.com/digital-twin-technology/
https://www.seebo.com/digital-twin-technology/
https://medium.com/@ScottAmyx/decentralized-iot-to-drive-disruption-and-business-transformation-575a251b5049
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Key industry 4.0 solutions: 

1. Conditional monitoring 

2. Digital twin analytics 

3. Predictive quality 

4. Predictive maintenance 

5. Supply chain optimization 

 

CALM AND AMBIENT TECHNOLOGY 

 

Calm Technology: 

 "Designs that encalm and inform meet two human needs not usually met together. Information technology 

is more often the enemy of calm: pagers, cell phones, news services, the World Wide Web, email, TV, and radio 

bombard us frenetically." 

It is for this important reason that Ubiquitous Computing goes hand in hand with a special technology, one 

which enables users to do more while at the same time a sense of calmness remains as well as the notion that you 

are still in full control of everything you are doing. This is called “Calm Technology”. 

Calm Technology Characteristics 

 A calm technology will move easily from the periphery of our attention, to the centre, and back.    

This is fundamentally encalming, for two reasons:  

1.  Placing things in the periphery   

2.  Bringing to center (of attention) when needed 

Ambient Technology: 

 

Ambient Intelligence is the artificial intelligence which is totally human centric. Simplest example is the door 

that opens when it senses your presence. XBOX with Kinect is another simple example. But ambient intelligence 

systems are infinitely more complex. 

In such a context, an emerging application and research field is the ambient intelligence, which refers to the 

capacity of an IoT system to sense the environment and to respond to the presence of people and builds upon 

pervasive computing, ubiquitous computing, profiling, context awareness, and human-centric computer. 
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METAPHOR 

A metaphor is a figure of speech that, for rhetorical effect, directly refers to one thing by mentioning 

another. It may provide clarity or identify hidden similarities between two ideas. Metaphors are often compared 

with other types of figurative language, such as antithesis, hyperbole, metonymy and simile. 

IoT is an enabler of three high-level objectives: 

(1)    DO MORE: Whether machines producing more (high throughput) because of less breakdowns or a 

weekend athlete burning more calories because she is able to keep her heart rate in the fat-burning zone, we are 

accomplishing more. 

(2)    HIGHER QUALITY: By monitoring environmental pollution, cities restrict automobile access into city 

center for better health outcomes over time. 

(3)    BETTER USER EXPERIENCE: In the near future, mass customization will allow me to find eyeglasses with 

perfect fit at low cost based on video inputs at connected additive manufacturing facilities. 

Other five metaphors of IoT are below, 
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PRIVACY 

IoT security and privacy concerns 

Although IoT is rapidly growing, it still faces security and privacy issues: 

Security Risks 

 IoT devices are connected to your desktop or laptop. Lack of security increases the risk of your personal 

information leaking while the data is collected and transmitted to the IoT device. 

 IoT devices are connected with a consumer network. This network is also connected with other systems. So 

if the IoT device contains any security vulnerabilities, it can be harmful to the consumer’s network. This 

vulnerability can attack other systems and damage them. 

 Sometimes unauthorized people might exploit the security vulnerabilities to create risks to physical safety. 

Privacy Risks 

 In IoT, devices are interconnected with various hardware and software, so there are obvious chances of 

sensitive information leaking through unauthorized manipulation. 

 All the devices are transmitting the user’s personal information such as name, address, date of birth, health 

card information, credit card detail and much more without encryption. 

Though there are security and privacy concerns with IoT, it adds values to our lives by allowing us to manage our 

daily routine tasks remotely and automatically, and more importantly, it is a game-changer for industries. 
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WEB THINKING FOR CONNECTED DEVICES 

 

 The Internet of Things (IoT) is the network of connected devices (also known as “smart devices”) and other 

items embedded with electronics, software, sensors, and network connectivity which enable these devices to 

exchange data. 

IoT technology is expanding day by day, below are few common areas where IoT can be a good fit: 

 Smart cities 

 Smart Agriculture 

 Industrial Internet of things (or IIoT) 

 Smart supply chain 

 IoT in Healthcare 

 

Question Bank: 

1. Explain an overview about IoT.(10M) 

2. Explicate design principles for connected devices. (10M) 

3. Illustrate Internet of Thing. (5M) 

4. Illuminate calm and ambient technology. (5M) 

5. Elaborate web thinking for connected devices. (5M) 

6. List the IoT application. (5M) 

7. What are all the smart objects available in IoT? (5M) 

8. Explain IoT with Architecture. (10M) 

 

 

 



 

INTERNET COMMUNICATIONS 

 

Suppose that you wanted to send a message to the authors of this book, but you didn’t have the 

postal address, and you didn’t have any way to look up our phone number (because in this example you 

don’t have the Internet). 
 

You remember that we’re from the UK, and London is the biggest city in the UK. So you send a 

postcard to your cousin Bob, who lives there. 
 

Your cousin sees that the postcard is for some crazy hardware and technology people. So he puts 

the postcard in an envelope and drops it off at the London Hackspace because the guys there probably 

know what to do with it. 
 

At the Hackspace, Jonty picks up the envelope and sees that it’s for some people in Liverpool. Like 

all good Londoners, Jonty never goes anywhere to the north of Watford, but he remembers that 

Manchester is in the north too. So he calls up the Manchester Digital Laboratory (MadLab), opens the 

envelope to read the contents, and says, “Hey, I’ve got this message for Adrian and Hakim in Liverpool. Can 

you pass it on?” 
 

The guys at MadLab ask whether anyone knows who we are, and it turns out that Hwa Young does. 

So the next time she comes to Liverpool, she delivers the postcard to us. 

 

IP  

The preceding scenario describes how the Internet Protocol (IP) works. Data is sent from one 

machine to another in a packet, with a destination address and a source address in a standardised format 

(a “protocol”). Just like the original sender of the message in the example, the sending machine doesn’t 
always know the best route to the destination in advance. Most of the time, the packets of data have to go 

through a number of intermediary machines, called routers, to reach their destination. The underlying 

networks aren’t always the same: just as we used the phone, the postal service, and delivery by hand, so 

data packets can be sent over wired or wireless networks, through the phone system, or over satellite 

links.  

In our example, a postcard was placed in an envelope before getting passed onwards. This happens 

with Internet packets, too. So, an IP packet is a block of data along with the same kind of information you 

would write on a physical envelope: the name and address of the server, and so on. But if an IP packet ever 

gets transmitted across your local wired network via an Ethernet cable—the cable that connects your 

home broadband router or your office local area network (LAN) to a desktop PC—then the whole packet 

will get bundled up into another type of envelope, an Ethernet Frame, which adds additional information 

about how to complete the last few steps of its journey to your computer.Of course, it’s possible that your 

cousin Bob didn’t know about the London Hackspace, and then maybe the message would have got stuck 

with him. You would have had no way to know whether it got there. This is how IP works. There is no 

guarantee, and you can send only what will fit in a single packet. 
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INTERNET PRINCIPLES 



TCP  

What if you wanted to send longer messages than fit on a postcard? Or wanted to make sure your 

messages got through? 

 

What if everyone agreed that postcards written in green ink meant that we cared about whether 

they arrived. And that we would always number them, so if we wanted to send longer messages, we could. 

The person at the other end would be able to put the messages in order, even if they got delivered in the 

wrong order (maybe you were writing your letter over a number of days, and the day you passed the fifth 

one on to cousin Bob, he happened to visit Liverpool and passed on that postcard without relaying through 

London Hackspace or MadLab). We would send back postcard notifications that just told you which 

postcards we had received, so you could resend any that went missing. 

That is basically how the Transmission Control Protocol (TCP) works. The simplest transport protocol on the 

Internet, TCP is built on top of the basic IP protocol and adds sequence numbers, acknowledgements, and 

retransmissions. This means that a message sent with TCP can be arbitrarily long and give the sender some 

assurance that it actually arrived at the destination intact.  

 

Because the combination of TCP and IP is so useful, many services are built on it in turn, such as 

email and the HTTP protocol that transmits information across the World Wide Web. 

 

THE IP PROTOCOL SUITE (TCP/IP)  

The combination of TCP and IP is so ubiquitous that we 

often refer simply to “TCP/IP” to describe a whole suite or stack of 

protocols layered on top of each other, each layer building on the 

capabilities of the one below. ◾ The low-level protocols at the link layer manage the 

transfer of bits of information across a network link. This could be 

by an Ethernet cable, by WiFi, or across a telephone network, or 

even by short-range radio standards such as IEEE 802.15.4 

designed to carry data over the Personal Area Network (PAN), 

that is to say between devices carried by an individual.  ◾ The Internet layer then sits on top of these various links 

and abstracts away the gory details in favour of a simple 

destination address.  ◾ Then TCP, which lives in the transport layer, sits on top 

of IP and extends it with more sophisticated control of the 

messages passed.  ◾ Finally, the application layer contains the protocols that 

deal with fetching web pages, sending emails, and Internet 

telephony. Of these, HTTP is the most ubiquitous for the web, and indeed for communication between 

Internet of Things devices.  

 

UDP 

  

As you can see, TCP is not the only protocol in the transport layer. Unlike TCP, but as with IP itself, 

in UDP each message may or may not arrive. No handshake or retransmission occurs, nor is there any delay 

to wait for messages in sequence. These limitations make TCP preferable for many of the tasks that 

Internet of Things devices will be used for. 

 



The lack of overhead, however, makes UDP useful for applications such as streaming data, which 

can cope with minor errors but doesn’t like delays. Voice over IP (VoIP)—computer-based telephony, such 

as Skype—is an example of this: missing one packet might cause a tiny glitch in the sound quality, but 

waiting for several packets to arrive in the right order could make the speech too jittery to be easy to 

understand. UDP is also the transport for some very important protocols which provide common, low-level 

functionality, such as DNS and DHCP, which relate to the discovery and resolution of devices on the 

network. We look at this topic in detail in the next section. 

 

IP ADDRESSES  

We mentioned earlier that the Internet Protocol knows the addresses of the destination and source 

devices. But what does an “address” consist of? Here is a typical human (or in this case, hobbit) address: 

 Bilbo Baggins  

 “Bag End”, Bagshot Row  

 Hobbiton  

 The Shire  

 Middle Earth 

 

In the world of low-level computer networking, however, numbers are much easier to deal with. So, IP 

addresses are numbers. In Internet Protocol version 4 (IPv4), almost 4.3 billion IP addresses are possible—
4,294,967,296 to be precise, or 232. Though that is convenient for computers, it’s tough for humans to 

read, so IP addresses are usually written as four 8-bit numbers separated by dots (from 0.0.0.0 to 

255.255.255.255)—for example, 192.168.0.1 (which is often the address of your home router) or 8.8.8.8 

(which is the address of one of Google’s DNS servers). 

 

This “dotted quad” is still exactly equivalent to the 32-bit number. As well  as being simply easier for 

humans to remember, it is also easier to infer information about the address by grouping certain blocks of 

addresses together. For example, 
 

8.8.8.x   —  One of several IP ranges assigned to Google.  

192.168.x.x  —  A range assigned for private networks. Your home or office network  

router may well assign IP addresses in this range.  
 

10.x.x.x   — Another private range. 

Every machine on the Internet has at least one IP address. That means every computer, every 

network-connected printer, every smartphone, and every Internet of Things device has one. If you already 

have a Raspberry Pi, an Arduino board, or any of the other microcontrollers described in Chapters 3 and 4, 

they will expect to get their own IP address, too. When you consider this fact, those 4 billion addresses 

suddenly look as if they might not be enough. 

The private ranges such as 192.168.x.x offer one mitigation to this problem. Your home or office 

network might have only one publicly visible IP address. However, you could have all the IP addresses in 

the range 192.168.0.0 to 192.168.255.255 (2^16 = 65,536 addresses) assigned to distinct devices. 

A better solution to this problem is the next generation of Internet Protocol, IPv6, which we look at 

later in this chapter. 

 

 



DNS  

Although computers can easily handle 32-bit numbers, even formatted as dotted quads they are 

easy for most humans to forget. The Domain Name System (DNS) helps our feeble brains navigate the 

Internet. Domain names, such as the following, are familiar to us from the web, or perhaps from email or 

other services: 
 

google.com  
 

bbc.co.uk  
 

wiley.com  
 

arduino.cc 

 

Each domain name has a top-level domain (TLD), like .com or.uk, which further subdivides into 

.co.uk and .gov.uk, and so on. This top-level domain knows where to find more information about the 

domains within it; for example, .com knows where to find google.com and wiley.com. 

 

The domains then have information about where to direct calls to individual machines or services. 

For example, the DNS records for .google.com know where to point you for the following: 

 

www.google.com 
  

mail.google.com 
 

calendar.google.com 

 

The preceding examples are all instantly recognizable as website names, which is to say you could 

enter them into your web browser as, for example, http://www.google.com. 

 

But DNS can also point to other services on the Internet—for example: 

 

pop3.google.com — For receiving email from Gmail  
 

smtp.google.com — For sending email to Gmail  
 

ns1.google.com — The address of one of Google’s many DNS servers 

 

Configuring DNS is a matter of changing just a few settings. Your registrar (the company that sells you your 

domain name) often has a control panel to change these settings. You might also run your own 

authoritative DNS server. The settings might contain entries like this one for roomofthings.com: 

book A 80.68.93.60 3h 

This entry means that the address book.roomofthings.com (which hosts the blog for this book) is served by 

that IP address and will be for the next three hours. 

 

STATIC IP ADDRESS ASSIGNMENT  

How do you get assigned an IP address? If you have bought a server-hosting package from an 

Internet service provider (ISP), you might typically be given a single IP address. But the company itself has 

been given a block of addresses to assign. Historically, these were ranges of different sizes, typically 

separated into “classes” of 8 bits, 16 bits, or 24 bits: 

 

Class A  — From 0.x.x.x 
 

Class B  — From 128.0.x.x 
 

Class C  — From 192.0.0.x 



The class C ranges had a mere 8 bits (256 addresses) assigned to them, while the class A ranges had 

many more addresses and would therefore be given only to the very largest of Internet organisations. The 

rigid separation of address ranges into classes was not very efficient; every entity would want to keep 

enough spare addresses for future expansion, but this means that many addresses would remain unused. 

With the explosion of the number of devices connecting to the Internet (a theme throughout this chapter), 

the scheme has been superceded since 1993 by Classless Inter-Domain Routing (CIDR), which allows you to 

specify exactly how many bits of the address are fixed. (See RFCs 1518 and 1519, at http://tools.ietf.org/ 

rfc/.) So, the class A addresses we mentioned above would be equivalent to 0.0.0.0/8, while a class C might 

be 208.215.179.0/24. 

 

For example, you saw previously that Google had the range 
 

8.8.8.x (which is equivalent to 8.8.8.0/24 in CIDR notation) 

 

Google has chosen to give one of its public DNS servers the address 
 

8.8.8.8 

 

from this range, largely because this address is easy to remember. 

 

In many cases, however, the system administrator simply assigns server numbers in order. The 

admininstrator makes a note of the addresses and updates DNS records and so on to point to these 

addresses. We call this kind of address static because once assigned it won’t change again without human 

intervention. 

 

Now consider your home network: every time you plug a desktop PC to your router, connect your 

laptop or phone to the wireless, or switch on your network-enabled printer, this device has to get an IP 

address (often in the range 192.168.0.0/16). You could assign an address sequentially yourself, but the 

typical person at home isn’t a system administrator and may not keep thorough records. If your brother, 

who used to use the address 192.168.0.5 but hasn’t been home for ages, comes back to find that your new 

laser printer now has that address, he won’t be able to connect to the Internet. 

 

DYNAMIC IP ADDRESS ASSIGNMENT 

  

Thankfully, we don’t typically have to choose an IP address for every device we connect to a 

network. Instead, when you connect a laptop, a printer, or even a Twitter-following bubble machine, it can 

request an IP address from the network itself using the Dynamic Host Configuration Protocol (DHCP). 

When the device tries to connect, instead of checking its internal configuration for its address, it sends a 

message to the router asking for an address. The router assigns it an address. This is not a static IP address 

which belongs to the device indefinitely; rather, it is a temporary “lease” which is selected dynamically 

according to which addresses are currently available. If the router is rebooted, the lease expires, or the 

device is switched off, some other device may end up with that IP address. 

 

This means that you can’t simply point a DNS entry to a device using DHCP. In general, you can rely 

on the IP address probably being the same for a given work session, but you shouldn’t hard-code the IP 

address anywhere that you might try to use it another time, when it might have changed. 

 

Even the simplest computing devices such as the Arduino board, which we look at in Chapter 5, can 

use DHCP. Although the Arduino’s Ethernet library allows you to configure a static IP address, you can also 

request one via DHCP. Using a static address may be fine for development (if you are the only person 

connected to it with that address), but for working in groups or preparing a device to be distributed to 

other people on arbitrary networks, you almost certainly want a dynamic IP address. 

 



IPv6  

 

When IP was standardised, few could have predicted how quickly the 4.3 billion addresses that IPv4 

allowed for would be allocated. The expected growth of the Internet of Things can only speed up this 

trend. If your mobile phone, watch, MP3 player, augmented reality sunglasses, and telehealth or sports-

monitoring devices are all connected to the Internet, then you personally are carrying half a dozen IP 

addresses already. Perhaps you have a dedicated wallet server for micropayments? A personal web server 

that contains your contact details and blog? One or more webcams recording your day? Perhaps rather 

than a single health monitoring device, you have several distributed across your person, with sensors for 

temperature, heart rate, insulin levels, and any number of other stimuli. 

 

At home you would start with all your electronic devices being connected. But beyond that, you 

might also have sensors at every door and window for security. More sensitive sound sensors to detect the 

presence of mice or beetles. Other sensors to check temperature, moisture, and airflow levels for 

efficiency. It is hard to predict what order of number of Internet connected devices a household might 

have in the near future. Tens? Hundreds? Thousands? 

 

Enter IPv6, which uses 128-bit addresses, usually displayed to users as eight groups of four 

hexadecimal digits—for example, 2001:0db8:85a3:0042 :0000:8a2e:0370:7334. The address space (2^128) 

is so huge that you could assign the same number of addresses as the whole of IPv4 to every person on the 

planet and barely make a dent in it. 

 

The new standard was discussed during the 1980s and finally released in 1996. In 2013, it is still less 

popular than IPv4. You can find many ways to work around the lack of public IP addresses using subnets, 

but there is a chicken-and-egg problem with getting people to use IPv6 without ISP support and vice versa. 

It was originally expected that mobile phones connected to the Internet (another huge growth area) would 

push this technology over the tipping point. In fact, mobile networks are increasingly using IPv6 internally 

to route traffic. Although this infrastructure is still invisible to the end user, it does mean that there is 

already a lot of use below the surface which is stacked up, waiting for a tipping point. 

 

IPv6 and Powering Devices  

 

We can see that an explosion in the number of Internet of Things devices will almost certainly need 

IPv6 in the future. But we also have to consider the power consumption of all these devices. We know that 

we can regularly charge and maintain a small handful of devices. At any one moment, we might have a 

laptop, a tablet, a phone, a camera, and a music player plugged in to charge. The constant juggling of 

power sockets, chargers, and cables is feasible but fiddly. The requirements for large numbers of devices, 

however, are very different. The devices should be low power and very reliable, while still being capable of 

connecting to the Internet. Perhaps to accomplish this, these devices will team together in a mesh 

network. This is the vision of 6LoWPAN, an IETF working group proposing solutions for “IPv6 over Low 

power Wireless Personal Area Networks”, using technologies such as IEEE 802.15.4. While a detailed 

discussion of 6LoWPAN and associated technologies is beyond the scope of this book, we do come back to 

many related issues, such as maximising battery life in Chapter 8 on embedded programming. 

 

Conclusion on IPv6  

 

Although IPv6 is, or will be, big news, we do not go into further detail in this book. In 2013, you can 

find more libraries, more hardware, and more people that can support IPv4, and this is what will be most 

helpful when you are moving from prototype to production on an Internet of Things device. Even though 

we are getting close to the tipping point, existing IPv4 services will be able to migrate to IPv6 networks 

with minimal or possibly no rewriting. 



If you are working on IPv6 network infrastructure or are an early adopter of 6LoWPAN, you will 

have specific knowledge requirements that are beyond the current scope of this book. 

 

MAC ADDRESSES   

 

As well as an IP address, every network-connected device also has a MAC address, which is like the 

final address on a physical envelope in our analogy. It is used to differentiate different machines on the 

same physical network so that they can exchange packets. This relates to the lowest-level “link layer” of 

the TCP/IP stack. Though MAC addresses are globally unique, they don’t typically get used outside of one 

Ethernet network (for example, beyond your home router). So, when an IP message is routed, it hops from 

node to node, and when it finally reaches a node which knows where the physical machine is, that node 

passes the message to the device associated with that MAC address. 

 

MAC stands for Media Access Control. It is a 48-bit number, usually written as six groups of 

hexadecimal digits, separated by colons—for example: 

 

 01:23:45:67:89:ab 

 

Most devices, such as your laptop, come with the MAC address burned into their Ethernet chips. 

Some chips, such as the Arduino Ethernet’s WizNet, don’t have a hard-coded MAC address, though. This is 

for production reasons: if the chips are mass produced, they are, of course, identical. So they can’t, 
physically, contain a distinctive address. The address could be stored in the chip’s firmware, but this would 

then require every chip to be built with custom code compiled in the firmware. Alternatively, one could 

provide a simple data chip which stores just the MAC address and have the WizNet chip read that. 

Obviously, most consumer devices use some similar process to ensure that the machine always starts up 

with the same unique MAC address. The Arduino board, as a low-cost prototyping platform for developers, 

doesn’t bother with that nicety, to save time and cost. Yet it does come with a sticker with a MAC address 

printed on it. Although this might seem a bit odd, there is a good reason for it: that MAC address is 

reserved and therefore is guaranteed unique if you want to use it. For development purposes, you can 

simply choose a MAC address that is known not to exist in your network. 

 

WizNet is a Korean manufacturer which specialises in networking chips for embedded devices. 

Many popular microcontrollers which we look at in Chapter 5 use these chips. 

 

TCP AND UDP PORTS  

 

A messenger with a formal invitation for a wealthy family of the Italian Renaissance would go 

straight to the front entrance to deliver it. A grocer delivering a crate of the first artichokes of the season 

would go instead to a service entrance, where the crate could be taken quickly to the kitchen without 

getting in the way of the masters. The following engraving, by John Gilbert, is taken from Shakespeare’s 

Romeo and Juliet. This reminds us that the house of the Capulets has at least one other entrance—on 

Juliet’s balcony. If Romeo wants to see his beloved, that is the only way to go. If he climbs up the wrong 

balcony, he’ll either wait outside (the nurse is fast asleep and can’t hear his knocks) or get chased away by 

the angry father. 

 

Similarly, when you send a TCP/IP message over the Internet, you have to send it to the right port. 

TCP ports, unlike entrances to the Capulet house, are referred to by numbers (from 0 to 65535). 

 

 

 

 

 



AN EXAMPLE: HTTP PORTS  

 

If your browser requests an HTTP page, it usually sends 

that request to port 80. The web server is “listening” to that port 

and therefore replies to it. If you send an HTTP message to a 

different port, one of several things will happen: 

 ◾ Nothing is listening to that port, and the machine 

replies with an “RST” packet (a control sequence resetting the 

TCP/IP connection) to complain about this.  
 ◾ Nothing is listening to that port, but the firewall lets 

the request simply hang instead of replying. The purpose of this 

(lack of) response is to discourage attackers from trying to find 

information about the machine by scanning every port. (Imagine 

Romeo knocking on the sleeping nurse’s window.) 
 ◾ The client has decided that trying to send a message to that port is a bad idea and refuses to do 

it. Google Chrome does this for a fairly arbitrary list of “restricted ports”.  
 ◾ The message arrives at a port that is expecting something other than an HTTP message. The 

server reads the client’s response, decides that it is garbage, and then terminates the connection (or, 

worse, does a nonsensical operation based on the message). 
 

Ports 0–1023 are “well-known ports”, and only a system process or an administrator can connect to them. 
 

Ports 1024–49151 are “registered”, so that common applications can have a usual port number. However, 

most services are able to bind any port number in this range. 

 

The Internet Assigned Numbers Authority (IANA) is responsible for registering the numbers in these 

ranges. People can and do abuse them, especially in the range 1024–49151, but unless you know what 

you’re doing, you are better off using either the correct assigned port or (for an entirely custom 

application) a port above 49151. 

 

You see custom port numbers if a machine has more than one web server; for example, in 

development you might have another server, bound to port 8080: 

 

http://www.example.com:8080 

 

Or if you are developing a website locally, you may be able to test it with a built-in test web server which 

connects to a free port. For example, Jekyll (the lightweight blog engine we are using for this book’s 

website) has a test server that runs on port 4000: 

 

http://localhost:4000 

 

The secure (encrypted) HTTPS usually runs on port 443. So these two URLs are equivalent: 

 

https://www.example.com  
 

https://www.example.com:443 

 

 

 

 

 

https://www.example.com/


OTHER COMMON PORTS  
 

Even if you will rarely need a complete catalogue of all port numbers for services, you can rapidly 

start to memorize port numbers for the common services that you use daily. For example, you will very 

likely come across the following ports regularly: 

 

`◾ 80 HTTP  

 ◾ 8080 HTTP (for testing servers)  

 ◾ 443 HTTPS  

 ◾ 22 SSH (Secure Shell)  

 ◾ 23 Telnet  

 ◾ 25 SMTP (outbound email)  

 ◾ 110 POP3 (inbound email)  

 ◾ 220 IMAP (inbound email) 

 

All of these services are in fact application layer protocols. 

 

APPLICATION LAYER PROTOCOLS 

 

We have seen examples of protocols at the different layers of the TCP/IP stack, from the low-level 

communication across wired Ethernet, the low-level IP communication, and the TCP transport layer. Now 

we come to the highest layer of the stack, the application layer. This is the layer you are most likely to 

interact with while prototyping an Internet of Things project (and we look at this in greater detail in 

Chapter 7). It is useful here to pause and flesh out the definition of the word “protocol”. 
 

A protocol is a set of rules for communication between computers. It includes rules about how to 

initiate the conversation and what format the messages should be in. It determines what inputs are 

understood and what output is transmitted. It also specifies how the messages are sent and authenticated 

and how to handle (and maybe correct) errors caused by transmission. 

 

Bearing this definition in mind, we are ready to look in more detail at some application layer protocols, 

starting with HTTP. 

 

HTTP  

 

The Internet is much more than just “the web”, but inevitably web services carried over HTTP hold 

a large part of our attention when looking at the Internet of Things. 

 

HTTP is, at its core, a simple protocol. The client requests a resource by sending a command to a 

URL, with some headers. We use the current version of HTTP, 1.1, in these examples. Let’s try to get a 

simple document  at http://book.roomofthings.com/hello.txt. You can see the result if you open the URL in 

your web browser. 

 

A browser showing “Hello World!” 
 



But let’s look at what the browser is actually sending to the server to do this. The basic structure of the 

request would look like this: 

 

GET /hello.txt HTTP/1.1 
 

Host: book.roomofthings.com 

 

Notice how the message is written in plain text, in a human-readable way (this might sound 

obvious, but not all protocols are; the messages could be encoded into bytes in a binary protocol, for 

example). 

  

We specified the GET method because we’re simply getting the page. We go into much more detail 

about the other methods in Chapter 7, “Prototyping Online Components”. We then tell the server which 

resource we want  (/hello.txt) and what version of the protocol we’re using. 

 

Then on the following lines, we write the headers, which give additional information about the 

request. The Host header is the only required header in HTTP 1.1. It is used to let a web server that serves 

multiple virtual hosts point the request to the right place. 

Well-written clients, such as your web browser, pass other headers. For example, my browser sends the 

following request: 

 

GET /hello.txt HTTP/1.1 

Host: book.roomofthings.com  

Accept: text/html,application/xhtml+xml,application/ xml;q=0.9,*/*;q=0.8  

Accept-Charset: UTF-8,*;q=0.5  

Accept-Encoding: gzip,deflate,sdch  

Accept-Language :en-US,en;q=0.8  

Cache-Control: max-age=0  

Connection: keep-alive  

If-Modified-Since: Tue, 21 Aug 2012 21:41:47 GMT  

If-None-Match: “8a25e-d-4c7cd7e3d1cc0”  

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/537.1  

(KHTML, like Gecko) Chrome/21.0.1180.77 Safari/537.1 

 

The Accept- headers tell the server what kind of content the client is willing to receive and are part of 

“Content negotiation”. For example, if I had passed 

 

Accept-Language: it,en-US,en;q=0.8 

 

The server might agree to give me the Italian version of the site instead, reverting to English only if 

it doesn’t have that page in Italian. 

 

The other fields give the server more information about the client (for statistics and for working 

around known bugs) and manage caching and so on. 

 

Finally, the server sends back its response. We already saw what that looked like in the browser, 

but now let’s look at what the full request/response looks like if we speak the HTTP protocol directly. 

(Obviously, you rarely have to do this in real life. Even if you are programming an Internet of Things device, 

you usually have access to code libraries that make the request, and reading of the response, easier.) 

 

 



HTTPS: ENCRYPTED HTTP  

 

We have seen how the request and response are created in a simple text format. If someone 

eavesdropped your connection (easy to do with tools such as Wireshark if you have access to the network 

at either end), that person can easily read the conversation. In fact, it isn’t the format of the protocol that 

is the problem: even if the conversation happened in binary, an attacker could write a tool to translate the 

format into something readable. Rather, the problem is that the conversation isn’t encrypted. 

 

The HTTPS protocol is actually just a mix-up of plain old HTTP over the Secure Socket Layer (SSL) 

protocol. An HTTPS server listens to a different port (usually 443) and on connection sets up a secure, 

encrypted connection with the client (using some fascinating mathematics and clever tricks such as the 

“Diffie–Hellman key exchange”). When that’s established, both sides just speak HTTP to each other as 

before! 

 

OTHER APPLICATION LAYER PROTOCOLS  

 

All protocols work in a roughly similar way. Some cases involve more than just a two-way request 

and response. For example, when sending email using SMTP, you first need to do the “HELO handshake” 
where the client introduces itself with a cheery “hello” (SMTP commands are all four letters long, so it 

actually says “HELO”) and receives a response like “250 Hello example. org pleased to meet you!” In all 

cases, it is worth spending a little time researching the protocol on Google and Wikipedia to understand in 

overview how it works. You can usually find a library that abstracts the details of the communication 

process, and we recommend using that wherever possible. Bad implementations of network protocols will 

create problems for you and the servers you connect to and may result in bugs or your clients getting 

banned from useful services. So, it is generally better to use a well-written, well-debugged implementation 

that is used by many other developers. In general, the only valid reasons for you, the programmer, to ever 

speak to any application layer protocol directly (that is, without using a library) are 

 ◾ There is no implementation of the protocol for your platform (or the implementation is inefficient, 

incomplete, or broken).  ◾ You want to try implementing it from scratch, for fun.  ◾ You are testing, or learning, and want to make a particular request easily. 

 

THINKING ABOUT PROTOTYPING 

 

NOW THAT WE’VE looked at the principles of design and the fundamentals of Internet 

communications, we hope you are itching to create an Internet of Things device! It’s possible that you 

want a single device that is Just For You. But perhaps you have a fantastic idea and are planning to churn 

out millions of the products. In both cases, the most sensible approach is to start by making one Thing first: 

a prototype. 

 

Making a prototype first has many benefits. You will inevitably come across problems in your design 

that you need to change and iterate. Doing this with a single object is trivial compared to modifying 

hundreds or thousands of products. With the Internet of Things, we are always looking at building three 

things in parallel: the physical Thing; the electronics to make the Thing smart; and the Internet service that 

we’ll connect to. The last of these is relatively cheap and easy to change. You cannot change the physical 

object and its silicon controller unless you recall every item. 

 

The prototype, therefore, is optimized for ease and speed of development and also the ability to 

change and modify it. Many Internet of Things projects start with a prototyping microcontroller, connected 

by wires to components on a prototyping board, such as a “breadboard”, and housed in some kind of 



container (perhaps an old tin or a laser-cut box). This prototype is relatively inexpensive, but you will most 

likely end up with something that is serviceable rather than polished and that will cost more than someone 

would be willing to pay for it in a shop. 

 

At the end of this stage, you’ll have an object that works. It may be useful for you already. It may be 

a talking point to show your friends. And if you are planning to move to production, it’s a demonstrable 

product that you can use to convince yourself, your business partners, and your investors that your idea 

has legs and is worth trying to sell. 

 

Finally, the process of manufacture will iron out issues of scaling up and polish. You might 

substitute prototyping microcontrollers and wires with smaller chips on a printed circuit board (PCB), and 

pieces improvised out of 3D-printed plastic with ones commercially injection-moulded in their thousands. 

The final product will be cheaper per unit and more professional, but will be much more expensive to 

change. 

 

SKETCHING  

 

There is a good chance that the first step you’ll take when working on your prototype will be to jot 

down some ideas or draw out some design ideas with pen and paper. That is an important first step in 

exploring your idea and one we’d like to extend beyond the strict definition to also include sketching in 

hardware and software. 

 

What we mean by that is the process of exploring the problem space: iterating through different 

approaches and ideas to work out what works and what doesn’t. The focus isn’t on fidelity of the 

prototype but rather on the ease and speed with which you can try things out. 

 

For the physical design, that could mean digging out your childhood LEGO collection to prototype 

the mix of cogs and three-dimensional forms, or maybe attacking some foamcore or cardboard with a craft 

knife. We examine such techniques in more detail in Chapter 6, “Prototyping the Physical Design”. 
 

To show how you might approach “sketching” for the electronics and software, an example will 

help. 

 

The Internet of Things design firm BERG invited me (Adrian) along to their inaugural Little Printer 

hackday in June 2012. They filled their office with a bunch of interesting techies and creatives and tasked 

them with seeing what they could do, in a day, with BERG’s (at the time) soon-to-be-released cute 

Internet-connected diminutive printer. (For more on the Little Printer, see the case study in Chapter 10, 

“Moving to Manufacture”.) 

 

Most of the attendees focused on creating new publications for the Little Printer—a task that 

meant writing server code to wrangle data (working with the Google Calendar API, spotting meteors 

passing overhead, and so on) into shape and experimenting with ways of displaying that on a narrow strip 

of receipt paper. I (Adrian) decided that having a connected device as the output for the system wasn’t 
enough and spent the day prototyping a custom-hardware input device, too. Called the Printernet Fridge, it 

was a nod to the age-old Internet of Things cliché, the Internet fridge—an exercise in seeing what a semi-

automated shopping list would be like. 

 

From the design constraints (mostly how the Little Printer publishing system works but also limited 

by the hardware that I had thrown into my bag to take to the event), it was clear early on that the problem 

could be broken into three broad areas: the graphic design of the printed publication; the physical 

hardware to easily add items to the shopping list; and some server software to tie the rest of the system 



together. Breaking the problem into these three parts meant that, initially at least, each could be 

addressed separately.  

 

The first step was to pull together the scaffolding of the server software, which other parts of the 

system could be built on as they were developed.   

 

As this was a prototype, rather than a system to be deployed to thousands of users, I used the 

simple framework Sinatra. Sinatra is a way to quickly build web services, much like the Dancer framework 

which we cover in Chapter 7, “Prototyping Online Components”, but using the Ruby programming 

language. 

 

Given that the prototype was going to be demonstrated only to a handful of people and didn’t need to 

extend beyond a single user, I didn’t waste any time including a login system for multiple users or setting 

up any security to encrypt the requests to and from the service. That provided enough infrastructure to 

interact with the Little Printer publication system and to allow the addition of API hooks for the input 

device to call when it was ready. I created a crude placeholder image for the publication’s icon and dashed 

off the description text with a simple “prints shopping lists”, to let the focus stay on the server software 

rather than get sidelined into the design and polish. Similarly, the publication itself was just the bare 

minimum static text which was delivered whenever the publication was requested. 

 

At this point it was possible to subscribe to the publication and have it print a set, one-line 

document on a Little Printer. Collaborating with one of the designers at the hackday, we iterated through 

the look and layout of the shopping list by tweaking the HTML, CSS, and images in the Sinatra app that 

made up the publication. 

 

The content was still static—you would always get a list asking for two bottles of milk and some 

fresh orange juice—but the header image and text were refined and decisions made about how to convey 

the information to the user. The simple bullets for each list item were replaced with numbers of each item 

required, which then moved to the end of the list item so the bullet could be reinstated but as an empty 

check box to allow you to tick items off as you found them in the shop. 

All it needed now was some live data. The workflow for that needed to be as easy as possible; it shouldn’t 
be a chore to add items. However, this wasn’t to be some seamless vision of the future where the fridge 

would order things for you. (The ultimate agency of the user is important.) It is a tool rather than an 

autonomous decision maker. 

 

With only an Arduino Ethernet board in my bag, the decision over hardware platform was already 

made. For a production unit, the Ethernet cable would complicate installation, and encrypting the data 

being sent would stretch the board’s limits; however, for a quick prototype, the ease of wiring up different 

circuits and changing the onboard code easily outweighed the longer-term disadvantages. 

 

Once a basic pushbutton was wired up to the Arduino, I could write some simple code to trigger 

whenever the button was pressed. The first step merely output some text to the serial port, which could be 

monitored immediately over the USB cable on my laptop. 

 

Now that the basic physical interaction was working, the next step was to hook it into the web 

service. That required me to change the software on both the Arduino and the web service. I added a new 

API call to the Sinatra app which allows new items to be added to the list and tested it with a web browser 

(as that gives an easier view of what is happening if things go wrong). 

 

For a more complex project, I would have chosen Rails over Sinatra as the web framework. Doing so 

would have let me pull in the RailsAdmin module to check things like whether the item had been added to 

the database correctly. Such helper modules let you focus on sketching out one feature, without having to 



divert to building chunks of additional infrastructure before you have decided that the feature is going to 

stay. In this case, I could easily switch the static shopping list over to use the live data, which served as 

both feature development and debugging aid. 

 

Then I pulled in some sample code to make a web request from the Arduino and modified it to call 

the newly written API on the web service. With that written, it was possible to push a button and have 

“milk” added to your shopping list. Success! 

 

The next step was to add more buttons, as only being able to order more milk isn’t the most useful 

of shopping list applications. Two more buttons were added and connected up to allow “cheese” and 

“orange juice” to also be ordered. 

 

A quick round of user testing (or showing it off to fellow hackday attendees, as it is also known in 

this case) highlighted a problem with the design as it stood. Although recording a new selection to the 

server took less than a second, it was still long enough for subsequent button presses to be missed if you 

were running through them quickly. 

 

Given that the end of the day was looming large, and as I would be able to talk around the issue in 

the demonstration, I chose expediency over the larger amount of coding required to decouple the user 

interface of buttons from the network communication. A “busy” LED was added to the breadboard and 

illuminated whenever the Arduino was talking to the network. 

 

The work on the hardware and 

software left little time for developing a case 

for the input device, which is just as well 

because I hadn’t room for any construction 

materials in my bag. Improvising with some 

sticky notes at least made the interface more 

self-explanatory. It also allowed room to hint 

at ways in which the prototype could be 

further extended, with “Add barcode scanner 

here” written on a note below the buttons. 

That was a result of further thinking through 

how the device might work in practice. You 

would want a number of buttons, with a web 

interface to let you reconfigure them for your 

set of non-packaged fridge goods, and then a 

barcode reader would allow scanning of 

anything that was in packaging. 

 

 

FAMILIARITY  

 

Another option to consider is familiarity. If you can already program like a whiz in Python, for 

example, maybe picking a platform such as Raspberry Pi, which lets you write the code in a language you 

already know, would be better than having to learn Arduino from scratch. 

 

The same applies to the server software, obviously. When creating the Printernet Fridge prototype, 

Adrian hadn’t used Sinatra before but chose it because he was looking for a simple web framework and 

was already familiar with Ruby from writing a number of Ruby on Rails applications in the past. And if 

you’re already adept at fashioning sheets of foamcore into threedimensional structures, we’re not going to 

argue that you should ignore that expertise in favour of learning all about laser cutting. 



COSTS VERSUS EASE OF PROTOTYPING  

 

Although familiarity with a platform may be attractive in terms of ease of prototyping, it is also 

worth considering the relationship between the costs (of prototyping and mass producing) of a platform 

against the development effort that the platform demands. This trade-off is not hard and fast, but it is 

beneficial if you can choose a prototyping platform in a performance/ capability bracket similar to a final 

production solution. That way, you will be less likely to encounter any surprises over the cost, or even the 

wholesale viability of your project, down the line. 

 

For example, the cheapest possible way of creating an electronic device might currently be an AVR 

microcontroller chip, which you can purchase from a component supplier for about £3. This amount is just 

for the chip, so you would have to sweat the details of how to connect the pins to other components and 

how to flash the chip with new code. For many people, this platform would not be viable for an initial 

prototype. 

 

Stepping upwards to the approximately £20 mark, you could look at an Arduino or similar. It would 

have exactly the same chip, but it would be laid out on a board with labelled headers to help you wire up 

components more easily, have a USB port where you could plug in a computer, and have a well-supported 

IDE to help make programming it easier. But, of course, you are still programming in C++, for reasons of 

performance and memory. 

 

For more money again, approximately £30, you could look at the BeagleBone, which runs Linux and 

has enough processing power and RAM to be able to run a high-level programming language: libraries are 

provided within the concurrent programming toolkit Node.js for JavaScript to manipulate the input/output 

pins of the board. 

 

If you choose not to use an embedded platform, you could think about using a smartphone instead. 

Smartphones might cost about £300, and although they are a very different beast, they have many of the 

same features that make the cheaper platforms attractive: connection to the Internet (usually by wireless 

or 3G phone connection rather than Ethernet), input capabilities (touchscreen, button presses, camera, 

rather than electronics components), and output capabilities (sound, screen display, vibration). You can 

often program them in a choice of languages of high or low level, from Objective C and Java, to Python or 

HTML and JavaScript. 

 

Finally, a common or garden PC might be an option for a prototype. These PCs cost from £100 to 

£1000 and again have a host of Internet connection and I/O possibilities. You can program them in 

whatever language you already know how to use. Most importantly, you probably already have one lying 

around. 

 

For the first prototype, the cost is probably not the most important issue: the smartphone or 

computer options are particularly convenient if you already have one available, at which point they are 

effectively zero-cost. Although prototyping a “thing” using a piece of general computing equipment might 

seem like a sideways step, depending on your circumstances, it may be exactly the right thing to do to 

show whether the concept works and get people interested in the project, to collaborate on it, or to fund 

it. 

 

At this stage, you can readily argue that doing the easiest thing that could possibly work is entirely 

sensible. The most powerful platform that you can afford might make sense for now. 

Of course, if your device has physical interactions (blowing bubbles, turning a clock’s hands, taking input 

from a dial), you will find that a PC is not optimized for this kind of work. It doesn’t expose GPIO pins 

(although people have previously kludged this using parallel ports). An electronics prototyping board, 



unsurprisingly, is better suited to this kind of work. We come back to combining both of these options 

shortly.  

 

An important factor to be aware of is that the hardware and programming choices you make will 

depend on your skill set, which leads us to the obvious criticism of the idea of “ease of prototyping”, 
namely “ease... for whom?” 
 

For many beginners to hardware development, the Arduino toolkit is a surprisingly good choice. 

Yes, the input/output choices are basic and require an ability to follow wiring diagrams and, ideally, a basic 

knowledge of electronics. Yet the interaction from a programming point of view is essentially simple—
writing and reading values to and from the GPIO pins. Yes, the language is C++, which in the early twenty-

first century is few people’s idea of the best language for beginners. Yet the Arduino toolkit abstracts the 

calls you make into a setup() function and a loop() function. Even more importantly, the IDE pushes the 

compiled code onto the device where it just runs, automatically, until you unplug it. The lack of capabilities 

of the board presents an advantage in the fact that the interaction with it is also streamlined. 

 

PROTOTYPES AND PRODUCTION  

 

Although ease of prototyping is a major factor, perhaps the biggest obstacle to getting a project 

started—scaling up to building more than one device, perhaps many thousands of them—brings a whole 

new set of challenges and questions. 

 

CHANGING EMBEDDED PLATFORM  

 

When you scale up, you may well have to think about moving to a different platform, for cost or 

size reasons. If you’ve started with a free-form, powerful programming platform, you may find that porting 

the code to a more restricted, cheaper, and smaller device will bring many challenges. This issue is 

something to be aware of. If the first prototype you built on a PC, iPhone, BeagleBone, or whatever has 

helped you get investment or collaborators, you may be well placed to go about replicating that compelling 

functionality on your final target. 

 

Of course, if you’ve used a constrained platform in prototyping, you may find that you have to 

make choices and limitations in your code. Dynamic memory allocation on the 2K that the Arduino 

provides may not be especially efficient, so how should that make you think about using strings or complex 

data structures? If you port to a more powerful platform, you may be able to rewrite your code in a more 

modern, high-level way or simply take advantage of faster processor speed and more RAM. But will the 

new platform have the same I/O capabilities? And you have to consider the ramping-up time to learn new 

technologies and languages. 

 

In practice, you will often find that you don’t need to change platforms. Instead, you might look at, 

for example, replacing an Arduino prototyping microcontroller with an AVR chip (the same chip that 

powers the Arduino) and just those components that you actually need, connected on a custom PCB. We 

look at this issue in much more detail in Chapter 10. 

 

PHYSICAL PROTOTYPES AND MASS PERSONALISATION  

 

Chances are that the production techniques that you use for the physical side of your device won’t 
translate directly to mass production. However, while the technique might change—injection moulding in 

place of 3D printing, for example—in most cases, it won’t change what is possible. 

An aspect that may be of interest is in the way that digital fabrication tools can allow each item to 

be slightly different, letting you personalize each device in some way. There are challenges in scaling this to 



production, as you will need to keep producing the changeable parts in quantities of one, but mass 

personalization, as the approach is called, means you can offer something unique with the accompanying 

potential to charge a premium. 

 

CLIMBING INTO THE CLOUD  

 

The server software is the easiest component to take from prototype into production. As we saw 

earlier, it might involve switching from a basic web framework to something more involved (particularly if 

you need to add user accounts and the like), but you will be able to find an equivalent for whichever 

language you have chosen. That means most of the business logic will move across with minimal changes. 

Beyond that, scaling up in the early days will involve buying a more powerful server. If you are running on a 

cloud computing platform, such as Amazon Web Services, you can even have the service dynamically 

expand and contract, as demand dictates. 

 

OPEN SOURCE VERSUS CLOSED SOURCE  

 

If you’re so minded, you could spend a lifetime arguing about the definitions of “closed” and 

“open” source, and some people have, in fact, made a career out of it. Broadly, we’re looking at two issues: 

 ◾ Your assertion, as the creator, of your Intellectual Property rights  ◾ Your users’ rights to freely tinker with your creation  

We imagine many of this book’s readers will be creative in some sense, perhaps tinkerers, 

inventors, programmers, or designers. As a creative person, you may be torn between your own desire to 

learn how things work and modify and re-use them and the worry that if other people were to use that 

right on your own design/invention/software, you might not get the recognition and earnings that you 

expect from it. 

 

In fact, this tension between the closed and open approaches is rather interesting, especially when 

applied to a mix of software and hardware, as we find with Internet of Things devices. While many may 

already have made up their minds, in one or the other direction, we suggest at least thinking about how 

you can use both approaches in your project. 

 

WHY CLOSED?  

 

Asserting Intellectual Property rights is often the default approach, especially for larger companies. 

If you declared copyright on some source code or a design, someone who wants to market the same 

project cannot do so by simply reading your instructions and following them. That person would have to 

instead reverse-engineer the functionality of the hardware and software. In addition, simply copying the 

design slavishly would also infringe copyright. You might also be able to protect distinctive elements of the 

visual design with trademarks and of the software and hardware with patents. 

 

Although getting good legal information on what to protect and how best to enforce those rights is 

hard and time-consuming, larger companies may well be geared up to take this route. If you are 

developing an Internet of Things device in such a context, working within the culture of the company may 

simply be easier, unless you are willing to try to persuade your management, marketing, and legal teams 

that they should try something different. 

 

If you’re working on your own or in a small company, you might simply trademark your distinctive 

brand and rely on copyright to protect everything else. Note that starting a project as closed source 

doesn’t prevent you from later releasing it as open source (whereas after you’ve licensed something as 

open source, you can’t simply revoke that license). 



You may have a strong emotional feeling about your Intellectual Property rights: especially if your 

creativity is what keeps you and your loved ones fed, this is entirely understandable. But it’s worth bearing 

in mind that, as always, there is a trade-off between how much the rights actually help towards this 

important goal and what the benefits of being more open are. 

 

WHY OPEN?  

 

In the open source model, you release the sources that you use to create the project to the whole 

world. You might publish the software code to GitHub (http://github.com), the electronic schematics using 

Fritzing (http:// fritzing.org) or SolderPad (http://solderpad.com), and the design of the housing/shell to 

Thingiverse (http://www.thingiverse.com). 

 

If you’re not used to this practice, it might seem crazy: why would you give away something that 

you care about, that you’re working hard to accomplish? There are several reasons to give away your work: 

 ◾ You may gain positive comments from people who liked it.  ◾ It acts as a public showcase of your work, which may affect your reputation and lead to new 

opportunities.  ◾ People who used your work may suggest or implement features or  fix bugs.  ◾ By generating early interest in your project, you may get support and mindshare of a quality that it 

would be hard to pay for. 

Of course, this is also a gift economy: you can use other people’s free and open source 

contributions within your own project. Forums and chat channels exist all over the Internet, with people 

more or less freely discussing their projects because doing so helps with one or more of the benefits 

mentioned here. 

If you’re simply “scratching an itch” with a project, releasing it as open source may be the best thing you 

could do with it. A few words of encouragement from someone who liked your design and your blog post 

about it may be invaluable to get you moving when you have a tricky moment on it. A bug fix from 

someone who tried using your code in a way you had never thought of may save you hours of unpleasant 

debugging later. And if you’re very lucky, you might become known as “that bubble machine guy” or get 

invited to conferences to talk about your LED circuit. 

 

If you have a serious work project, you may still find that open source is the right decision, at least 

for some of your work. 

 

Disadvantages of Open Source 

 

The obvious disadvantage of open source—“but people will steal my idea!”—may, in fact, be less of 

a problem than you might think. In general, if you talk to people about an idea, it’s hard enough to get 

them to listen because they are waiting to tell you about their great idea (the selfish cads).  If people do 

use your open source contribution, they will most likely be using it in a way that interests them. The 

universe of ideas is still, fortunately, very large. 

 

However, deciding to release as open source may take more resources. As the saying goes: the 

shoemaker’s children go barefoot. If you’re designing for other people, you have to make something of a 

high standard, but for yourself, you often might be tempted to cut corners. When you have a working 

prototype, this should be a moment of celebration. Then having to go back and fix everything so that you 

can release it in a form that doesn’t make you ashamed will take time and resources. 



Of course, the right way to handle this process would be to start pushing everything to an open repository 

immediately and develop in public. This is much more the “open source way”. It may take some time to get 

used to but may work for you. 

 

After you release something as open source, you may still have a perceived duty to maintain and 

support it, or at least to answer questions about it via email, forums, and chatrooms. Although you may 

not have paying customers, your users are a community that you may want to maintain. It is true that, if 

you have volunteered your work and time, you are entirely responsible for choosing to limit that whenever 

you want. But abandoning something before you’ve built up a community around it to pass the reins to 

cannot be classed as a successful open source project. 

 

Being a Good Citizen The idea that there is a “true way” to do open source is worth thinking about. 

There is in some way a cachet to “doing open source” that may be worth having. Developers may be 

attracted to your project on that basis. If you’re courting this goodwill, it’s important to make sure that you 

do deserve it. If you say you have an open platform, releasing only a few libraries, months afterwards, with 

no documentation or documentation of poor quality could be considered rude. Also, your open source 

work should make some attempt to play with other open platforms. Making assumptions that lock in the 

project to a device you control, for example, would be fine for a driver library but isn’t great for an 

allegedly open project. 

 

In some ways, being a good citizen is a consideration to counterbalance the advantages of the gift 

economy idea. But, of course, it is natural that any economy has its rules of citizenship! 

Open Source as a Competitive Advantage Although you might be tempted to be very misty-eyed about 

open source as a community of good citizens and a gift economy, it’s important to understand the 

possibility of using it to competitive advantage. 

 

First, using open source work is often a no-risk way of getting software that has been tested, 

improved, and debugged by many eyes. As long as it isn’t licensed with an extreme viral licence (such as 

the AGPL), you really have no reason not to use such work, even in a closed source project. Sure, you could 

build your own microcontroller from parts and write your own library to control servo motors, your own 

HTTP stack, and a web framework. Or you could use an Arduino, the Arduino servo libraries and Ethernet 

stack, and Ruby on Rails, for example. Commercial equivalents may be available for all these examples, but 

then you have to factor in the cost and rely on a single company’s support forums instead of all the 

information available on the Internet. 

 

Second, using open source aggressively gives your product the chance to gain mindshare. In this 

book we talk a lot about the Arduino—as you have seen in this chapter; one could easily argue that it isn’t 
the most powerful platform ever and will surely be improved. It scores many points on grounds of cost but 

even more so on mindshare. The design is open; therefore, many other companies have produced clones 

of the board or components such as shields that are compatible with it.  

This has led to amusing things such as the Arduino header layout “bug” 
(http://forum.arduino.cc/index. php/topic,22737.0.html#subject_171839), which is the result of a design 

mistake that has nevertheless been replicated by other manufacturers to target the same community. 

 

If an open source project is good enough and gets word out quickly and appealingly, it can much 

more easily gain the goodwill and enthusiasm to become a platform. The “geek” community often choose 

a product because, rather than being a commercial “black box”, it, for example, exposes a Linux shell or 

can communicate using an open protocol such as XML. This community can be your biggestally. 

 

Open Source as a Strategic Weapon One step further in the idea of open source used aggressively is 

the idea of businesses using open source strategically to further their interests (and undermine their 

competitors). 



In “Commoditizing your complements” (http://www.joelonsoftware. com/articles/StrategyLetterV.html), 

software entrepreneur Joel Spolsky argues that many companies that invest heavily in open source 

projects are doing just that. In economics, the concept of complements defines products and services that 

are bought in conjunction with your product—for example, DVDs and DVD players. 

If the price of one of those goods goes down, then demand for both goods is likely to rise. Companies can 

therefore use improvements in open source versions of complementary products to increase demand for 

their products. If you manufacture microcontrollers, for example, then improving the open source 

software frameworks that run on the microcontrollers can help you sell more chips. 

 

MIXING OPEN AND CLOSED SOURCE  

 

We’ve discussed open sourcing many of your libraries and keeping your core business closed. While 

many businesses can exist as purely one or the other, you shouldn’t discount having both coexist. As long 

as you don’t make unfounded assertions about how much you use open software, it’s still possible to be a 

“good citizen” who contributes back to some projects whether by contributing work or simply by helping 

others in forums while also gaining many of the advantages of open source. 

While both of us tend to be keen on the idea of open source, it’s also true that not all our work is open 

source. We have undertaken some for commercial clients who wanted to retain IP. Some of the work was 

simply not polished enough to be worth the extra effort to make into a viable open release. 

Adrian’s project Bubblino has a mix of licences: 

 ◾ Arduino code is open source.  ◾ Schematics are available but not especially well advertised.  ◾ Server code is closed source.  

The server code was partly kept closed source because some details on the configuration of the Internet of 

Things device were possibly part of the commercial advantage. 

 

CLOSED SOURCE FOR MASS MARKET PROJECTS  

 

One edge case for preferring closed source when choosing a licence may be when you can 

realistically expect that a project might be not just successful but huge, that is, a mass market commodity. 

While “the community” of open source users is a great ally when you are growing a platform by word of 

mouth, if you could get an existing supply and distribution chain on your side, the advantage of being first 

to market and doing so cheaper may well be the most important thing. 

 

Let’s consider Nest, an intelligent thermostat: the area of smart energy metering and control is one 

in which many people are experimenting. The moment that an international power company chooses to 

roll out power monitors to all its customers, such a project would become instantaneously mass market. 

This would make it a very tempting proposition to copy, if you are a highly skilled, highly geared-up 

manufacturer in China, for example. If you also have the schematics and full source code, you can even skip 

the investment required to reverse-engineer the product. 

 

The costs and effort required in moving to mass scale show how, for a physical device, the 

importance of supply chain can affect other considerations. In 2001, Paul Graham spoke compellingly 

about how the choice of programming language (in his case, Lisp) could leave competitors in the dirt 

because all of his competitors chose alternative languages with much slower speed of development 

(www.paulgraham.com/avg.html). Of course, the key factor wasn’t so much about development platform 

as time to market versus your competitor’s time to market. The tension between open and closed source 

informs this as well. 

 

 



TAPPING INTO THE COMMUNITY  

 

We talked about the “community” in the previous section, but it would be disingenuous to pretend 

that this is exclusively a feature of open source projects. 
 

While thinking about which platform you want to build for, having a community to tap into may be 

vital or at least useful. Again, this is a major reason for our current support of the Arduino platform. If you 

have a problem with a component or a library, or a question about how to do something (for example, 

controlling a servo motor with a potentiometer dial), you could simply do a Google search on the words 

“arduino servo potentiometer” and find a YouTube video, a blog post, or some code. 
 

Many other cute platforms, such as the Chumby Hacker Board, do have communities of 

aficionados, but perhaps smaller ones. If you are doing something more obscure or need more detailed 

technical assistance, finding someone who has already done exactly that thing may be difficult. 
 

Mindshare may be important as you scale up, too—for example, if you want confidence that you 

can hire people with skills in the platform you’ve chosen. This issue may be less important for a small, 

focused team which has a lot of expertise in a new or obscure platform but still may be a consideration. 
 

When you are an inexperienced maker, using a platform in which other people can mentor you is 

invaluable. If you have a local meeting for makers, such as Maker Night Liverpool, or equivalents in 

hackspaces around the world, you will very often find someone who is willing to take you through the 

basics in Arduino or another similar system. Perhaps that person is an expert on it or has simply gone 

through the basics (getting an LED flashing or playing “Mary had a little lamb” with a piezo speaker) at the 

last meeting. These meetings can be invaluable for both student and mentor. 
 

Local meetings are also a great way to discuss your own project and learn about others. While to 

discuss your project is in some way being “open” about it, you are at all times in control of how much you 

say and whom you say it to. If you’re not already open source minded, this approach can be much less 

intimidating than releasing your clever idea to the whole Internet at once. 

 

The perceived danger of sharing an idea or an implementation or a question with other people is 

looking like an idiot in public. While many parts of many Internet communities are much more sympathetic 

to this fear than one might expect, the mask of anonymity on the Internet can seem to permit people to be 

less supportive or simply more rude than you might hope for. In general, face-to-face meetings at a 

hackspace may well be a friendlier and more supportive way to dip your toes into the idea of a 

“community” of Internet of Things makers. 
 

One reason to be in touch with a (local or Internet) community of makers is that we are, in 

interaction designer and BERG hardware engineer Andy Huntington’s words, at the stage of the “Geocities 

of things”—that is, at the frontier of the Internet of Things, just as Geocities was at the frontier of making 

websites and blogging. Sure, the design of some of the things may be clunky, the things might be pointless, 

and a lot of people may simply be doing something that they saw someone else do before. But from this 

outpouring of creativity will come the next generation of successful businesses and projects that actually 

change the world. This is a fascinating time to be getting involved in the Internet of Things. 

 

Question Bank: 
 

1. Explain internet communication overview.(10M) 

2. Explicate prototyping in detail.(10M) 

3. Describe MAC.(5M) 

4. Write a note on TCP/IP, UDP. (5M) 

5. Elaborate DNS. (5M) 

6. Elucidate application layer protocol.(5M) 

 



 

 

ELECTRONICS  

Before we get stuck into the ins and outs of microcontroller and embedded computer boards, let’s 

address some of the electronics components that you might want to connect to them. 

Don’t worry if you’re scared of things such as having to learn soldering. You are unlikely to need it for your 

initial experiments. Most of the prototyping can be done on what are called solderless breadboards. They 

enable you to build components together into a circuit with just a push-fit connection, which also means 

you can experiment with different options quickly and easily. 

 

When it comes to thinking about the electronics, it’s useful to split them into two main categories:  

 

◾ Sensors: Sensors are the ways of getting information into your device, finding out things about 

your surroundings.  

◾ Actuators: Actuators are the outputs for the device—the motors, lights, and so on, which let your 

device do something to the outside world. 

 

Within both categories, the electronic components can talk to the computer in a number of ways. 

 

The simplest is through digital I/O, which has only two states: a button can either be pressed or not; 

or an LED can be on or off. These states are usually connected via general-purpose input/output (GPIO) 

pins and map a digital 0 in the processor to 0 volts in the circuit and the digital 1 to a set voltage, usually 

the voltage that the processor is using to run (commonly 5V or 3.3V). 

 

If you want a more nuanced connection than just on/off, you need an analogue signal. For example, 

if you wire up a potentiometer to let you read in the position of a rotary knob, you will get a varying 

voltage, depending on the knob’s location. Similarly, if you want to run a motor at a speed other than off 

or full-speed, you need to feed it with a voltage somewhere between 0V and its maximum rating. 

Because computers are purely digital devices, you need a way to translate between the analogue voltages 

in the real world and the digital of the computer.  

 

An analogue-to-digital converter (ADC) lets you measure varying voltages. Microcontrollers often 

have a number of these converters built in. They will convert the voltage level between 0V and a 

predefined maximum (often the same 5V or 3.3V the processor is running at, but sometimes a fixed value 

such as 1V) into a number, depending on the accuracy of the ADC. The Arduino has 10-bit ADCs, which by 

default measure voltages between 0 and 5V. A voltage of 0 will give a reading of 0; a voltage of 5V would 

read 1023 (the maximum value that can be stored in a 10-bits); and voltages in between result in readings 

relative to the voltage. 1V would map to 205; a reading of 512 would mean the voltage was 2.5V; and so 

on. 

 

The flipside of an ADC is a DAC, or digital-to-analogue converter. DACs let you generate varying 

voltages from a digital value but are less common as a standard feature of microcontrollers. This is due to a 

technique called pulse-width modulation (PWM), which gives an approximation to a DAC by rapidly turning 
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a digital signal on and off so that the average value is the level you desire. PWM requires simpler circuitry, 

and for certain applications, such as fading an LED, it is actually the preferred option. 

For more complicated sensors and modules, there are interfaces such as Serial Peripheral Interface 

(SPI) bus and Inter-Integrated Circuit (I2C). These standardised mechanisms allow modules to 

communicate, so sensors or things such as Ethernet modules or SD cards can interface to the 

microcontroller. 

Naturally, we can’t cover all the possible sensors and actuators available, but we list some of the 

more common ones here to give a flavour of what is possible. 

SENSORS  

Pushbuttons and switches, which are probably the simplest sensors, allow some user input. 

Potentiometers (both rotary and linear) and rotary encoders enable you to measure movement. 
 

Sensing the environment is another easy option. Light-dependent resistors (LDRs) allow 

measurement of ambient light levels, thermistors and other temperature sensors allow you to know how 

warm it is, and sensors to measure humidity or moisture levels are easy to build. 
 

Microphones obviously let you monitor sounds and audio, but piezo elements (used in certain types 

of microphones) can also be used to respond to vibration. 
 

Distance-sensing modules, which work by bouncing either an infrared or ultrasonic signal off 

objects, are readily available and as easy to interface to as a potentiometer. 

 

ACTUATORS  

One of the simplest and yet most useful actuators is light, because it is easy to create electronically 

and gives an obvious output. Light-emitting diodes (LEDs) typically come in red and green but also white 

and other colours. RGB LEDs have a more complicated setup but allow you to mix the levels of red, green, 

and blue to make whatever colour of light you want. More complicated visual outputs also are available, 

such as LCD screens to display text or even simple graphics. 

Piezo elements, as well as responding to vibration, can be used to create it, so you can use a piezo 

buzzer to create simple sounds and music. Alternatively, you can wire up outputs to speakers to create 

more complicated synthesized sounds. 

Of course, for many tasks, you might also want to use components that move things in the real 

world. Solenoids can by used to create a single, sharp pushing motion, which could be useful for pushing a 

ball off a ledge or tapping a surface to make a musical sound. 

More complicated again are motors. Stepper motors can be moved in steps, as the name implies. 

Usually, a fixed number of steps perform a full rotation. DC motors simply move at a given speed when told 

to. Both types of motor can be one-directional or move in both directions. Alternatively, if you want a 

motor that will turn to a given angle, you would need a servo. Although a servo is more controllable, it 

tends to have a shorter range of motion, often 180 or fewer degrees (whereas steppers and DC motors 

turn indefinitely). For all the kinds of motors that we’ve mentioned, you typically want to connect the 

motors to gears to alter the range of motion or convert circular movement to linear, and so on. 

If you want to dig further into the ways of interfacing your computer or microcontroller with the 

real world, the “Interfacing with Hardware” page on the Arduino Playground website 

(http://playground.arduino.cc//Main/ InterfacingWithHardware) is a good place to start. Although 

Arduino-focused, most of the suggestions will translate to other platforms with minimal changes. For a 

more in-depth introduction to electronics, we recommend Electronics for Dummies (Wiley, 2009). 



SCALING UP THE ELECTRONICS  

From the perspective of the electronics, the starting point for prototyping is usually a 

“breadboard”. This lets you push-fit components and wires to make up circuits without requiring any 

soldering and therefore makes experimentation easy. When you’re happy with how things are wired up, 

it’s common to solder the components onto some protoboard, which may be sufficient to make the circuit 

more permanent and prevent wires from going astray. 

Moving beyond the protoboard option tends to involve learning how to lay out a PCB. This task isn’t 
as difficult as it sounds, for simple circuits at least, and mainly involves learning how to use a new piece of 

software and understanding some new terminology.  

For small production runs, you’ll likely use through-hole components, so called because the legs of 

the component go through holes in the PCB and tend to be soldered by hand. You will often create your 

designs as companion boards to an existing microcontroller platform—generally called shields in the 

Arduino community. This approach lets you bootstrap production without worrying about designing the 

entire system from scratch. 

When you want to scale things even further, moving to a combined board allows you to remove 

any unnecessary components from the microcontroller board, and switching to surface mount 

components—where the legs of the chips are soldered onto the same surface as the chip—eases the 

board’s assembly with automated manufacturing lines. 

PCB design and the options for manufacturing are covered in much greater detail in Chapter 10, “Moving 

to Manufacture”. 

 



EMBEDDED COMPUTING BASICS  

The rest of this chapter examines a number of different embedded computing platforms, so it 

makes sense to first cover some of the concepts and terms that you will encounter along the way. 

Providing background is especially important because many of you may have little or no idea about 

what a microcontroller is. Although we’ve been talking about computing power getting cheaper and more 

powerful, you cannot just throw a bunch of PC components into something and call it an Internet of Things 

product. If you’ve ever opened up a desktop PC, you’ve seen that it’s a collection of discrete modules to 

provide different aspects of functionality. It has a main motherboard with its processor, one or two smaller 

circuit boards providing the RAM, and a hard disk to provide the long-term storage. So, it has a lot of 

components, which provide a variety of general-purpose functionality and which all take up a 

corresponding chunk of physical space. 

 

MICROCONTROLLERS  

Internet of Things devices take advantage of more tightly integrated and miniaturized solutions—
from the most basic level of microcontrollers to more powerful system-on-chip (SoC) modules. These 

systems combine the processor, RAM, and storage onto a single chip, which means they are much more 

specialized, smaller than their PC equivalents, and also easier to build into a custom design. 

These microcontrollers are the engines of countless sensors and automated factory machinery. 

They are the last bastions of 8-bit computing in a world that’s long since moved to 32-bit and beyond. 

Microcontrollers are very limited in their capabilities—which is why 8-bit microcontrollers are still in use, 

although the price of 32-bit microcontrollers is now dropping to the level where they’re starting to be 

edged out. Usually, they offer RAM capabilities measured in kilobytes and storage in the tens of kilobytes. 

However, they can still achieve a lot despite their limitations. 

You’d be forgiven if the mention of 8-bit computing and RAM measured in kilobytes gives you 

flashbacks to the early home computers of the 1980s such as the Commodore 64 or the Sinclair ZX 

Spectrum. The 8-bit microcontrollers have the same sort of internal workings and similar levels of memory 

to work with. There have been some improvements in the intervening years, though—the modern chips 

are much smaller, require less power, and run about five times faster than their 1980s counterparts. 

Unlike the market for desktop computer processors, which is dominated by two manufacturers 

(Intel and AMD), the microcontroller market consists of many manufacturers. A better comparison is with 

the automotive market. In the same way that there are many different car manufacturers, each with a 

range of models for different uses, so there are lots of microcontroller manufacturers (Atmel, Microchip, 

NXP, Texas Instruments, to name a few), each with a range of chips for different applications. 

The ubiquitous Arduino platform is based around Atmel’s AVR AT mega family of microcontroller 

chips. The on-board inclusion of an assortment of GPIO pins and ADC circuitry means that microcontrollers 

are easy to wire up to all manner of sensors, lights, and motors. Because the devices using them are 

focused on performing one task, they can dispense with most of what we would term an operating system, 

resulting in a simpler and much slimmer code footprint than that of a SoC or PC solution. 

In these systems, functions which require greater resource levels are usually provided by additional 

single-purpose chips which at times are more powerful than their controlling microcontroller. For example, 

the WizNet Ethernet chip used by the Arduino Ethernet has eight times more RAM than the Arduino itself. 

 

 

 

 



SYSTEM-ON-CHIPS  

In between the low-end microcontroller and a full-blown PC sits the SoC (for example, the Beagle 

Bone or the Raspberry Pi). Like the microcontroller, these SoCs combine a processor and a number of 

peripherals onto a single chip but usually have more capabilities. The processors usually range from a few 

hundred megahertz, nudging into the gigahertz for top-end solutions, and include RAM measured in 

megabytes rather than kilobytes. Storage for SoC modules tends not to be included on the chip, with SD 

cards being a popular solution. 

The greater capabilities of SoC mean that they need some sort of operating system to marshal their 

resources. A wide selection of embedded operating systems, both closed and open source, is available and 

from both specialised embedded providers and the big OS players, such as Microsoft and Linux. Again, as 

the price falls for increased computing power, the popularity and familiarity of options such as Linux are 

driving its wider adoption. 

CHOOSING YOUR PLATFORM  

How to choose the right platform for your Internet of Things device is as easy a question to answer 

as working out the meaning of life. This isn’t to say that it’s an impossible question—more that there are 

almost as many answers as there are possible devices. The platform you choose depends on the particular 

blend of price, performance, and capabilities that suit what you’re trying to achieve. And just because you 

settle on one solution, that doesn’t mean somebody else wouldn’t have chosen a completely different set 

of options to solve the same problem. 

Start by choosing a platform to prototype in. The following sections discuss some of the factors that 

you need to weigh—and possibly play off against each other—when deciding how to build your device. 

We cover the decisions that you need to make when scaling up both later in this chapter and in 

Chapter 10. 

Processor Speed The processor speed, or clock speed, of your processor tells you how fast it can 

process the individual instructions in the machine code for the program it’s running. Naturally, a faster 

processor speed means that it can execute instructions more quickly. 

The clock speed is still the simplest proxy for raw computing power, but it isn’t the only one. You 

might also make a comparison based on millions of instructions per second (MIPS), depending on what 

numbers are being reported in the datasheet or specification for the platforms you are comparing. 

Some processors may lack hardware support for floating-point calculations, so if the code involves a 

lot of complicated mathematics, a by-the-numbers slower processor with hardware floating-point support 

could be faster than a slightly higher performance processor without it. 

Generally, you will use the processor speed as one of a number of factors when weighing up similar 

systems. Microcontrollers tend to be clocked at speeds in the tens of MHz, whereas SoCs run at hundreds 

of MHz or possibly low GHz. 

If your project doesn’t require heavyweight processing—for example, if it needs only networking 

and fairly basic sensing—then some sort of microcontroller will be fast enough. If your device will be 

crunching lots of data—for example, processing video in real time—then you’ll be looking at a SoC 

platform. 

 

 

 



RAM  

RAM provides the working memory for the system. If you have more RAM, you may be able to do 

more things or have more flexibility over your choice of coding algorithm. If you’re handling large datasets 

on the device, that could govern how much space you need. You can often find ways to work around 

memory limitations, either in code (see Chapter 8, “Techniques for Writing Embedded Code”) or by 

handing off processing to an online service (see Chapter 7, “Prototyping Online Components”). 

It is difficult to give exact guidelines to the amount of RAM you will need, as it will vary from project 

to project. However, microcontrollers with less than 1KB of RAM are unlikely to be of interest, and if you 

want to run standard encryption protocols, you will need at least 4KB, and preferably more. 

For SoC boards, particularly if you plan to run Linux as the operating system, we recommend at 

least 256MB. 

Networking How your device connects to the rest of the world is a key consideration for Internet of 

Things products. Wired Ethernet is often the simplest for the user—generally plug and play—and cheapest, 

but it requires a physical cable. Wireless solutions obviously avoid that requirement but introduce a more 

complicated configuration. 

WiFi is the most widely deployed to provide an existing infrastructure for connections, but it can be 

more expensive and less optimized for power consumption than some of its competitors. 

Other short-range wireless can offer better power-consumption profiles or costs than WiFi but 

usually with the trade-off of lower bandwidth. ZigBee is one such technology, aimed particularly at sensor 

networks and scenarios such as home automation. The recent Bluetooth LE protocol (also known as 

Bluetooth 4.0) has a very low power-consumption profile similar to ZigBee’s and could see more rapid 

adoption due to its inclusion into standard Bluetooth chips included in phones and laptops. There is, of 

course, the existing Bluetooth standard as another possible choice. And at the boring but-very-cheap end 

of the market sit long-established options such as RFM12B which operate in the 434 MHz radio spectrum, 

rather than the 2.4 GHz range of the other options we’ve discussed.  

For remote or outdoor deployment, little beats simply using the mobile phone networks. For low-

bandwidth, higher-latency communication, you could use something as basic as SMS; for higher data rates, 

you will use the same data connections, like 3G, as a smartphone. 

USB If your device can rely on a more powerful computer being nearby, tethering to it via USB can 

be an easy way to provide both power and networking. You can buy some of the microcontrollers in 

versions which include support for USB, so choosing one of them reduces the need for an extra chip in your 

circuit. 

Instead of the microcontroller presenting itself as a device, some can also act as the USB “host”. 
This configuration lets you connect items that would normally expect to be connected to a computer—
devices such as phones, for example, using the Android ADK, additional storage capacity, or WiFi dongles. 

Devices such as WiFi dongles often depend on additional software on the host system, such as 

networking stacks, and so are better suited to the more computer-like option of SoC. 

Power Consumption Faster processors are often more power hungry than slower ones. For devices 

which might be portable or rely on an unconventional power supply (batteries, solar power) depending on 

where they are installed, power consumption may be an issue. Even with access to mains electricity, the 

power consumption may be something to consider because lower consumption may be a desirable 

feature. 



However, processors may have a minimal power-consumption sleep mode. This mode may allow 

you to use a faster processor to quickly perform operations and then return to low-power sleep. Therefore, 

a more powerful processor may not be a disadvantage even in a low-power embedded device. 

Interfacing with Sensors and Other Circuitry In addition to talking to the Internet, your device needs 

to interact with something else—either sensors to gather data about its environment; or motors, LEDs, 

screens, and so on, to provide output. You could connect to the circuitry through some sort of peripheral 

bus—SPI and I2C being common ones—or through ADC or DAC modules to read or write varying voltages; 

or through generic GPIO pins, which provide digital on/off inputs or outputs. Different microcontrollers or 

SoC solutions offer different mixtures of these interfaces in differing numbers. 

Physical Size and Form Factor The continual improvement in manufacturing techniques for silicon 

chips means that we’ve long passed the point where the limiting factor in the size of a chip is the amount 

of space required for all the transistors and other components that make up the circuitry on the silicon. 

Nowadays, the size is governed by the number of connections it needs to make to the surrounding 

components on the PCB. 

With the traditional through-hole design, most commonly used for homemade circuits, the legs of 

the chip are usually spaced at 0.1" intervals. Even if your chip has relatively few connections to the 

surrounding circuit—16 pins is nothing for such a chip—you will end up with over 1.5" (~4cm) for the 

perimeter of your chip. More complex chips can easily run to over a hundred connections; finding room for 

a chip with a 10" (25cm) perimeter might be a bit tricky! 

You can pack the legs closer together with surface-mount technology because it doesn’t require 

holes to be drilled in the board for connections. Combining that with the trick of hiding some of the 

connections on the underside of the chip means that it is possible to use the complex designs without 

resorting to PCBs the size of a table. 

The limit to the size that each connection can be reduced to is then governed by the capabilities 

and tolerances of your manufacturing process. Some surface-mount designs are big enough for home-

etched PCBs and can be hand-soldered. Others require professionally produced PCBs and accurate pick-

and-place machines to locate them correctly. 

Due to these trade-offs in size versus manufacturing complexity, many chip designs are available in 

a number of different form factors, known as packages. This lets the circuit designer choose the form that 

best suits his particular application. 

All three chips pictured in the following figure provide identical functionality because they are all 

AVR ATmega328 microcontrollers. The one on the left is the through-hole package, mounted here in a 

socket so that it can be swapped out without soldering. The two others are surface mount, in two different 

packages, showing the reduction in size but at the expense of ease of soldering. 

 

 

 

 

 

 

 

 

 

 

 

 



Looking at the ATmega328 leads us nicely into comparing some specific embedded computing 

platforms. We can start with a look at one which so popularised the ATmega328 that a couple of years ago 

it led to a worldwide shortage of the chip in the through-hole package, as for a short period demand 

outstripped supply. 

ARDUINO  

Without a doubt, the poster child for the Internet of Things, and physical computing in general, is 

the Arduino. 

These days the Arduino project covers a number of microcontroller boards, but its birth was in Ivrea 

in Northern Italy in 2005. A group from the Interaction Design Institute Ivrea (IDII) wanted a board for its 

design students to use to build interactive projects. An assortment of boards was around at that time, but 

they tended to be expensive, hard to use, or both. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So, the team put together a board which was cheap to buy—around £20— and included an 

onboard serial connection to allow it to be easily programmed. Combined with an extension of the Wiring 

software environment, it made a huge impact on the world of physical computing. 

A decision early on to make the code and schematics open source meant that the Arduino board 

could outlive the demise of the IDII and flourish.  It also meant that people could adapt and extend the 

platform to suit their own needs. 

As a result, an entire ecosystem of boards, add-ons, and related kits has flourished. The Arduino 

team’s focus on simplicity rather than raw performance for the code has made the Arduino the board of 

choice in almost every beginner’s physical computing project, and the open source ethos has encouraged 

the community to share circuit diagrams, parts lists, and source code. It’s almost the case that whatever 

your project idea is, a quick search on Google for it, in combination with the word “Arduino”, will throw up 

at least one project that can help bootstrap what you’re trying to achieve. If you prefer learning from a 

book, we recommend picking up a copy of Arduino For Dummies, by John Nussey (Wiley, 2013). 

The “standard” Arduino board has gone through a number of iterations: Arduino NG, Diecimila, 

Duemilanove, and Uno. 

The Uno features an ATmega328 microcontroller and a USB socket for connection to a computer. It 

has 32KB of storage and 2KB of RAM, but don’t let those meagre amounts of memory put you off; you can 

achieve a surprising amount despite the limitations. 



The Uno also provides 14 GPIO pins (of which 6 can also provide PWM output) and 6 10-bit 

resolution ADC pins. The AT mega’s serial port is made available through both the IO pins, and, via an 

additional chip, the USB connector. 

If you need more space or a greater number of inputs or outputs, look at the Arduino Mega 2560. It 

marries a more powerful AT mega microcontroller to the same software environment, providing 256KB of 

Flash storage, 8KB of RAM, three more serial ports, a massive 54 GPIO pins (14 of those also capable of 

PWM) and 16 ADCs. Alternatively, the more recent Arduino Due has a 32-bit ARM core microcontroller and 

is the first of the Arduino boards to use this architecture. Its specs are similar to the Mega’s, although it ups 

the RAM to 96KB. 

DEVELOPING ON THE ARDUINO  

More than just specs, the experience of working with a board may be the most important factor, at 

least at the prototyping stage. As previously mentioned, the Arduino is optimized for simplicity, and this is 

evident from the way it is packaged for use. Using a single USB cable, you can not only power the board 

but also push your code onto it, and (if needed) communicate with it—for example, for debugging or to 

use the computer to store data retrieved by the sensors connected to the Arduino. 

Of course, although the Arduino was at the forefront of this drive for ease-of use, most of the 

microcontrollers we look at in this chapter attempt the same, some less successfully than others. 

Integrated Development Environment You usually develop against the Arduino using the integrated 

development environment (IDE) that the team supply at http://arduino.cc. Although this is a fully 

functional IDE, based on the one used for the Processing language (http://processing.org/), it is very simple 

to use. Most Arduino projects consist of a single file of code, so you can think of the IDE mostly as a simple 

file editor. The controls that you use the most are those to check the code (by compiling it) or to push code 

to the board. 

Pushing Code Connecting to the board should be relatively straightforward via a USB cable. 

Sometimes you might have issues with the drivers (especially on some versions of Windows) or with 

permissions on the USB port (some Linux packages for drivers don’t add you to the dialout group), but they 

are usually swiftly resolved once and for good. After this, you need to choose the correct serial port (which 

you can discover from system logs or select by trial and error) and the board type (from the appropriate 

menus, you may need to look carefully at the labelling on your board and its CPU to determine which 

option to select). 

When your setup is correct, the process of pushing code is generally simple: first, the code is 

checked and compiled, with any compilation errors reported to you. If the code compiles successfully, it 

gets transferred to the Arduino and stored in its flash memory. At this point, the Arduino reboots and 

starts running the new code. 

Operating System The Arduino doesn’t, by default, run an OS as such, only the bootloader, which 

simplifies the code-pushing process described previously. When you switch on the board, it simply runs the 

code that you have compiled until the board is switched off again (or the code crashes). 

It is, however, possible to upload an OS to the Arduino, usually a lightweight real-time operating 

system (RTOS) such as FreeRTOS/DuinOS. The main advantage of one of these operating systems is their 

built-in support for multitasking. However, for many purposes, you can achieve reasonable results with a 

simpler task-dispatching library. 

If you dislike the simple life, it is even possible to compile code without using the IDE but by using 

the toolset for the Arduino’s chip—for example, for all the boards until the recent ARM-based Due, the 

avr-gcc toolset.  



The avr-gcc toolset (www.nongnu.org/avr-libc/) is the collection of programs that let you compile 

code to run on the AVR chips used by the rest of the Arduino boards and flash the resultant executable to 

the chip. It is used by the Arduino IDE behind the scenes but can be used directly, as well. 

Language The language usually used for Arduino is a slightly modified dialect of C++ derived from 

the Wiring platform. It includes some libraries used to read and write data from the I/O pins provided on 

the Arduino and to do some basic handling for “interrupts” (a way of doing multitasking, at a very low 

level). This variant of C++ tries to be forgiving about the ordering of code; for example, it allows you to call 

functions before they are defined. This alteration is just a nicety, but it is useful to be able to order things 

in a way that the code is easy to read and maintain, given that it tends to be written in a single file. 

The code needs to provide only two routines: 

◾ setup(): This routine is run once when the board first boots. You could use it to set the modes of 

I/O pins to input or output or to prepare a data structure which will be used throughout the program.  

◾ loop(): This routine is run repeatedly in a tight loop while the Arduino is switched on. Typically, 

you might check some input, do some calculation on it, and perhaps do some output in response. 

To avoid getting into the details of programming languages in this chapter, we just compare a 

simple example across all the boards—blinking a single LED: 

// Pin 13 has an LED connected on most Arduino boards.  

// give it a name:  

int led = 13; 

// the setup routine runs once when you press reset:  

void setup() {                   

// initialize the digital pin as an output.   

pinMode(led, OUTPUT);      

} 

// the loop routine runs over and over again forever:  

void loop()  

{   

digitalWrite(led, HIGH);    

// turn the LED on   delay(1000);                

// wait for a second  digitalWrite(led, LOW);     

// turn the LED off  delay(1000);               

 // wait for a second  

} 



Reading through this code, you’ll see that the setup () function does very little; it just sets up that 

pin number 13 is the one we’re going to control (because it is wired up to an LED). 

Then, in loop (), the LED is turned on and then off, with a delay of a second between each flick of 

the (electronic) switch. With the way that the Arduino environment works, whenever it reaches the end of 

one cycle—on; wait a second; off; wait a second—and drops out of the loop () function, it simply calls 

loop() again to repeat the process. 

Debugging Because C++ is a compiled language, a fair number of errors, such as bad syntax or 

failure to declare variables, are caught at compilation time. Because this happens on your computer, you 

have ample opportunity to get detailed and possibly helpful information from the compiler about what the 

problem is. 

Although you need some debugging experience to be able to identify certain compiler errors, 

others, like this one, are relatively easy to understand: 

Blink.cpp: In function ‘void loop()’:Blink:21:  

error:’digitalWritee’ was not declared in this scope 

On line 21, in the function loop(), we deliberately misspelled the call to digitalWrite. 

When the code is pushed to the Arduino, the rules of the game change, however. Because the 

Arduino isn’t generally connected to a screen, it is hard for it to tell you when something goes wrong. Even 

if the code compiled successfully, certain errors still happen. An error could be raised that can’t be 

handled, such as a division by zero, or trying to access the tenth element of a 9-element list. Or perhaps 

your program leaks memory and eventually just stops working. Or (and worse) a programming error might 

make the code continue to work dutifully but give entirely the wrong results. 

If Bubblino stops blowing bubbles, how can we distinguish between the following cases? 

◾ Nobody has mentioned us on Twitter.  

◾ The Twitter search API has stopped working.  

◾ Bubblino can’t connect to the Internet.  

◾ Bubblino has crashed due to a programming error.  

◾ Bubblino is working, but the motor of the bubble machine has failed.  

◾ Bubblino is powered off. 

Adrian likes to joke that he can debug many problems by looking at the flashing lights at Bubblino’s 

Ethernet port, which flashes while Bubblino connects to DNS and again when it connects to Twitter’s 

search API, and so on. (He also jokes that we can discount the “programming error” option and that the 

main reason the motor would fail is that Hakim has poured bubble mix into the wrong hole. Again.) But 

while this approach might help distinguish two of the preceding cases, it doesn’t help with the others and 

isn’t useful if you are releasing the product into a mass market! 

The first commercially available version of the Where Dial has a bank of half a dozen LEDs 

specifically for consumer-level debugging. In the case of an error, the pattern of lights showing may help 

customers fix their problem or help flesh out details for a support request. 



Runtime programming errors may be tricky to trap because although the C++ language has 

exception handling, the avr-gcc compiler doesn’t support it (probably due to the relatively high memory 

“cost” of handling exceptions); so the Arduino platform doesn’t let you use the usual try... catch... logic. 

Effectively, this means that you need to check your data before using it: if a number might 

conceivably be zero, check that before trying to divide by it. Test that your indexes are within bounds. To 

avoid memory leaks, look at the tips on writing code for embedded devices in Chapter 8, “Techniques for 

Writing Embedded Code”. 

But code isn’t, in general, created perfect: in the meantime 

you need ways to identify where the errors are occurring so that you 

can bullet-proof them for next time. In the absence of a screen, the 

Arduino allows you to write information over the USB cable using 

Serial. Write(). Although you can use the facility to communicate all 

kinds of data, debugging information can be particularly useful. The 

Arduino IDE provides a serial monitor which echoes the data that the 

Arduino has sent over the USB cable. This could include any textual 

information, such as logging information, comments, and details 

about the data that the Arduino is receiving and processing (to 

double-check that your calculations are doing the right thing). 

SOME NOTES ON THE HARDWARE The Arduino exposes a 

number of GPIO pins and is usually supplied with “headers” (plastic 

strips that sit on the pin holes, that provide a convenient solderless 

connection for wires, especially with a “jumper” connection). The 

headers are optimized for prototyping and for being able to change 

the purpose of the Arduino easily. 

Each pin is clearly labelled on the controller board. The details of pins vary from the smaller boards 

such as the Nano, the classic form factor of the Uno, and the larger boards such as the Mega or the Due. In 

general, you have power outputs such as 5 volts or 3.3 volts (usually labelled 5V and 3V3, or perhaps just 

3V), one or more electric ground connections (GND), numbered digital pins, and numbered analogue pins 

prefixed with an A. 

You can power the Arduino using a USB 

connection from your computer. This capability is 

usually quite convenient during prototyping because 

you need the serial connection in any case to program 

the board. The Arduino also has a socket for an 

external power supply, which you might be more likely 

to use if you distribute the project. Either way should 

be capable of powering the microcontroller and the 

usual electronics that you might attach to it. (In the 

case of larger items, such as motors, you may have to 

attach external power and make that available 

selectively to the component using transistors.) 

Outside of the standard boards, a number of them are focused on a particular niche application—
for example, the Arduino Ethernet has an on-board Ethernet chip and trades the USB socket for an 

Ethernet one, making it easier to hook up to the Internet. This is obviously a strong contender for a useful 

board for Internet of Things projects. 



The Lilypad has an entirely different specialism, as it has a flattened form (shaped, as the name 

suggests, like a flower with the I/O capabilities exposed on its “petals”) and is designed to make it easy to 

wire up with conductive thread, and so a boon for wearable technology projects. 

Choosing one of the specialist boards isn’t the only way to extend the capabilities of your Arduino. 

Most of the boards share the same layout of the assorted GPIO, ADC, and power pins, and you are able to 

piggyback an additional circuit board on top of the Arduino which can contain all manner of componentry 

to give the Arduino extra capabilities. 

In the Arduino world, these add-on boards are called shields, perhaps because they cover the actual 

board as if protecting it. 

Some shields provide networking capabilities—Ethernet, WiFi, or Zigbee wireless, for example. 

Motor shields make it simple to connect motors and servos; there are shields to hook up mobile phone 

LCD screens; others to provide capacitive sensing; others to play MP3 files or WAV files from an SD card; 

and all manner of other possibilities—so much so that an entire website, http://shieldlist.org/, is dedicated 

to comparing and documenting them. 

In terms of functionality, a standard Arduino with an Ethernet shield is equivalent to an Arduino 

Ethernet. However, the latter is thinner (because it has all the components laid out on a single board) but 

loses the convenient USB connection. (You can still connect to it to push code or communicate over the 

serial connection by using a supplied adaptor.) 

OPENNESS  

The Arduino project is completely open hardware and an open hardware success story. 

The only part of the project protected is the Arduino trademark, so they can control the quality of 

any boards calling themselves an Arduino. In addition to the code being available to download freely, the 

circuit board schematics and even the EAGLE PCB design files are easily found on the Arduino website. 

This culture of sharing has borne fruit in many derivative boards being produced by all manner of 

people. Some are merely minor variations on the main Arduino Uno, but many others introduce new 

features or form factors that the core Arduino team have overlooked. In some cases, such as with the 

wireless-focused Arduino Fio board, what starts as a third-party board (it was originally the Funnel IO) is 

later adopted as an official Arduino-approved board. 

 

RASPBERRY  

PI The Raspberry Pi, unlike the Arduino, wasn’t designed for physical computing at all, but rather, 

for education. The vision of Eben Upton, trustee and cofounder of the Raspberry Pi Foundation, was to 

build a computer that was small and inexpensive and designed to be programmed and experimented with, 

like the ones he’d used as a child, rather than to passively consume games on. The Foundation gathered a 

group of teachers, programmers, and hardware experts to thrash out these ideas from 2006. 

While working at Broadcom, Upton worked on the Broadcom BCM2835 system-on-chip, which featured an 

exceptionally powerful graphics processing unit (GPU), capable of high-definition video and fast graphics 

rendering. It also featured a low-power, cheap but serviceable 700 MHz ARM CPU, almost tacked on as an 

afterthought. Upton described the chip as “a GPU with ARM elements grafted on” 
(www.gamesindustry.biz/articles/ digitalfoundry-inside-raspberry-pi). 

 



The project has always taken some 

inspiration from a previous attempt to improve 

computer literacy in the UK: the “BBC Micro” 
built by Acorn in the early 1980s. This computer 

was invented precisely because the BBC 

producers tasked with creating TV programmes 

about programming realized that there wasn’t 
a single cheap yet powerful computer platform 

that was sufficiently widespread in UK schools 

to make it a sensible topic for their show. The 

model names of the Raspberry Pi, “Model A” 
and “Model B”, hark back to the different 

versions of the BBC Micro. Many of the other 

trustees of the Raspberry Pi Foundation, 

officially founded in 2009, cut their teeth on the BBC Micro. Among them was David Braben, who wrote 

the seminal game of space exploration, Elite, with its cutting-edge 3D wireframe graphics. 

Due in large part to its charitable status, even as a small group, the Foundation has been able to 

deal with large suppliers and push down the costs of the components. The final boards ended up costing 

around £25 for the more powerful Model B (with built-in Ethernet connection). This is around the same 

price point as an Arduino, yet the boards are really of entirely different specifications. 

The following table compares the specs of the latest, most powerful Arduino model, the Due, with 

the top-end Raspberry Pi Model B: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So, the Raspberry Pi is effectively a computer that can run a real, modern operating system, 

communicate with a keyboard and mouse, talk to the Internet, and drive a TV/monitor with high-

resolution graphics. The Arduino has a fraction of the raw processing power, memory, and storage 



required for it to run a modern OS. Importantly, the Pi Model B has built-in Ethernet (as does the Arduino 

Ethernet, although not the Due) and can also use cheap and convenient USB WiFi dongles, rather than 

having to use an extension “shield”. 

Note that although the specifications of the Pi are in general more capable than even the top-of-

the-range Arduino Due, we can’t judge them as “better” without considering what the devices are for! To 

see where the Raspberry Pi fits into the Internet of Things ecosystem, we need to look at the process of 

interacting with it and getting it to do useful physical computing work as an Internet-connected “Thing”, 
just as we did with the Arduino! We look at this next. 

However, it is worth mentioning that a whole host of devices is available in the same target market 

as the Raspberry Pi: the Chumby Hacker Board, the BeagleBoard, and others, which are significantly more 

expensive. Yes, they may have slightly better specifications, but for the price difference, there may seem to 

be very few reasons to consider them above the Raspberry Pi. Even so, a project might be swayed by 

existing hardware, better tool support for a specific chipset, or ease-of-use considerations. In an upcoming 

section, we look at one such board, the BeagleBone, with regards to these issues. 

CASES AND EXTENSION BOARDS  

Still, due to the relative excitement in the mainstream UK media, as well as the usual hacker and 

maker echo chambers, the Raspberry Pi has had some real focus. Several ecosystems have built up around 

the device. Because the Pi can be useful as a general-purpose computer or media centre without requiring 

constant prototyping with electronic components, one of the first demands enthusiasts have had was for 

convenient and attractive cases for it. Many makers blogged about their own attempts and have 

contributed designs to Thingiverse, Instructables, and others. There have also been several commercial 

projects. The Foundation has deliberately not authorized an “official” one, to encourage as vibrant an 

ecosystem as possible, although staffers have blogged about an early, well-designed case created by Paul 

Beech, the designer of the Raspberry Pi logo (http://shop.pimoroni. com/products/pibow). 

Beyond these largely aesthetic projects, extension boards and other accessories are already 

available for the Raspberry Pi. Obviously, in the early days of the Pi’s existence post launch, there are fewer 

of these than for the Arduino; however, many interesting kits are in development, such as the Gertboard 

(www.raspberrypi.org/archives/tag/gertboard), designed for conveniently playing with the GPIO pins. 

Whereas with the Arduino it often feels as though everything has been done already, in the early 

days of the Raspberry Pi, the situation is more encouraging. A lot of people are doing interesting things 

with their Pis, but as the platform is so much more high level and capable, the attention may be spread 

more thinly—from designing cases to porting operating systems to working on media centre plug-ins. 

Physical computing is just one of the aspects that attention may be paid to. 

DEVELOPING ON THE RASPBERRY PI  

Whereas the Arduino’s limitations are in some ways its greatest feature, the number of variables on 

the Raspberry Pi are much greater, and there is much more of an emphasis on being able to do things in 

alternative ways. However, “best practices” are certainly developing. Following are some suggestions at 

time of writing. (It’s worth checking on the Raspberry Pi websites, IRC channels, and so on, later to see how 

they will have evolved.) 

If you want to seriously explore the Raspberry Pi, you would be well advised to pick up a copy of the 

Raspberry Pi User Guide, by Eben Upton and Gareth Halfacree (Wiley, 2012). 

 

 

 

 



Operating System  

Although many operating systems can run on the Pi, we recommend using a popular Linux 

distribution, such as 

◾ Raspbian: Released by the Raspbian Pi Foundation, Raspbian is a distro based on Debian. This is 

the default “official” distribution and is certainly a good choice for general work with a Pi.  

◾ Occidentalis: This is Adafruit’s customized Raspbian. Unlike Raspbian, the distribution assumes 

that you will use it “headless”—not connected to keyboard and monitor—so you can connect to it 

remotely by default. (Raspbian requires a brief configuration stage first.) 

For Internet of Things work, we recommend something such as the Adafruit distro. You’re most 

probably not going to be running the device with a keyboard and display, so you can avoid the 

inconvenience of sourcing and setting those up in the first place. The main tweaks that interest us are that 

◾ The sshd (SSH protocol daemon) is enabled by default, so you can connect to the console 

remotely.  

◾ The device registers itself using zero-configuration networking (zeroconf) with the name 

raspberrypi. local, so you don’t need to know or guess which IP address it picks up from the network in 

order to make a connection. 

When we looked at the Arduino, we saw that perhaps the greatest win was the simplicity of the 

development environment. In the best case, you simply downloaded the IDE and plugged the device into 

the computer’s USB. (Of course, this elides the odd problem with USB drivers and Internet connection 

when you are doing Internet of Things work.) With the Raspberry Pi, however, you’ve already had to make 

decisions about the distro and download it. Now that distro needs to be unpacked on the SD card, which 

you purchase separately. You should note that some SD cards don’t work well with the Pi; apparently, 

“Class 10” cards work best. The class of the SD card isn’t always clear from the packaging, but it is visible on 

the SD card with the number inside a larger circular “C”. 

At this point, the Pi may boot up, if you have enough power to it from the USB. Many laptop USB 

ports aren’t powerful enough; so, although the “On” light displays, the device fails to boot. If you’re in 

doubt, a powered USB hub seems to be the best bet. 

 
 



After you boot up the Pi, you can communicate with it just as you’d communicate with any 

computer—that is, either with the keyboard and monitor that you’ve attached, or with the Adafruit distro, 

via ssh as mentioned previously. The following command, from a Linux or Mac command line, lets you log 

in to the Pi just as you would log in to a remote server: 

$ ssh root@raspberrypi.local 

From Windows, you can use an SSH client such as PuTTY (www.chiark. 

greenend.org.uk/~sgtatham/putty/). After you connect to the device, you can develop a software 

application for it as easily as you can for any Linux computer. How easy that turns out to be depends 

largely on how comfortable you are developing for Linux. 

Programming Language One choice to be made is which programming language and environment 

you want to use. Here, again, there is some guidance from the Foundation, which suggests Python as a 

good language for educational programming (and indeed the name “Pi” comes initially from Python). 

Let’s look at the “Hello World” of physical computing, the ubiquitous “blinking lights” example: 

import RPi.GPIO as GPIO from  

time import sleep 

GPIO.setmode(GPIO.BOARD)   # set the numbering scheme to be the                          

# same as on the board  

GPIO.setup(8, GPIO.OUT)    # set the GPIO pin 8 to output mode 

led = False 

 

GPIO.output(8, led)     # initiate the LED to off 

 

while 1:      

GPIO.output(8, led)      

led = not led     # toggle the LED status on/off for the next                   

# iteration     

sleep(10)         # sleep for one second 

 

As you can see, this example looks similar to the C++ code on an Arduino. The only real differences are the 

details of the modularization: the GPIO code and even the sleep() function have to be specified. However, 

when you go beyond this level of complexity, using a more expressive “high-level” language like Python will 

almost certainly make the following tasks easier: 

◾ Handling strings of character data  

◾ Completely avoiding having to handle memory management (and bugs related to it)  

◾ Making calls to Internet services and parsing the data received  

◾ Connecting to databases and more complex processing  

◾ Abstracting common patterns or complex behaviours 

Also, being able to take advantage of readily available libraries on PyPi (https://pypi.python.org/pypi) may 

well allow simple reuse of code that other people have written, used, and thoroughly tested. 



So, what’s the catch? As always, you have to be aware of a few trade-offs, related either to the Linux 

platform itself or to the use of a high-level programming language. Later, where we mention “Python”, the 

same considerations apply to most higher-level languages, from Python’s contemporaries Perl and Ruby, to 

the compiled VM languages such as Java and C#. We specifically contrast Python with C++, as the low-level 

language used for Arduino programming. 

 

◾ Python, as with most high-level languages, compiles to relatively large (in terms of memory 

usage) and slow code, compared to C++. The former is unlikely to be an issue; the Pi has more than enough 

memory. The speed of execution may or may not be a problem: Python is likely to be “fast enough” for 

most tasks, and certainly for anything that involves talking to the Internet, the time taken to communicate 

over the network is the major slowdown. However, if the electronics of the sensors and actuators you are 

working with require split-second timing, Python might be too slow. This is by no means certain; if 

Bubblino starts blowing bubbles a millisecond later, or the DoorBot unlocks the office a millisecond after 

you scan your RFID card to authenticate, this delay may be acceptable and not even noticeable. 

◾ Python handles memory management automatically. Because handling the precise details of 

memory allocation is notoriously fiddly, automatic memory management generally results in fewer bugs 

and performs adequately. However, this automatic work has to be scheduled in and takes some time to 

complete. Depending on the strategy for garbage collection, this may result in pauses in operation which 

might affect timing of subsequent events. Also, because the programmer isn’t exposed to the gory details, 

there may well be cases in which Python quite reasonably holds onto more memory than you might have 

preferred had you been managing it by hand. In worse cases, the memory may never be released until the 

process terminates: this is a so-called memory leak. Because an Internet of Things device generally runs 

unattended for long periods of time, these leaks may build up and eventually end up with the device 

running out of memory and crashing. (In reality, it’s more likely that such memory leaks happen as a result 

of programming error in manual memory management.)  

◾ Linux itself arguably has some issues for “real-time” use. Due to its being a relatively large 

operating system, with many processes that may run simultaneously, precise timings may vary due to how 

much CPU priority is given to the Python runtime at any given moment. This hasn’t stopped many 

embedded programmers from moving to Linux, but it may be a consideration for your case.  

◾ An Arduino runs only the one set of instructions, in a tight loop, until it is turned off or crashes. 

The Pi constantly runs a number of processes. If one of these processes misbehaves, or two of them clash 

over resources (memory, CPU, access to a file or to a network port), they may cause problems that are 

entirely unrelated to your code. This is unlikely (many well-run Linux computers run without maintenance 

for years and run businesses as well as large parts of the Internet) but may result in occasional, possibly 

intermittent, issues which are hard to identify and debug. 

We certainly don’t want to put undue stress on the preceding issues! They are simply trade-offs 

that may or may not be important to you, or rather more or less important than the features of the Pi and 

the access to a high-level programming language. 

The most important issue, again, is probably the ease of use of the environment. If you’re 

comfortable with Linux, developing for a Pi is relatively simple. But it doesn’t approach the simplicity of the 

Arduino IDE. For example, the Arduino starts your code the moment you switch it on. To get the same 

behaviour under Linux, you could use a number of mechanisms, such as an initialization script in 

/etc/init.d. 

First, you would create a wrapper script—for example, /etc/init.d/ StartMyPythonCode. This script 

would start your code if it’s called with a start argument, and stop it if called with stop. Then, you need to 

use the chmod command to mark the script as something the system can run: chmod +x 



/etc/init.d/StartMyPythonCode. Finally, you register it to run when the machine is turned on by calling 

sudo update-rc.d StartMyPythonCode defaults. 

If you are familiar with Linux, you may be familiar with this mechanism for automatically starting services 

(or indeed have a preferred alternative). If not, you can find tutorials by Googling for “Raspberry Pi start 

program on boot” or similar. Either way, although setting it up isn’t hard per se, it’s much more involved 

than the Arduino way, if you aren’t already working in the IT field. 

Debugging  

 

While Python’s compiler also catches a number of syntax errors and attempts to use undeclared 

variables, it is also a relatively permissive language (compared to C++) which performs a greater number of 

calculations at runtime. This means that additional classes of programming errors won’t cause failure at 

compilation but will crash the program when it’s running, perhaps days or months later. 

Whereas the Arduino had fairly limited debugging capabilities, mostly involving outputting data via the 

serial port or using side effects like blinking lights, Python code on Linux gives you the advantages of both 

the language and the OS. You could step through the code using Python’s integrated debugger, attach to 

the process using the Linux strace command, view logs, see how much memory is being used, and so on. As 

long as the device itself hasn’t crashed, you may be able to ssh into the Raspberry Pi and do some of this 

debugging while your program has failed (or is running but doing the wrong thing). 

Because the Pi is a general-purpose computer, without the strict memory limitations of the 

Arduino, you can simply use try... catch... logic so that you can trap errors in your Python code and 

determine what to do with them. For example, you would typically take the opportunity to log details of 

the error (to help the debugging process) and see if the unexpected problem can be dealt with so that you 

can continue running the code. In the worst case, you might simply stop the script running and have it 

restart again afresh! 

Python and other high-level languages also have mature testing tools which allow you to assert 

expected behaviours of your routines and test that they perform correctly. This kind of automated testing 

is useful when you’re working out whether you’ve finished writing correct code, and also can be rerun 

after making other changes, to make sure that a fix in one part of the code hasn’t caused a problem in 

another part that was working before. 

BEAGLEBONE BLACK  

The BeagleBone Black is the latest device to 

come from the BeagleBoard group. This group 

largely consists of employees of Texas Instruments, 

and although the products are not TI boards as 

such, they use many components with their 

employer’s blessing. The relationship is thus similar 

to that of the Raspberry Pi Foundation with 

Broadcom. Similarly, the BeagleBoard team want to 

create “powerful, open, and embedded devices” 
with a goal of contributing to the open source 

community, including facilitating education in 

electronics. However, there is less of an emphasis 

on creating a general-purpose computer for 

education. these boards are very much designed 

with the expectation that they will be used for 

physical computing and experimentation in electronics. 



The BeagleBone Black is the smallest and cheapest of the team’s boards, with a form factor 

comparable to that of the Raspberry Pi. Although the specs of the two are mostly comparable, there are 

some interesting trade-offs.  

The original BeagleBone has no video or audio outputs built in, but it does have a far larger number 

of GPIO pins, extracted into two rows of female headers. It also has the crucial ADC pins for analogue input 

which the Raspberry Pi lacks. This shows the development team’s focus on building something for working 

with electronics rather than as a general-purpose computer. 

The BeagleBone was released before the Raspberry Pi, and its price reflects that. If you think of it as 

a more powerful embedded development board than any of the Arduino offerings, then a £63 price tag 

looks quite reasonable. When you compare it to a £25 Raspberry Pi, however, it makes less sense. 

The influence of the Pi can be seen in the latest revision of the BeagleBone platform, the 

BeagleBone Black. Although still missing the analogue video and audio connectors, it adds a micro-HDMI 

connector to provide digital outputs for both audio and video. The price is also much closer at £31, and it 

retains the much better electronics interfacing capabilities of the original BeagleBone. 

Let’s compare the specs of the Raspberry Pi Model B with the new BeagleBone Black: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ELECTRIC IMP  

Although we’re featuring the Electric Imp here, it’s a less mature 

and, in some ways, more problematic offering than the other boards we’ve 

discussed, and we can’t tell, at the time of writing, if the platform will 

develop into a viable choice. But it is worth discussing in some detail, as a 

possible paradigm shift in the way that developers approach consumer 

electronics and physical computing. 

 

Hugo Fiennes, formerly engineering manager on Apple’s iPhone team, was attempting to connect 

LED lights to Google’s share price. He evaluated various home automation options, like ZigBee, but realised 

that they were mostly single-vendor solutions, often using their own radio standards rather than based on 

open platforms (http://www.edn.com/electronicsnews/4373185/Former-Apple-Google-Facebook-

engineerslaunch-IoT-startup-item-2). The Electric Imp uses a number of existing standards, such as WiFi, 

and the form factor of SD cards but ends up being very much less of an open platform than all the other 

devices that we’ve looked at in this chapter. Fiennes collaborated on the project with Kevin Fox, a former 

Gmail designer, and firmware engineer Peter Hartley. As you’ll see, the startup feels as though it has much 



of the DNA (for good and bad) of the beautiful, technically polished walled gardens that are the iPhone and 

Gmail. 

All the smarts of the Electric Imp, and also its WiFi connectivity, are located in an SD card–shaped 

microcontroller. It’s important to note that the Imp isn’t actually an SD card; it’s just shaped like one. Using 

the same form factor means that producing the Imps is cheaper because the team can reuse existing cases 

and tooling, as well as existing component connectors for the impee (the name Electric Imp use for the rest 

of the circuit that the Imp plugs into). This last factor is important, as you see in the upcoming “Openness” 
section. 

Although an SD card feels very robust, it is, on the outside, effectively a small, flat piece of plastic. It 

offers only one affordance to connect it to anything: namely, plug it into a device. Just as you would insert 

an SD card into a music player, computer, or printer, you insert an Imp into an impee. This host board 

provides power, GPIO connections to sensors and actuators, and an ID chip so that the Imp knows which 

device it’s plugged into. 

The Imp costs around £20, while an impee costs less than half that. Here, having used the standard 

SD form factor turns out to be a great choice for the prototyper. For prototyping a number of projects, you 

need only a single Imp, which can be reused across all the projects. You will see shortly that reconfiguring 

the Imp to run on a different impee is automatic, which is a very nice feature. 

PROTOTYPING THE PHYSICAL DESIGN 

NONDIGITAL METHODS  

We’ve already seen how pen and paper remain essential tools in the designer’s arsenal, but they 

aren’t the only ones to have survived the digital revolution. Many of what could be deemed more 

traditional craft techniques are just as valid for use when prototyping the physical form of your device. 

One of the key advantages that these techniques have over the newer digital fabrication methods is 

their immediacy. Three-dimensional printing times are often measured in hours, and although laser cutting 

is much faster, performing a cut still takes minutes. And all this is without including the time taken to revise 

the design on the computer first. 

Compare that to the speed with which you can reconfigure a model made from clay or from 

LEGO—and that isn’t just down to the hours of practice you put in while you were growing up! Keeping the 

feedback loop as short as possible between having an idea and trying it out frees you up for more 

experimentation. 

Let’s look at some of the more common options here: 

◾ Modelling clay: The most well-known brands are Play-Doh and Plasticine, but you can find a wealth of 

different versions with slightly different qualities. Some, like Play-Doh, have a tendency to dry out and 

crack if left exposed to the air. Plasticine doesn’t suffer from this problem, but as it remains malleable, it 

isn’t ideal for prototypes which are going to be handled. Modelling clay is best used for short-term 

explorations of form, rather than longer-term functional prototypes.  

◾ Epoxy putty: You might have encountered this product as the brand Milliput. It is similar to modelling 

clay although usually available in fewer colours. It comes in two parts, one of which is a hardener. You mix 

equal parts together to activate the epoxy. You then mould it to the desired shape, and in about an hour, it 

sets solid. If you like, you can then sand it or paint it for a better finish, so this product works well for more 

durable items.  



◾ Sugru: Sugru is a mouldable silicone rubber. Like epoxy putty, it can be worked for only a short time 

before it sets (about 30 minutes, and then about a day to fully cure); but unlike epoxy, once cured, it 

remains flexible. It is also good at sticking to most other substances and gives a soft-touch grippy surface, 

which makes it a great addition to the designer’s (and hacker’s) toolkit.  

◾ Toy construction sets: We’ve already mentioned the ubiquitous LEGO sets, but you might also consider 

Meccano (or Erector Sets in the United States) and plenty of others. If you’re lucky, you already have some 

gathering dust in the attic or that you can borrow from your children. The other interesting feature of 

these sets is the availability of gears, hinges, and other pieces to let you add some movement to your 

model. You can purchase systems to control LEGO sets from a computer, but there’s no requirement for 

you to use them. Many hackers combine an Arduino for sensing and control with LEGO for form and 

linkages, as this provides an excellent blend of flexibility and ease of construction.  

◾ Cardboard: Cardboard is cheap and easy to shape with a craft knife or scissors, and available in all 

manner of colours and thicknesses. In its corrugated form, it provides a reasonable amount of structural 

integrity and works well for sketching out shapes that you’ll later cut out of thin plywood or sheets of 

acrylic in a laser cutter (a topic we return to when we look at laser cutting later in the chapter).  

◾ Foamcore or foamboard: This sheet material is made up of a layer of foam sandwiched by two sheets of 

card. It’s readily available at art supplies shops and comes in 3mm or 5mm thicknesses in a range of sizes. 

Like cardboard, it is easily cut with a craft knife, although it is more rigid than corrugated cardboard. There 

are also specialist foamboard craft knives which allow easy 45-degree cuts for mitred edges and have two 

blades—spaced 3mm apart—which make it trivial to cut slots into which you can insert another sheet of 

foamboard to generate three-dimensional shapes.  

◾ Extruded polystyrene: This product is similar to the expanded polystyrene that is used for packaging but 

is a much denser foam that is better suited to modelling purposes. It is often referred to as “blue foam”, 
although it’s the density rather than the colour which is important. Light yet durable, it can be easily 

worked: you can cut it with a craft knife, saw it, sand it, or, for the greatest ease in shaping it, buy a hot-

wire cutter. Sheets of extruded polystyrene are much thicker than foamboard, usually between 25mm and 

165mm. As a result, it is great for mocking up solid three-dimensional shapes. If you need something 

thicker than the sheet itself, you can easily glue a few layers together. The dust from sanding it and the 

fumes given off when cutting it with a hot-wire cutter aren’t too nice, so make sure you wear a dust mask 

and keep the area ventilated when working with it. 

Having reviewed the sorts of techniques which you learnt when your design education started, back in 

primary school, we can move on to looking at some of the newer tools. Like most aspects of modern life, 

computers have also swept through manufacturing, opening new possibilities in rapid prototyping. The 

combination of Moore’s Law driving down the cost of computing and the expiration of the patents from 

the early developments in the 1980s has brought such technology within the reach of the hobbyist or small 

business. 

LASER CUTTING 

  Although the laser cutter doesn’t get the same press attention as the 3D printer, it is arguably an 

even more useful item to have in your workshop. Three-dimensional printers can produce more 

complicated parts, but the simpler design process (for many shapes, breaking it into a sequence of two-

dimensional planes is easier than designing in three dimensions), greater range of materials which can be 

cut, and faster speed make the laser cutter a versatile piece of kit. 

Laser cutters range from desktop models to industrial units which can take a full 8' by 4' sheet in 

one pass. Most commonly, though, they are floorstanding and about the same size as a large photocopier. 



Most of the laser cutter is given over to the bed; this is a flat area that holds the material to be cut. 

The bed contains a two-axis mechanism with mirrors and a lens to direct the laser beam to the correct 

location and focus it onto the material being cut. It is similar to a flatbed plotter but one that burns things 

rather than drawing on them. 

The computer controls the two-axis positioning mechanism and the power of the laser beam. This 

means that not only can the machine easily cut all manner of intricate patterns, but it can also lower the 

power of the laser so that it doesn’t cut all the way through. At a sufficiently low power, this feature 

enables you to etch additional detail into the surface of the piece. You can also etch things at different 

power levels to achieve different depths of etching, but whilst the levels will be visibly different, it isn’t 
precise enough to choose a set fraction of a millimeter depth.  

CHOOSING A LASER CUTTER  

When choosing a laser cutter, you should consider two main features: 

◾ The size of the bed: This is the place where the sheet of material sits while it’s being cut, so a 

larger bed can cut larger items. You don’t need to think just about the biggest item you might create; a 

larger bed allows you to buy material in bigger sheets (which is more cost effective), and if you move to 

small-scale production, it would let you cut multiple units in one pass.  

◾ The power of the laser: More powerful lasers can cut through thicker material. For example, the 

laser cutter at our workplace has a 40W laser, which can cut up to 10mm-thick acrylic. Moving a few 

models up in the same range, to one with a 60W laser, would allow us to cut 25mmthick acrylic. 

3D PRINTING  

Additive manufacturing, or 3D printing as it’s often called, is fast becoming one of the most popular 

forms in rapid prototyping—largely down to the ever-increasing number of personal 3D printers, available 

at ever-falling costs. Now a number of desktop models, available for less than £500, produce decent quality 

results. 

The term additive manufacturing is used because all the various processes which can be used to 

produce the output start with nothing and add material to build up the resulting model. This is in contrast 

to subtractive manufacturing techniques such as laser cutting and CNC milling, where you start with more 

material and cut away the parts you don’t need. 

Various processes are used for building up the physical model, which affect what materials that 

printer can use, among other things. However, all of them take a three-dimensional computer model as 

the input. The software slices the computer model into many layers, each a fraction of a millimeter thick, 

and the physical version is built up layer by layer. 

One of the great draws of 3D printing is how it can produce items which wouldn’t be possible with 

traditional techniques. For example, because you can print interlocking rings without any joins, you are 

able to use the metal 3D printers to print entire sheets of chain-mail which come out of the printer already 

connected together. If only the medieval knights had had access to a metal laser-sintering machine, their 

armour would have been much easier to produce. 

TYPES OF 3D PRINTING:  

◾ Fused filament fabrication (FFF): Also known as fused deposition modeling (FDM), this is the type of 3D 

printer you’re most likely to see at a maker event. The RepRap and MakerBot designs both use this 

technique, as does the Stratasys at the industrial level.  



◾ Laser sintering: This process is sometimes called selective laser sintering (SLS), electron beam melting 

(EBM), or direct metal laser sintering (DMLS). It is used in more industrial machines but can print any 

material which comes in powdered form and which can be melted by a laser. It provides a finer finish than 

FDM, but the models are just as robust, and they’re even stronger when the printing medium is metal. This 

technique is used to print aluminium or titanium, although it can just as easily print nylon.  

◾ Powder bed: Like laser sintering, the powder-bed printers start with a raw material in a powder form, 

but rather than fusing it together with a laser, the binder is more like a glue which is dispensed by a print 

head similar to one in an inkjet printer. The Z Corp. machines use this technique and use a print medium 

similar in texture to plaster. After the printing process, the models are quite brittle and so need post- 

processing where they are sprayed with a hardening solution. The great advantage of these printers is that 

when the binder is being applied, it can be mixed with some pigment; therefore, full-colour prints in 

different colours can be produced in one pass.  

◾ Laminated object manufacturing (LOM): This is another method which can produce full-colour prints. 

LOM uses traditional paper printing as part of the process. Because it builds up the model by laminating 

many individual sheets of paper together, it can print whatever colours are required onto each layer before 

cutting them to shape and gluing them into place. The Mcor IRIS is an example of this sort of printer. 

◾ Stereolithography and digital light processing: Stereolithography is possibly the oldest 3D printing 

technique and has a lot in common with digital light processing, which is enjoying a huge surge in 

popularity and experimentation at the time of this writing. Both approaches build their models from a vat 

of liquid polymer resin which is cured by exposure to ultraviolet light. Stereolithography uses a UV laser to 

trace the pattern for each layer, whereas digital light processing uses a DLP projector to cure an entire 

layer at a time. Whilst these approaches are limited to printing with resin, the resultant models are 

produced to a fine resolution. The combination of this with the relatively low cost of DLP projectors makes 

this a fertile area for development of more affordable high-resolution printers. 

CNC MILLING  

Computer Numerically Controlled (CNC) milling is similar to 3D printing but is a subtractive 

manufacturing process rather than additive. The CNC part just means that a computer controls the 

movement of the milling head, much like it does the extruder in an FDM 3D printer. However, rather than 

building up the desired model layer by layer from nothing, it starts with a block of material larger than the 

finished piece and cuts away the parts which aren’t needed—much like a sculptor chips away at a block of 

stone to reveal the statue, except that milling uses a rotating cutting bit (similar to an electric drill) rather 

than a chisel. 

Because cutting away material is easier, CNC mills can work with a much greater range of materials 

than 3D printers can. You still need an industrialscale machine to work with hardened steel, but wax, 

wood, plastic, aluminium, and even mild steel can be readily milled with even desktop mills. 

CNC mills can also be used for more specialised (but useful when prototyping electronic devices) 

tasks, such as creating custom printed circuit boards. Rather than sending away for your PCB design to be 

fabricated or etching it with acid, you can convert it into a form which your CNC mill can rout out; that is, 

the CNC mills away lines from the metal surface on the board, leaving the conductive paths. An advantage 

of milling over etching the board is that you can have the mill drill any holes for components or mounting 

at the same time, saving you from having to do it manually afterwards with your drill press. 

Beyond size and accuracy, the other main attribute that varies among CNC mills is the number of 

axes of movement they have: 



◾ 2.5 axis: Whilst this type has three axes of movement—X, Y, and Z—it can move only any two at 

one time.  

◾ 3 axis: Like the 2.5-axis machine, this machine has a bed which can move in the X and Y axes, and 

a milling head that can move in the Z. However, it can move all three at the same time (if the machining 

instructions call for it).  

◾ 4 axis: This machine adds a rotary axis to the 3-axis mill to allow the piece being milled to be 

rotated around an extra axis, usually the X (this is known as the A axis). An indexed axis just allows the 

piece to be rotated to set points to allow a further milling pass to then be made, for example, to flip it over 

to mill the underside; and a fully controllable rotating axis allows the rotation to happen as part of the 

cutting instructions.  

◾ 5 axis: This machine adds a second rotary axis—normally around the Y—which is known as the B 

axis.  

◾ 6 axis: A third rotary axis—known as the C axis if it rotates around Z—completes the range of 

movement in this machine. 

For prototyping work, you’re unlikely to need anything beyond a 3-axis mill, although a fourth axis 

would give you some extra flexibility. The 5- and 6-axis machines tend to be the larger, more industrial 

units. 

As with 3D printing, the software you use for CNC milling is split into two types: 

◾ CAD (Computer-Aided Design) software lets you design the model.  

◾ CAM (Computer-Aided Manufacture) software turns that into a suitable toolpath—a list of co-

ordinates for the CNC machine to follow which will result in the model being revealed from the block of 

material. 

The toolpaths are usually expressed in a quasi-standard called G-code. Whilst most of the 

movement instructions are common across machines, a wide variety exists in the codes for things such as 

initializing the machine. That said, a number of third-party CAM packages are available, so with luck you 

will have a choice of which to use. For a rundown of the possibilities, along with lots more information 

about getting started with CNC milling, see http://lcamtuf.coredump.cx/gcnc/. 

REPURPOSING/RECYCLING  

So far, we’ve talked just about how you would go about creating a new object completely from 

scratch. Owning the designs of and knowing how to create all of the components of your device put you in 

a great position, but they aren’t necessarily the overriding concerns in all prototyping scenarios. 

As with the other elements of building your connected device, a complete continuum exists from 

buying-in the item or design through to doing-it yourself. So, just as you wouldn’t think about making your 

own nuts and bolts from some iron ore, sometimes you should consider reusing more complex 

mechanisms or components. 

One reason to reuse mechanisms or components would be to piggyback onto someone else’s 

economies of scale. If sections or entire subassemblies that you need are available in an existing product, 

buying those items can often be cheaper than making them in-house. That’s definitely the case for your 

prototypes but may extend to production runs, too, depending on the volumes you’ll be manufacturing. 

For example, the bubble machine used in Bubblino is an off-the-shelf unit from a children’s game.  



In the batch production volumes that Bubblino is currently being built, it’s cheaper to buy them, 

even at retail price, than it would be to manufacture the assorted gears, fans, bubble ring, and casing in-

house. 

Question Bank: 

1. Explain prototyping Embedded Devices. (10M) 

2. Explicate prototyping the physical design. (10M) 

3. Describe raspberry Pi. (5M) 

4. Illustrate Beagle Bone Black. (5M) 

5. Elaborate Laser Cutting. (5M) 

6. Illuminate 3D printing. (5M) 

7. What is CNC milling? (5M) 

 

 

 



 

API  

The most important part of a web service, with regards to an Internet of Things device, is the 

Application Programming Interface, or API. An API is a way of accessing a service that is targeted at 

machines rather than people. If you think about your experience of accessing an Internet service, you 

might follow a number of steps. For example, to look at a friend’s photo on Flickr, you might do the 

following: 

1. Launch Chrome, Safari, or Internet Explorer.  

2. Search for the Flickr website in Google and click on the link.  

3. Type in your username and password and click “Login”.  

4. Look at the page and click on the “Contacts” link.  

5. Click on a few more links to page through the list of contacts till you see the one you want.  

6. Scroll down the page, looking for the photo you want, and then click on it. 

MASHING UP APIS  

Perhaps the data you want is already available on the Internet but in a form that doesn’t work for 

you? The idea of “mashing up” multiple APIs to get a result has taken off and can be used to powerful 

effect. For example: 

◾ Using a mapping API to plot properties to rent or buy—for example, Google Maps to visualise 

properties to rent via Craigslist, or Foxtons in London showing its properties using Mapumental.  

◾ Showing Twitter trends on a global map or in a timeline or a charting API.  

◾ Fetching Flickr images that are related to the top headlines retrieved from The Guardian 

newspaper’s API. 

SCRAPING  

In many cases, companies or institutions have access to fantastic data but don’t want to or don’t 
have the resources or knowledge to make them available as an API. While you saw in the Flickr example 

above that getting a computer to pretend to be a browser and navigate it by looking for UI elements 

was fragile, that doesn’t mean that doing so is impossible. In general, we refer to this, perhaps a little 

pejoratively, as “screen-scraping”.  

LEGALITIES  

Screen-scraping may break the terms and conditions of a website. For example, Google doesn’t 
allow you to screen-scrape its search pages but does provide an API. Even if you don’t think about legal 

sanctions, breaking the terms and conditions for a company like Google might lead to its denying you its 

other services, which would be at the very least inconvenient. 
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PROTOTYPING ONLINE COMPONENTS 



WRITING A NEW API  

Assuming the data you want to play with isn’t available or can’t be easily mashed up or scraped 

using other existing tools and sources, perhaps you want to create an entirely new source of information 

or services. Perhaps you plan to assemble the data from free or licensed material you have and process it. 

Or perhaps your Internet-connected device can populate this data. 

Example: Clockodillo 

CLOCKODILLO  

As we saw earlier, Clockodillo is an Internet-connected task timer. The user can set a dial to a 

number of minutes, and the timer ticks down until completed. It also sends messages to an API server to 

let it know that a task has been started, completed, or cancelled. 

A number of API interactions deal precisely with those features of the physical device: 

◾ Start a new timer  

◾ Change the duration of an existing timer  

◾ Mark a timer completed  

◾ Cancel a timer 

Some interactions with a timer data structure are too complicated to be displayed on a device consisting 

mostly of a dial—for example,  

◾ View and edit the timer’s name/description 

And, naturally, the user may want to be able to see historical data: 

◾ Previous timers, in a list  

• Their name/description  

• Their total time and whether they were cancelled 

SECURITY 

Security is depending a lot on how sensitive the information being passed is and whether it’s in 

anyone’s interest to compromise it. 

The two main cases here are as follows: 

◾ Someone who is targeting a specific user and has access to that person’s wired or (unencrypted) 

wireless network. This attacker could read the details and use them (to create fake timers or get 

information about the user).  

◾ Someone who has access to one of the intermediate nodes. This person won’t be targeting a 

specific device but may be looking to see what unencrypted data passes by, to see what will be a tempting 

target. 

 



IMPLEMENTING THE API  

An API defines the messages that are sent from client to server and from server to client. Ultimately, you 

can send data in whatever format you want, but it is almost always better to use an existing standard 

because convenient libraries will exist for both client and server to produce and understand the required 

messages. 

Here are a few of the most common standards that you should consider: 

◾ Representational State Transfer (REST): Access a set of web URL.  

◾ JSON-RPC: Access a single web URL. 

◾ XML-RPC: This standard is just like JSON-RPC but uses XML instead of JSON.  

◾ Simple Object Access Protocol (SOAP): This standard uses XML for transport like XML-RPC but provides 

additional layers of functionality, which may be useful for very complicated systems. 

REAL-TIME REACTIONS 

To establish an HTTP request requires several round-trips to the server. There is the TCP “three-

step handshake” consisting of a SYN (synchronize) request from the client, a SYN-ACK from the server to 

“acknowledge” the request, and finally an ACK from the client. Although this process can be near 

instantaneous, it could also take a noticeable amount of time. 

We look at two options here: polling and the so-called “Comet” technologies. And then, in the 

section on non-HTTP protocols, MQTT, XMPP, and CoAP offer alternative solutions. 

POLLING  

If you want the device or another client to respond immediately, how do you do that? You don’t 
know when the event you want to respond to will happen, so you can’t make the request to coincide with 

the data becoming available. Consider these two cases: 

◾ The Where Dial should start to turn to “Work” the moment that the user has checked into his 

office.  

◾ The moment that the task timer starts, the client on the user’s computer should respond, offering 

the opportunity to type a description of the task. 

But this would put load on the following: 

◾ The server: If the device takes off, and there are thousands of devices, each of them polling 

regularly, you will have to scale up to that load.  

◾ The client: This is especially important if, as per the earlier Arduino example, the microcontroller 

blocks during each connect. 

COMET  

Comet is an umbrella name for a set of technologies developed to get around the inefficiencies of 

polling. As with many technologies, many of them were developed before the “brand” of Comet was 

invented; however, having a name to express the ideas is useful to help discuss and exchange ideas and 

push the technology forward. 



Long Polling (Unidirectional)  

The first important development was “long polling”, which starts off with the client making a polling 

request as usual. However, unlike a normal poll request, in which the server immediately responds with an 

answer, even if that answer is “nothing to report”, the long poll waits until there is something to say. This 

means that the server must regularly send a keep-alive to the client to prevent the Internet of Things 

device or web page from concluding that the server has simply timed out. 

Multipart XMLHttpRequest (MXHR) (Unidirectional)  

When building web applications, it is common to use a JavaScript API called XMLHttpRequest to 

communicate with the web server without requiring a full new page load. From the web server’s point of 

view, these requests are no different from any other HTTP request, but because the intended recipient is 

some client-side code, conventions and support libraries (both client- and server-side) have developed to 

address this method of interaction specifically. 

HTML5 Web Sockets (Bidirectional)   

Traditionally, the API used to talk directly to the TCP layer is known as the socket’s API. When the 

web community was looking to provide similar capabilities at the HTTP layer, they called the solution Web 

Sockets. 

OTHER PROTOCOLS  

As you have seen, although HTTP is an extremely popular protocol on the Internet, it isn’t ideally 

suited to all situations. Rather than work around its limitations with one of the preceding solutions, 

another option—if you have control of both ends of the connection—is to use a different protocol 

completely. 

There are plenty of protocols to choose from, but we will give a brief rundown of some of the 

options better suited to Internet of Things applications. 

1. MQ TELEMETRY TRANSPORT  

MQTT is a lightweight messaging protocol, designed specifically for scenarios where network 

bandwidth is limited or a small code footprint is desired. It was developed initially by IBM but has since 

been published as an open standard, and a number of implementations, both open and closed source, are 

available, together with libraries for many different languages. 

2. EXTENSIBLE MESSAGING AND PRESENCE PROTOCOL  

Another messaging solution is the Extensible Messaging and Presence Protocol, or XMPP. XMPP 

grew from the Jabber instant messaging system and so has broad support as a general protocol on the 

Internet. This is both a blessing and a curse: it is well understood and widely deployed, but because it 

wasn’t designed explicitly for use in embedded applications, it uses XML to format the messages. This 

choice of XML makes the messaging relatively verbose, which could preclude it as an option for RAM-

constrained microcontrollers. 

3. CONSTRAINED APPLICATION PROTOCOL 

The Constrained Application Protocol (CoAP) is designed to solve the same classes of problems as 

HTTP but, like MQTT-S, for networks without TCP. There are proposals for running CoAP over UDP, SMS 

mobile phone messaging, and integration with 6LoWPAN. CoAP draws many of its design features from 

HTTP and has a defined mechanism to proxies to allow mapping from one protocol to the other. 



TECHNIQUES FOR WRITING EMBEDDED CODE 

MEMORY MANAGEMENT  

When you don’t have a lot of memory to play with, you need to be careful as to how you use it. This 

is especially the case when you have no way to indicate that message to the user. The computer user 

presented with one too many “low memory” warning dialog boxes will try rebooting, and so will the 

system administrator who spots the server thrashing its disk as it pages memory out to the hard drive to 

increase the amount of virtual memory. On the other hand, an embedded platform with no screen or other 

indicators will usually continue blindly until it runs out of memory completely—at which point it usually 

“indicates” this situation to the user by mysteriously ceasing to function. 

TYPES OF MEMORY 

1. Rom 

2. Flash 

3. Ram 

PERFORMANCE AND BATTERY LIFE  

When it comes to writing code, performance and battery life tend to go hand in hand—what is 

good for one is usually good for the other. Whether either or both of these are things that you need to 

optimize depends on your application. A device which is tethered to one place and powered by an AC 

adaptor plugged into the wall isn’t as reliant on energy conservation, for example. However, consuming 

less energy is something to which all devices should aspire. 

LIBRARIES  

These days, when developing software for server or desktop machines, you are accustomed to 

having a huge array of possible libraries and frameworks available to make your life easier. Need to parse a 

chunk of RSS XML? No problem. Just pull in the RSS parsing library for your language of choice.  

here are a few which might be of interest: 

◾ lwIP: lwIP, or LightWeight IP, is a full TCP/IP stack which runs in low-resource conditions. It requires only 

tens of kilobytes of RAM and around 40KB of ROM/flash. The official Arduino WiFi shield uses a version of 

this library.  

◾ uIP: uIP, or micro IP, is a TCP/IP stack targeted at the smallest possible systems. It can even run on 

systems with only a couple of kilobytes of RAM. It does this by not using any buffers to store incoming 

packets or outgoing packets which haven’t been acknowledged. This means that some of the 

retransmission logic for the TCP layer bleeds into the application code, making your code more tightly 

coupled and more complex. It’s quite common on Arduino systems which don’t use the standard Ethernet 

shield and library, such as the Nanode board, using the Ethercard port for AVR.  

◾ uClibc: uClibc is a version of the standard GNU C library (glibc) targeted at embedded Linux systems. It 

requires far fewer resources than glibc and should be an almost drop-in replacement. Changing code to 

use it normally just involves recompiling the source code.  

◾ Atomthreads: Atomthreads is a lightweight real-time scheduler for embedded systems. You can use it 

when your code gets complicated enough that you need to have more than one thing happening at the 

same time (not quite literally, but the scheduler switches between the tasks quickly enough that it looks 

that way, just like the multitasking on your PC).  



◾ BusyBox: Although not really a library, BusyBox is a collection of a host of useful UNIX utilities into a 

single, small executable and a common and useful package to provide a simple shell environment and 

commands on your system. 

DEBUGGING  

One of the most frustrating parts of writing software is knowing your code has a bug, but it’s not at 

all obvious where that bug is. In embedded systems, this situation can be doubly frustrating because there 

tend to be fewer ways to inspect what is going on so that you can track down the issue.  

Building devices for the Internet of Things complicates matters further by introducing both custom 

electronic circuits (which could be misbehaving or incorrectly designed) and communication with servers 

across a network. Troubleshooting electronic circuits is outside the scope of this book, but we’ll cover 

some ways to debug the network communication. 

 

Question Bank: 

1. Explain prototyping online components. (10M) 

2. Explicate techniques for writing embedding code. (10M) 

3. Describe API. (5M) 

4. Illustrate memory management. (5M) 

5. Elaborate libraries. (5M) 

6. Illuminate performances and battery life. (5M) 

7. What is Debugging? (5M) 

 

 

 



 

BUSINESS MODELS  

If you are primarily a maker or a programmer, and not an entrepreneur, you may have only a dim 

idea of what a “business model” is. In casual discussion, this expression seems to refer almost exclusively 

to how the business makes money.  

This definition brings together a number of factors: 

◾ A group of people (customers)  

◾ The needs of those customers  

◾ A thing that your business can do to meet those needs  

◾ Organizational practices that help to achieve this goal—and to be able to carry on doing so,    

    sustainably  

◾ A success criterion, such as making a profit 

All these aspects are relevant as much to hobbyist or not-for-profit projects as they are to commercial 

enterprises, though for the last point profit might be substituted for “improving the world” or “having fun” 

as criteria for success. 

HISTORY OF BUSINESS MODELS 

SPACE AND TIME  

While neighbouring tribes might have discovered variants in the local area’s resources—animal, 

vegetable or mineral—it is when trade develops with others from far-off lands that it becomes really 

interesting. A merchant might sell silks made in his village to a region where these cloths are rare and in 

demand in exchange for aromatic spices which will be highly prized back home. But long-distance trade 

brings with it a whole set of problems: while nomadic hunter-gatherers were adept at finding food and 

making a home on the move, merchants have to carry larger quantities of goods for sale and want to 

maximize the time travelling rather than doing the myriad tasks required for subsistence and shelter. 

FROM CRAFT TO MASS PRODUCTION  

When Gutenberg demonstrated his printing press circa 1450, books changed from being priceless 

treasures, hand-crafted by monks and artisans, to a commodity that could be produced. Soon every 

bourgeois family could afford their own books, at least a copy of the Gutenberg Bible, the first mass-

produced book. It is no exaggeration to suggest that the invention laid the foundations for an information 

culture which is currently exemplified by the Internet and the World Wide Web. 

 

 

PAPER NAME : INTERNET OF THINGS                                                                            PAPER CODE : 17PCSE06 

 

UNIT – V 

BUSINESS MODELS 



THE LONG TAIL OF THE INTERNET  

As we have seen, huge changes in business practice are usually facilitated by, or brought about as a 

consequence of, technological change. One of the greatest technological paradigms shifts in the twentieth 

century was the Internet. From Tim Berners-Lee’s first demonstration of the World Wide Web in 1990, it 

took only five years for eBay and Amazon to open up shop and emerge another five years later as not only 

survivors but victors of the dot-com bubble. Both companies changed the way we buy and sell things. Chris 

Anderson of Wired magazine coined and popularized the phrase “long tail” to explain the mechanism 

behind the shift. 

LEARNING FROM HISTORY  

We’ve seen some highlights of business models over the sweep of human history, but what have 

we learnt that we could apply to an Internet of Things project that we want to turn into a viable and 

profitable business, 

 First, we’ve seen that some models are ancient, such as Make Thing Then Sell It. The way you make 

it or the way you sell it may change, but the basic principle has held for millennia. 
 

 Second, we’ve seen how new technologies have inspired new business models. We haven’t yet 

exhausted all the new types of business facilitated by the Internet and the World Wide Web.… If 
our belief that the Internet of Things will represent a similar sea change in technology is true, it will 

be accompanied by new business models we can barely conceive of today. 
 
 

 Third, although there are recurring patterns and common models, there are countless variations. 

Subtle changes to a single factor, such as the manufacturing process or the way you pay for a 

product or resource, can have a knock-on effect on your whole business. 

THE BUSINESS MODEL CANVAS  

One of the most popular templates for working on a business model is the Business Model Canvas 

by Alexander Osterwalder and his startup, the Business Model Foundry. The canvas is a Creative 

Commons–licensed single-page planner. 

At first sight, it looks as though each box is simply an element in a form and the whole thing could 

be replaced by a nine-point checklist. However, the boxes are designed to be a good size for sticky notes, 

emphasizing that you can play with the ideas you have and move them around. Also the layout gives a 

meaning and context to each item. 

Let’s look at the model, starting with the most obvious elements and then drilling down into the 

grittier details that we might neglect without this kind of template. 

At the bottom right, we have Revenue Streams, which is more or less the question of “how are you 

going to make money?” we used to start this chapter. Although its position suggests that it is indeed one of 

the important desired outputs of the business, it is by no means the only consideration! 

The central box, Value Propositions, is, in plainer terms, what you will be producing—that is, your 

Internet of Things product, service, or platform. 

WHO IS THE BUSINESS MODEL FOR?  

Primarily, the reason to model your business is to have some kind of educated hypothesis about 

whether it might deliver what you want from it. Even if you don’t use a semi-formal method like the canvas 

we just discussed, anyone who starts up any business will have thought, at least briefly, about whether she 

can afford to do it, what the business is, and whether she’ll get paid. 



As a programmer or a maker, you might believe it counterintuitive to think of a piece of paper with 

nine boxes in it as a “tool”, but when you have a well-tested separation of factors to consider, the small 

amount of structure the canvas provides should help you think about the business and give you ways to 

brainstorm different ideas: 

◾ What if we target the product at students instead of businesses?  

◾ What if we outsource our design to an agency?  

◾ What if we sell at low volume/high value instead? 

Let us look at some of these likely questions, from the wider field of Internet products in general. 

◾ Why should I waste time trying out Yet Another Social Network? I think I’ll wait and see whether 

all my friends join it first. This first question is about your “Value Proposition” (that is, the product) and a 

reasonable concern if you are trying to get into a market that already has good or popular solutions.  

◾ Will my Internet-connected rabbit become an expensive paperweight if you go bust? This 

happened with Nabaztag, one of the earliest consumer products in the field of Internet of Things. These 

rabbit shaped devices delighted their owners by muttering and moving their ears in response to stimuli 

received via the Internet until the French company Violet went bankrupt. The new owners, Mindscape, 

factored in this concern by open sourcing the code for Nabaztag (and its successor Karotz) to ensure that 

customers can continue to use the product no matter what happens to the company. This question is 

asked with a degree of consumer savvy about business risk. Potential customers have seen other 

companies fall under and don’t want the inconvenience or waste it entails for them.  

◾ Your online document collaboration looks great, but is it worth my moving my whole business to 

it? If you stop trading or change the platform, we may have to redo all the work again. Such customers may 

well be interested in the details of your business model to calculate whether the risk they’ve identified is 

worth their commitment. This isn’t just a concern about viability of the company: It’s unlikely that Google 

will stop trading, yet many businesses are still unwilling to rely on Google Drive for editing documents. The 

reason is, in part, that they don’t understand where the product fits in Google’s strategy and can’t 
guarantee that the service won’t be discontinued or crippled, or predict a cost structure for it in the event 

that it stops being free.  

◾ This free service is fantastic, but why don’t you let me pay for it, so I can get consistency, receive 

support, and avoid adverts? Lastly, many customers are aware of alternative charging models that they 

would prefer and might prefer a different one. Not all customers vote for the free option. 

MODELS  

We have looked at the Business Model Canvas as a tool for generating and analyzing models. As we 

saw from our history, the models have many common variants. It is a good idea to have a look at some of 

the models that Internet of Things companies have used or might use and consider some of the 

parameters these models relate to on the canvas. 

 make thing, sell thing  

 subscriptions  

 customization  

 be a key resource  

 provide infrastructure: sensor networks  

 take a percentage 

 



FUNDING AN INTERNET OF THINGS STARTUP 
  

As important as future costs and revenues are to a well-planned business model, there will most 

likely be a period when you have only costs and no income. The problem of how to get initial funding is a 

critical one, and looking at several options to deal with it is worthwhile. 

HOBBY PROJECTS AND OPEN SOURCE  

If your project is also your hobby, you may have no extra costs than what you would spend anyway 

on your free-time activity. This is perfectly valid, although if you are reading this chapter with an intent to 

turn your product into a successful business or community, you may wish to proceed at a less leisurely 

pace than a pure hobby might entail. 

Some benefits from the relationship with the community: 

◾ Many pairs of eyes and hands testing, reporting problems, fixing them, and building new features.  

◾ Many passionate users with real use cases and opinions about the product—better than any focus group. 

 ◾ The goodwill of that community, with its ready-made network of personal recommendations and social-

media marketing. 

VENTURE CAPITAL 

The venture capital (VC) round is similar, but instead of your courting individual investors, the 

investor is a larger group with significant funds, whose sole purpose is to discover and fund new companies 

with a view to making significant profit. VCs may be interested if angels have already funded you and will 

certainly be interested if other VC companies are already looking at funding you. VCs will certainly want 

equity, probably a significant amount of it, and a position on your board of directors. Again, this last role 

may be as much to help fill gaps that your management team don’t cover as much as it is to keep an eye on 

you and their money. Typically, VC funding will be larger chunks of money, from half a million pounds up. 

Current accelerators that may be specialized in the Internet of Things, or cover the field as part of 

their area of interest, include  

◾ HAXLR8R  

◾ PCH Accelerator  

◾ Berlin Hardware Accelerator   

◾ Bolt   

◾ Lemnos Labs  

Typically, you have only two exits: 

 You get bought by a bigger company  

 You do an IPO (initial public offering)—that is, float on the stock market 

 

 

 



GOVERNMENT FUNDING 

◾ Outputs 

◾ Spending constraints 

CROWDFUNDING 

We’ve already looked at the long tail as a business model; we can think of crowdfunding as the long 

tail of funding projects. Getting many people to contribute to a project isn’t exactly a new phenomenon. 

LEAN STARTUPS 

We’ve looked at the advantages of running a startup on a low budget. The mentality needed to do 

this includes spending time and money only when it’s really necessary—staying hungry and lean. The 

concept of a “lean startup,” pioneered by Silicon Valley entrepreneur Eric Ries, springs from this idea (The 

Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful 

Businesses, Crown Business, 2011). The option in the preceding section of crowdfunding a project 

presented an even more appealing step on this route: running the project only if there is a demonstrable 

niche market for it. 

For instance: 

◾ Zoom-in pivot: Focus on what was only a part of the value proposition, and turn that into the 

whole Minimum Viable Product.  

◾ Customer segment pivot: Realize that the people who will actually buy your product aren’t the 

ones you were originally targeting. While you can continue to make exactly the same product, you have 

been marketing it to the wrong people.  

◾ Technology pivot: Accomplish the same goals as before, but change the implementation details. 

While prototyping will almost certainly involve many changes in technology while you establish the best 

way to make the product from an engineering perspective, this pivot would be a business decision, made 

to improve manufacturing costs, speed, or quality. 

MOVING TO MANUFACTURE 

MANUFACTURING PRINTED CIRCUIT BOARDS  

Now that you’ve designed your PCB, the next step is to make one or lots of them. If you want only a 

couple of boards, or you would like to test a couple of boards (a very wise move) before ordering a few 

hundred or a few thousand, you may decide to make them in-house. 

ETCHING BOARDS  

The most common PCB-making technique for home use is to etch the board. Some readily available 

kits provide all you need. 

The first step is to get the PCB design onto the board to be etched. This process generally involves 

printing out the design from your PCB design software onto a stencil. If you’re using photo-resist board, it 

will be onto a stencil which masks off the relevant areas when you expose it to UV light; or if you’re using 

the toner-transfer method, it will be for your laser printer to print onto glossy paper ready to transfer. 

Your stencil then needs to be transferred to the board. For photo-resist board, you will expose it 

under a bright lamp for a few minutes; and for the toner-transfer method, you’ll use a super-hot iron. 



With the board suitably prepared, you can immerse it into the etching solution, where its acidic 

make-up eats away the exposed copper, leaving the tracks behind. 

After all the unnecessary copper has been etched away, and you’ve removed the board from the 

etching bath and cleaned off any remaining etchant, your board is almost ready for use. 

The last step is to drill the holes for any mounting points or through-hole components. You can do 

this by hand, or, if you have access to a CNC mill, you can export the drill file from your PCB design package 

to provide the drill locations for your mill. 

MILLING BOARDS  

In addition to using a CNC mill to drill the holes in your PCB, you can also use it to root out the 

copper from around the tracks themselves. To do this, you need to export the copper layers from your PCB 

software as Gerber files. These were first defined by Gerber Systems Corp., hence the name, and are now 

the industry standard format used to describe PCBs in manufacture. 

To translate your Gerber file into the G-code that your mill needs requires another piece of 

software. (See Chapter 6 for more on CNC mills and G-code.) Some CNC mills come with that software 

already provided, or you can use a third-party program such as Line Grinder. 

THIRD-PARTY MANUFACTURING  

If your design has more than two layers, if you want a more professional finish, or if you just don’t 
want to go to the trouble of making the PCBs yourself, many companies can manufacture the boards for 

you. 

The price for getting the boards made varies based on the complexity and the size of the design but 

also varies quite a bit from company to company, so it’s worth getting a few quotes before deciding which 

one to use. 

ASSEMBLY  

After your PCBs have been manufactured, you still need to get the components soldered onto 

them. 

If you’re selling them as kits, the customers will solder things up, so you just need to pack 

everything into bags and let them get on with it. Otherwise, you have to take responsibility for making that 

happen. 

For small runs, you can solder them by hand. For through-hole boards, break out your soldering 

iron. Surface-mount assembly is a little more involved but quite achievable if you don’t have any 

components with particularly complicated package types. 

For assembling surface-mount boards, you need one more item from your PCB design Gerber 

collection: the solder paste layer. You use it to generate a stencil that allows you to apply the solder. You 

can laser-cut one from a thin sheet of Mylar plastic or have one made for you out of thin steel. Obviously, 

the steel one will last much longer and let you solder up lots more boards before you need to replace it. 

MASS-PRODUCING THE CASE AND OTHER FIXTURES  

We’ve covered how to scale up manufacture of the electronics side of things, but what about any 

custom casing or other subassemblies used to build up the final product. 



A good rule of thumb for keeping down the costs of production is to minimize the amount of time a 

person has to work on each item. Machines tend to be cheaper than people, and the smaller the 

proportion of labour is in your costs, the more you’ll be able to afford to pay a decent wage to the people 

who are involved in assembling your devices. 

In “Prototyping the Physical Design”, your design uses some of the newer, digital manufacturing 

techniques such as laser cutting or 3D printing, you might already have little labour in your assembly 

process. 

However, whilst minimizing labour costs is a good target, it’s not the only factor you need to 

consider in your production recipe; production rates are also important. Though they’re fairly labour free, 

3D printers and laser cutters aren’t the fastest of production techniques. Waiting a couple of hours for a 

print is fine if you just want one, but a production run of a thousand is either going to take a very long time 

or require a lot of 3D printers. 

 

 

 

 

 

 

 

 

 

 

The mould also needs to include space for the ejection pins to remove the part after it’s made and a 

route for the plastic to flow into the mould. If you’ve ever put together a model plane or car, you are 

familiar with those pathways; they’re the excess sprue, the plastic scaffolding that holds each piece 

together in the kit and that you have to snap away. In assembled products, the parts are naturally removed 

from the sprue during production. 

CERTIFICATION  

One of the less obvious sides of creating an Internet of Things product is the issue of certification. If 

you forget to make the PCB or write only half of the software for your device, it will be pretty obvious that 

things aren’t finished when it doesn’t work as intended. Fail to meet the relevant certification or 

regulations, and your product will be similarly incomplete—but you might not realise that until you send it 

to a distributor, or worse still, after it is already on sale. 

For the main part, these regulations are there for good reason. They make the products you use 

day in, day out, safer for you to use; make sure that they work properly with complementary products 

from other suppliers; and ensure that one product doesn’t emit lots of unwanted electromagnetic 

radiation and interfere with the correct operation of other devices nearby. 



You may not have noticed before, but if you take a closer look at any gadget that’s near to hand, you will 

find a cluster of logos on it somewhere…CE, FCC, UL.… Each of these marks signifies a particular set of 
regulations and tests that the item has passed: the CE mark for meeting European standards; FCC for US 

Federal Communications Commission regulations; and UL for independent testing laboratory UL’s tests. 

COSTS  

As we’ve seen in the rest of this chapter, you have many things to consider as you move to higher 

volume manufacturing. Unfortunately, lots of them involve sizeable up-front costs. In fact, the further you 

get into the process, the less you will need your hardcore coding or critical design skills, and the more time 

you’ll spend balancing cash flow and fund-raising. 

SCALING UP SOFTWARE  

Producing a physical thing as a prototype or as a manufactured product turn out to be two entirely 

different propositions. The initial prototype may well be of different size, shape, color, materials, finish, 

and quality to what ends up on the shelf. Yet software is intangible and malleable. There are no parts to 

order, no Bill of Materials to pay for. The bits of information that make up the programs which run in the 

device or on the Internet are invisible. The software you wrote during project development and what ends 

up in production will be indistinguishable to the naked eye. 

ETHICS 

The emotions raised by technology may be strong and suggest two competing grand narratives, moving 

either from or towards the philosophical ideal of the “good life”: 

◾ The downward spiral of mankind from a better state: This could be identified with religious 

concepts such as the Christian “fall of man” or simply with traditional values.  

◾ An inexorable and definingly human advance towards a full self-realization through technology: 

This might lead to a new state for the species (the post-human singularity or the spread of mankind to 

other planets) or simply suggest that every advance leads us to a stable utopia. 

PRIVACY  

The Internet, as a massive open publishing platform, has been a disruptive force as regards the 

concept of privacy. Everything you write might be visible to anyone online: from minutiae about what you 

ate for breakfast to blog posts about your work, from articles about your hobbies to Facebook posts about 

your parties with friends. There is a value in making such data public: the story told on the Internet 

becomes your persona and defines you in respect of your friends, family, peers, and potential employers. 

CONTROL  

Some of the privacy concerns we looked at in the preceding sections really manifest only if the 

“data subject” is not the one in control of the data. The example of the drunken photo is more sinister if it 

was posted by someone else, without your permission. This is a form of cyberbullying, which is increasingly 

prevalent in schools and elsewhere. 

DISRUPTING CONTROL  

The other major possibility that Eaves suggests is that “The Internet Destroys the State”. This is also a hard 

and uncomfortable scenario to imagine. However, toning down this idea a little, we can see a more likely 

one of “the Internet” fighting back against an attempt by the state or corporations to co-opt it. When we 

refer to a technology as “disruptive”, we mean that it affects the balance of power. 



ENVIRONMENT  

We have already touched on several environmental issues in the preceding sections, and we’ll 
come back to the themes of data, control, and the sensor commons. First, let’s look at the classic 

environmental concerns about the production and running of the Thing itself.  

PHYSICAL THING  

Creating the object has a carbon cost, which may come from the raw materials used, the processes 

used to shape them into the shell, the packing materials, and the energy required to ship them from the 

manufacturing plant to the customer. It’s easier than ever to add up the cost of these emissions: for 

example, using the ameeConnect API (www.amee.com/ pages/api), you can find emissions data and 

carbon costs for the life-cycle use of different plastics you might use for 3D printing or injection moulding. 

Calculating the energy costs for manufacture is harder. 

ELECTRONICS  

The electronics contained in a Thing have their own environmental cost. Buying PCBs locally or from 

a foreign manufacturer affects the carbon cost of shipping the completed units. Considering the potential 

cost savings, even a responsible manufacturer may find it reasonable to offset the extra carbon emissions. 

If your product needs to conform to RoHS legislation, then every single component that could be 

extracted from it must be RoHS compliant. As we have seen, this is not too onerous. 

INTERNET SERVICE  

As Nicholas Negroponte (founder of MIT’s Media Lab) preaches, “Move bits, not atoms” (Being 

Digital, Vintage, 1996). In the digital world, moving data rather than physical objects is faster, is safer, and 

has a lower environmental cost. Of course, “data” doesn’t exist in the abstract. The stone tablets, 

parchment scrolls, and libraries of paper books or microfiche that have historically been used to store 

analogue data always had their own environmental cost. Now, running the Internet has a cost: the 

electricity to run the routers and the DNS lookups, plus establishing the infrastructure—laying cabling 

across the sea, setting up microwave or satellite links, and so on. 

SOLUTIONS  

Compared to a simple, physical object, an instrumented Internet of Things device does seem to use 

vastly more resources in its production, daily use, and waste disposal. Considering our starting point—that 

this kind of instrumentation is now cheap enough to put everywhere—it seems as though the mass rollout 

of the Internet of Things will only contribute to environmental issues! Assuming that you want to go ahead 

with manufacturing a Thing regardless, we hope that you will be aware of the various possibilities and 

consider ways to reduce your impact and also consider contributing to offsetting schemes. 

CAUTIOUS OPTIMISM  

Between the tempting extremes of technological Luddism and an unquestioning positive attitude is 

the approach that we prefer: one of cautious optimism. Yes, the Luddites were right—technology did 

change the world that they knew, for the worse, in many senses. But without the changes that disrupted 

and spoilt one world, we wouldn’t have arrived at a world, our world, where magical objects can speak to 

us, to each other, and to vastly powerful machine intelligences over the Internet. 

When designing the Internet of Things, or perhaps when designing anything, you have to remember 

two contrasting points: 



◾ Everyone is not you. Though you might not personally care about privacy or flood levels caused 

by global warming, they may be critical concerns for other people in different situations.  

◾ You are not special. If something matters to you, then perhaps it matters to other people too. 

THE OPEN INTERNET OF THINGS DEFINITION  

The Open IoT Assembly 2012 culminated in the drafting of the “Open Internet of Things Definition”. 

An emergent document, created after two days of open discussion, it seeks to define and codify the points 

of interest around the technology of the Internet of Things and to underscore its potential to “deliver 

value, meaning, insight, and fun”. This document touches on many of the topics that we discussed in this 

chapter, so let us walk through some of them to see the conclusions that this more formal treatment has 

come to. 

We can summarize the main goals of the definition as follows: 

◾ Accessibility of data: As a stated goal, all open data feeds should have an API which is free to use, 

both monetarily and unrestricted by proprietary technologies with no alternative open source 

implementation.  

◾ Preservation of privacy: The Data Subjects should know what data will be collected about them 

and be able to decide to consent or not to that data collection. This is a very strong provision (and most 

likely unworkable for data which is inherently anonymous in the first instance) but one which would 

provide real individual protection if it were widely followed. As with any information gathering, 

“reasonable efforts” should be made to retain privacy and confidentiality.  

◾ Transparency of process: Data Subjects should be made aware of their rights—for example, the 

fact that the data has a license—and that they are able to grant or withdraw consent. 

Question Bank: 

1. Explain business models. (10M) 

2. Explicate manufacturing. (10M) 

3. Explain Ethics. (10M) 

4. Describe history of business model. (5M) 

5. Illustrate lean startup. (5M) 

6. Elaborate designing kits. (5M) 

7. Illuminate certification. (5M) 

8. What is privacy? (5M) 

 

 

 

 


