
Department of Computer Science & Applications

Study Material – 2022(Odd Semester)

Sub:Open source computing Paper Code: 21PCS Class: II M.Sc CS

Staff I/c: K. Aravindhan M.Sc., Date: Head:

UNIT –I

Python: Introduction – Numbers – Strings – Variables – Lists – Tuples – Dictionaries – Sets –

Comparison.

Topic 1: Introduction

Possible Question: Discuss about python?

Possible Marks: 5 or 10 Marks

Outcomes:

Python is a general-purpose interpreted, interactive, object-oriented, and high-level

programming language. It was created by Guido van Rossum during 1985- 1990. Like Perl,

Python source code is also available under the GNU General Public License (GPL).

This tutorial gives enough understanding on Python programming language.

Python is a high-level, interpreted, interactive and object-oriented scripting language. Python

is designed to be highly readable. It uses English keywords frequently where as other languages

use punctuation, and it has fewer syntactical constructions than other languages.

 Python is Interpreted − Python is processed at runtime by the interpreter. You

do not need to compile your program before executing it. This is similar to PERL

and PHP.

 Python is Interactive − You can actually sit at a Python prompt and interact

with the interpreter directly to write your programs.

 Python is Object-Oriented − Python supports Object-Oriented style or

technique of programming that encapsulates code within objects.

 Python is a Beginner's Language − Python is a great language for the

beginner-level programmers and supports the development of a wide range of

applications from simple text processing to WWW browsers to games.

History of Python

Python was developed by Guido van Rossum in the late eighties and early nineties at the

National Research Institute for Mathematics and Computer Science in the Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68,

SmallTalk, and Unix shell and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now available under the GNU General

Public License (GPL).

Python is now maintained by a core development team at the institute, although Guido van

Rossum still holds a vital role in directing its progress.

Python Features

Python's features include −

 Easy-to-learn − Python has few keywords, simple structure, and a clearly

defined syntax. This allows the student to pick up the language quickly.

 Easy-to-read − Python code is more clearly defined and visible to the eyes.

 Easy-to-maintain − Python's source code is fairly easy-to-maintain.

 A broad standard library − Python's bulk of the library is very portable and
cross-platform compatible on UNIX, Windows, and Macintosh.

 Interactive Mode − Python has support for an interactive mode which allows

interactive testing and debugging of snippets of code.

 Portable − Python can run on a wide variety of hardware platforms and has the

same interface on all platforms.

 Extendable − You can add low-level modules to the Python interpreter. These

modules enable programmers to add to or customize their tools to be more

efficient.

 Databases − Python provides interfaces to all major commercial databases.

 GUI Programming − Python supports GUI applications that can be created and

ported to many system calls, libraries and windows systems, such as Windows

MFC, Macintosh, and the X Window system of Unix.

 Scalable − Python provides a better structure and support for large programs

than shell scripting.

Apart from the above-mentioned features, Python has a big list of good features, few are listed

below −

 It supports functional and structured programming methods as well as OOP.

 It can be used as a scripting language or can be compiled to byte-code for

building large applications.

 It provides very high-level dynamic data types and supports dynamic type

checking.

 It supports automatic garbage collection.

 It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Topic 2:Numbers

Possible Question:Explain Numbers?

Possible Marks: 5 or 10 Marks

Outcomes:

Number data types store numeric values. They are immutable data types, means that

changing the value of a number data type results in a newly allocated object.

Number objects are created when you assign a value to them. For example −

You can also delete the reference to a number object by using the del statement. The syntax of
the del statement is −

 del var1[,var2[,var3[... ,varN]]]]

You can delete a single object or multiple objects by using the del statement. For example −

Python supports four different numerical types −

 int (signed integers) − They are often called just integers or ints, are positive or

negative whole numbers with no decimal point.

 long (long integers) − Also called longs, they are integers of unlimited size,

written like integers and followed by an uppercase or lowercase L.

 float (floating point real values) − Also called floats, they represent real

numbers and are written with a decimal point dividing the integer and fractional

parts. Floats may also be in scientific notation, with E or e indicating the power

of 10 (2.5e2 = 2.5 x 102 = 250).

 complex (complex numbers) − are of the form a + bJ, where a and b are floats

and J (or j) represents the square root of -1 (which is an imaginary number). The

real part of the number is a, and the imaginary part is b. Complex numbers are

not used much in Python programming.

Examples

Here are some examples of numbers

int long float complex

10 51924361L 0.0 3.14j

del var

del var_a, var_b

var1 = 1

var2 = 10

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEL 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

 Python allows you to use a lowercase L with long, but it is recommended that

you use only an uppercase L to avoid confusion with the number 1. Python

displays long integers with an uppercase L.

 A complex number consists of an ordered pair of real floating point numbers

denoted by a + bj, where a is the real part and b is the imaginary part of the

complex number.

Number Type Conversion

Python converts numbers internally in an expression containing mixed types to a

common type for evaluation. But sometimes, you need to coerce a number explicitly from one

type to another to satisfy the requirements of an operator or function parameter.

 Type int(x) to convert x to a plain integer.

 Type long(x) to convert x to a long integer.

 Type float(x) to convert x to a floating-point number.

 Type complex(x) to convert x to a complex number with real part x and

imaginary part zero.

 Type complex(x, y) to convert x and y to a complex number with real part x and

imaginary part y. x and y are numeric expressions

Mathematical Functions

Python includes following functions that perform mathematical calculations.

Sr.No. Function & Returns (description)

1 abs(x)

The absolute value of x: the (positive) distance between x and zero.

2 ceil(x)

The ceiling of x: the smallest integer not less than x

3 cmp(x, y)

-1 if x < y, 0 if x == y, or 1 if x > y

4 exp(x)

The exponential of x: ex

5 fabs(x)

The absolute value of x.

6 floor(x)

The floor of x: the largest integer not greater than x

7 log(x)

The natural logarithm of x, for x> 0

8 log10(x)

https://www.tutorialspoint.com/python/number_abs.htm
https://www.tutorialspoint.com/python/number_ceil.htm
https://www.tutorialspoint.com/python/number_cmp.htm
https://www.tutorialspoint.com/python/number_exp.htm
https://www.tutorialspoint.com/python/number_fabs.htm
https://www.tutorialspoint.com/python/number_floor.htm
https://www.tutorialspoint.com/python/number_log.htm
https://www.tutorialspoint.com/python/number_log10.htm

The base-10 logarithm of x for x> 0.

9 max(x1, x2,...)

The largest of its arguments: the value closest to positive infinity

10 min(x1, x2,...)

The smallest of its arguments: the value closest to negative infinity

11 modf(x)

The fractional and integer parts of x in a two-item tuple. Both parts have the same sign

as x. The integer part is returned as a float.

12 pow(x, y)

The value of x**y.

13 round(x [,n])

x rounded to n digits from the decimal point. Python rounds away from zero as a tie-

breaker: round(0.5) is 1.0 and round(-0.5) is -1.0.

14 sqrt(x)

The square root of x for x > 0

Random Number Functions

Random numbers are used for games, simulations, testing, security, and privacy

applications. Python includes following functions that are commonly used.

Sr.No. Function & Description

1 choice(seq)

A random item from a list, tuple, or string.

2 randrange ([start,] stop [,step])

A randomly selected element from range(start, stop, step)

3 random()

A random float r, such that 0 is less than or equal to r and r is less than 1

4 seed([x])

Sets the integer starting value used in generating random numbers. Call this function

before calling any other random module function. Returns None.

5 shuffle(lst)

Randomizes the items of a list in place. Returns None.

6 uniform(x, y)

A random float r, such that x is less than or equal to r and r is less than y

Trigonometric Functions

Python includes following functions that perform trigonometric calculations.

Sr.No. Function & Description

1 acos(x)

Return the arc cosine of x, in radians.

2 asin(x)

Return the arc sine of x, in radians.

https://www.tutorialspoint.com/python/number_max.htm
https://www.tutorialspoint.com/python/number_min.htm
https://www.tutorialspoint.com/python/number_modf.htm
https://www.tutorialspoint.com/python/number_pow.htm
https://www.tutorialspoint.com/python/number_round.htm
https://www.tutorialspoint.com/python/number_sqrt.htm
https://www.tutorialspoint.com/python/number_choice.htm
https://www.tutorialspoint.com/python/number_randrange.htm
https://www.tutorialspoint.com/python/number_random.htm
https://www.tutorialspoint.com/python/number_seed.htm
https://www.tutorialspoint.com/python/number_shuffle.htm
https://www.tutorialspoint.com/python/number_uniform.htm
https://www.tutorialspoint.com/python/number_acos.htm
https://www.tutorialspoint.com/python/number_asin.htm

3 atan(x)

Return the arc tangent of x, in radians.

4 atan2(y, x)

Return atan(y / x), in radians.

5 cos(x)

Return the cosine of x radians.

6 hypot(x, y)

Return the Euclidean norm, sqrt(x*x + y*y).

7 sin(x)

Return the sine of x radians.

8 tan(x)

Return the tangent of x radians.

9 degrees(x)

Converts angle x from radians to degrees.

10 radians(x)

Converts angle x from degrees to radians.

Mathematical Constants

The module also defines two mathematical constants −

Sr.No. Constants & Description

1 pi

The mathematical constant pi.

2 e

The mathematical constant e.

Topic 3:Strings

Possible Question: Explain Strings?

Possible Marks: 5 or 10 Marks

Outcomes:

Strings are amongst the most popular types in Python. We can create them simply by

enclosing characters in quotes. Python treats single quotes the same as double quotes. Creating

strings is as simple as assigning a value to a variable. For example −

Accessing Values in Strings

Python does not support a character type; these are treated as strings of length one, thus also

considered a substring.

To access substrings, use the square brackets for slicing along with the index or indices to

obtain your substring. For example −

#!/usr/bin/python

var1 ='Hello World!'

var2 ="Python Programming"

var1 ='Hello World!'

var2 ="Python Programming"

https://www.tutorialspoint.com/python/number_atan.htm
https://www.tutorialspoint.com/python/number_atan2.htm
https://www.tutorialspoint.com/python/number_cos.htm
https://www.tutorialspoint.com/python/number_hypot.htm
https://www.tutorialspoint.com/python/number_sin.htm
https://www.tutorialspoint.com/python/number_tan.htm
https://www.tutorialspoint.com/python/number_degrees.htm
https://www.tutorialspoint.com/python/number_radians.htm

When the above code is executed, it produces the following result −

Updating Strings

You can "update" an existing string by (re)assigning a variable to another string. The new value

can be related to its previous value or to a completely different string altogether. For example

−

When the above code is executed, it produces the following result −
 Updated String :- Hello Python

Escape Characters

Following table is a list of escape or non-printable characters that can be represented with

backslash notation.

An escape character gets interpreted; in a single quoted as well as double quoted strings.

Backslash

notation

Hexadecimal

character

Description

\a 0x07 Bell or alert

\b 0x08 Backspace

\cx

Control-x

\C-x

Control-x

\e 0x1b Escape

\f 0x0c Formfeed

\M-\C-x

Meta-Control-x

\n 0x0a Newline

\nnn

Octal notation, where n is in the range 0.7

\r 0x0d Carriage return

\s 0x20 Space

\t 0x09 Tab

\v 0x0b Vertical tab

\x

Character x

\xnn

Hexadecimal notation, where n is in the range 0.9,

a.f, or A.F

#!/usr/bin/python

var1 ='Hello World!'

print"Updated String :- ", var1[:6]+'Python'

var1[0]: H

var2[1:5]: ytho

print"var1[0]: ", var1[0]

print"var2[1:5]: ", var2[1:5]

String Special Operators

Assume string variable a holds 'Hello' and variable b holds 'Python', then −

Operator Description Example

+ Concatenation - Adds values on either side of the operator a + b will

give

HelloPython

* Repetition - Creates new strings, concatenating multiple copies of the

same string

a*2 will

give -

HelloHello

[] Slice - Gives the character from the given index a[1] will

give e

[:] Range Slice - Gives the characters from the given range a[1:4] will

give ell

in Membership - Returns true if a character exists in the given string H in a will

give 1

not in Membership - Returns true if a character does not exist in the given

string

M not in a

will give 1

r/R Raw String - Suppresses actual meaning of Escape characters. The

syntax for raw strings is exactly the same as for normal strings with the

exception of the raw string operator, the letter "r," which precedes the

quotation marks. The "r" can be lowercase (r) or uppercase (R) and

must be placed immediately preceding the first quote mark.

print r'\n'

prints \n and

print

R'\n'prints \n

% Format - Performs String formatting See at next

section

String Formatting Operator

One of Python's coolest features is the string format operator %. This operator is unique to

strings and makes up for the pack of having functions from C's printf() family. Following is a

simple example −

When the above code is executed, it produces the following result −
 My name is Zara and weight is 21 kg!

Here is the list of complete set of symbols which can be used along with % −

Format Symbol Conversion

%c character

%s string conversion via str() prior to formatting

%i signed decimal integer

%d signed decimal integer

#!/usr/bin/python

print"My name is %s and weight is %d kg!"%('Zara',21)

%u unsigned decimal integer

%o octal integer

%x hexadecimal integer (lowercase letters)

%X hexadecimal integer (UPPERcase letters)

%e exponential notation (with lowercase 'e')

%E exponential notation (with UPPERcase 'E')

%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

Other supported symbols and functionality are listed in the following table −

Symbol Functionality

* argument specifies width or precision

- left justification

+ display the sign

<sp> leave a blank space before a positive number

add the octal leading zero ('0') or hexadecimal leading '0x' or '0X',

depending on whether 'x' or 'X' were used.

0 pad from left with zeros (instead of spaces)

% '%%' leaves you with a single literal '%'

(var) mapping variable (dictionary arguments)

m.n. m is the minimum total width and n is the number of digits to display

after the decimal point (if appl.)

Triple Quotes

Python's triple quotes comes to the rescue by allowing strings to span multiple lines, including

verbatim NEWLINEs, TABs, and any other special characters.

The syntax for triple quotes consists of three consecutive single or double quotes.

#!/usr/bin/python

para_str="""this is a long string that is made up of

several lines and non-printable characters such as

TAB (\t) and they will show up that way when displayed.

NEWLINEs within the string, whether explicitly given like

this within the brackets [\n], or just a NEWLINE within

the variable assignment will also show up.

"""

printpara_str

When the above code is executed, it produces the following result. Note how every single

special character has been converted to its printed form, right down to the last NEWLINE at

the end of the string between the "up." and closing triple quotes. Also note that NEWLINEs

occur either with an explicit carriage return at the end of a line or its escape code (\n) −

Raw strings do not treat the backslash as a special character at all. Every character you put into
a raw string stays the way you wrote it −

When the above code is executed, it produces the following result −
 C:\nowhere

Now let's make use of raw string. We would put expression in r'expression' as follows −

When the above code is executed, it produces the following result −
 C:\\nowhere

Unicode String

Normal strings in Python are stored internally as 8-bit ASCII, while Unicode strings are stored

as 16-bit Unicode. This allows for a more varied set of characters, including special characters

from most languages in the world. I'll restrict my treatment of Unicode strings to the following

−

When the above code is executed, it produces the following result −
 Hello, world!

As you can see, Unicode strings use the prefix u, just as raw strings use the prefix r.

Built-in String Methods

Python includes the following built-in methods to manipulate strings −

Sr.No. Methods with Description

1 capitalize()

Capitalizes first letter of string

2 center(width, fillchar)

Returns a space-padded string with the original string centered to a total of width

columns.

3 count(str, beg= 0,end=len(string))

Counts how many times str occurs in string or in a substring of string if starting index

beg and ending index end are given.

4 decode(encoding='UTF-8',errors='strict')

#!/usr/bin/python

printu'Hello, world!'

#!/usr/bin/python

print'C:\\nowhere'

this is a long string that is made up of
several lines and non-printable characters such as

TAB () and they will show up that way when displayed.

NEWLINEs within the string, whether explicitly given like

this within the brackets [

], or just a NEWLINE within

the variable assignment will also show up.

#!/usr/bin/python

printr'C:\\nowhere'

https://www.tutorialspoint.com/python/string_capitalize.htm
https://www.tutorialspoint.com/python/string_center.htm
https://www.tutorialspoint.com/python/string_count.htm
https://www.tutorialspoint.com/python/string_decode.htm

Decodes the string using the codec registered for encoding. encoding defaults to the

default string encoding.

5 encode(encoding='UTF-8',errors='strict')

Returns encoded string version of string; on error, default is to raise a ValueError unless

errors is given with 'ignore' or 'replace'.

6 endswith(suffix, beg=0, end=len(string))

Determines if string or a substring of string (if starting index beg and ending index end

are given) ends with suffix; returns true if so and false otherwise.

7 expandtabs(tabsize=8)

Expands tabs in string to multiple spaces; defaults to 8 spaces per tab if tabsize not

provided.

8 find(str, beg=0 end=len(string))

Determine if str occurs in string or in a substring of string if starting index beg and ending

index end are given returns index if found and -1 otherwise.

9 index(str, beg=0, end=len(string))

Same as find(), but raises an exception if str not found.

10 isalnum()

Returns true if string has at least 1 character and all characters are alphanumeric and false

otherwise.

11 isalpha()

Returns true if string has at least 1 character and all characters are alphabetic and false

otherwise.

12 isdigit()

Returns true if string contains only digits and false otherwise.

13 islower()

Returns true if string has at least 1 cased character and all cased characters are in

lowercase and false otherwise.

14 isnumeric()

Returns true if a unicode string contains only numeric characters and false otherwise.

15 isspace()

Returns true if string contains only whitespace characters and false otherwise.

16 istitle()

Returns true if string is properly "titlecased" and false otherwise.

17 isupper()

Returns true if string has at least one cased character and all cased characters are in

uppercase and false otherwise.

18 join(seq)

Merges (concatenates) the string representations of elements in sequence seq into a

string, with separator string.

19 len(string)

https://www.tutorialspoint.com/python/string_encode.htm
https://www.tutorialspoint.com/python/string_endswith.htm
https://www.tutorialspoint.com/python/string_expandtabs.htm
https://www.tutorialspoint.com/python/string_find.htm
https://www.tutorialspoint.com/python/string_index.htm
https://www.tutorialspoint.com/python/string_isalnum.htm
https://www.tutorialspoint.com/python/string_isalpha.htm
https://www.tutorialspoint.com/python/string_isdigit.htm
https://www.tutorialspoint.com/python/string_islower.htm
https://www.tutorialspoint.com/python/string_isnumeric.htm
https://www.tutorialspoint.com/python/string_isspace.htm
https://www.tutorialspoint.com/python/string_istitle.htm
https://www.tutorialspoint.com/python/string_isupper.htm
https://www.tutorialspoint.com/python/string_join.htm
https://www.tutorialspoint.com/python/string_len.htm

Returns the length of the string

20 ljust(width[, fillchar])

Returns a space-padded string with the original string left-justified to a total of width

columns.

21 lower()

Converts all uppercase letters in string to lowercase.

22 lstrip()

Removes all leading whitespace in string.

23 maketrans()

Returns a translation table to be used in translate function.

24 max(str)

Returns the max alphabetical character from the string str.

25 min(str)

Returns the min alphabetical character from the string str.

26 replace(old, new [, max])

Replaces all occurrences of old in string with new or at most max occurrences if max

given.

27 rfind(str, beg=0,end=len(string))

Same as find(), but search backwards in string.

28 rindex(str, beg=0, end=len(string))

Same as index(), but search backwards in string.

29 rjust(width,[, fillchar])

Returns a space-padded string with the original string right-justified to a total of width

columns.

30 rstrip()

Removes all trailing whitespace of string.

31 split(str="", num=string.count(str))

Splits string according to delimiter str (space if not provided) and returns list of

substrings; split into at most num substrings if given.

32 splitlines(num=string.count('\n'))

Splits string at all (or num) NEWLINEs and returns a list of each line with NEWLINEs

removed.

33 startswith(str, beg=0,end=len(string))

Determines if string or a substring of string (if starting index beg and ending index end

are given) starts with substring str; returns true if so and false otherwise.

34 strip([chars])

Performs both lstrip() and rstrip() on string.

35 swapcase()

Inverts case for all letters in string.

https://www.tutorialspoint.com/python/string_ljust.htm
https://www.tutorialspoint.com/python/string_lower.htm
https://www.tutorialspoint.com/python/string_lstrip.htm
https://www.tutorialspoint.com/python/string_maketrans.htm
https://www.tutorialspoint.com/python/string_max.htm
https://www.tutorialspoint.com/python/string_min.htm
https://www.tutorialspoint.com/python/string_replace.htm
https://www.tutorialspoint.com/python/string_rfind.htm
https://www.tutorialspoint.com/python/string_rindex.htm
https://www.tutorialspoint.com/python/string_rjust.htm
https://www.tutorialspoint.com/python/string_rstrip.htm
https://www.tutorialspoint.com/python/string_split.htm
https://www.tutorialspoint.com/python/string_splitlines.htm
https://www.tutorialspoint.com/python/string_startswith.htm
https://www.tutorialspoint.com/python/string_strip.htm
https://www.tutorialspoint.com/python/string_swapcase.htm

36 title()

Returns "titlecased" version of string, that is, all words begin with uppercase and the rest

are lowercase.

37 translate(table, deletechars="")

Translates string according to translation table str(256 chars), removing those in the del

string.

38 upper()

Converts lowercase letters in string to uppercase.

39 zfill (width)

Returns original string leftpadded with zeros to a total of width characters; intended for

numbers, zfill() retains any sign given (less one zero).

40 isdecimal()

Returns true if a unicode string contains only decimal characters and false otherwise.

Topic 4:Variables

Possible Question: Describe Variables?

Possible Marks: 5 or 10 Marks

Outcomes:

Variables are nothing but reserved memory locations to store values. This means that

when you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what can be

stored in the reserved memory. Therefore, by assigning different data types to variables, you

can store integers, decimals or characters in these variables.

Assigning Values to Variables

Python variables do not need explicit declaration to reserve memory space. The

declaration happens automatically when you assign a value to a variable. The equal sign (=) is

used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the right

of the = operator is the value stored in the variable. For example −

Here, 100, 1000.0 and "John" are the values assigned to counter, miles, and name variables,
respectively. This produces the following result −

Multiple Assignment

Python allows you to assign a single value to several variables simultaneously. For

example −

 a = b = c = 1

100

1000.0

John

#!/usr/bin/python

counter =100# An integer assignment

miles =1000.0# A floating point

name ="John"# A string

print counter

print miles

print name

https://www.tutorialspoint.com/python/string_title.htm
https://www.tutorialspoint.com/python/string_translate.htm
https://www.tutorialspoint.com/python/string_upper.htm
https://www.tutorialspoint.com/python/string_zfill.htm
https://www.tutorialspoint.com/python/string_isdecimal.htm

Here, an integer object is created with the value 1, and all three variables are assigned to the

same memory location. You can also assign multiple objects to multiple variables. For example

−

 a,b,c = 1,2,"john"

Here, two integer objects with values 1 and 2 are assigned to variables a and b respectively,

and one string object with the value "john" is assigned to the variable c.

Standard Data Types

The data stored in memory can be of many types. For example, a person's age is stored

as a numeric value and his or her address is stored as alphanumeric characters. Python has

various standard data types that are used to define the operations possible on them and the

storage method for each of them.

Python has five standard data types −

 Numbers

 String

 List

 Tuple

 Dictionary

Python Numbers

Number data types store numeric values. Number objects are created when you assign

a value to them. For example −

You can also delete the reference to a number object by using the del statement. The syntax of
the del statement is −

 del var1[,var2[,var3[... ,varN]]]]

You can delete a single object or multiple objects by using the del statement. For example −

Python supports four different numerical types −

 int (signed integers)

 long (long integers, they can also be represented in octal and hexadecimal)

 float (floating point real values)

 complex (complex numbers)

Examples

Here are some examples of numbers −

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

del var

del var_a, var_b

var1 = 1

var2 = 10

 Python allows you to use a lowercase l with long, but it is recommended that you use only

an uppercase L to avoid confusion with the number 1. Python displays long integers with

an uppercase L.

 A complex number consists of an ordered pair of real floating-point numbers denoted by

x + yj, where x and y are the real numbers and j is the imaginary unit.

Python Strings

Strings in Python are identified as a contiguous set of characters represented in the

quotation marks. Python allows for either pairs of single or double quotes. Subsets of strings

can be taken using the slice operator ([] and [:]) with indexes starting at 0 in the beginning of

the string and working their way from -1 at the end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is the repetition

operator. For example −

This will produce the following result −

Python Lists

Lists are the most versatile of Python's compound data types. A list contains items

separated by commas and enclosed within square brackets ([]). To some extent, lists are similar

to arrays in C. One difference between them is that all the items belonging to a list can be of

different data type.

The values stored in a list can be accessed using the slice operator ([] and [:]) with indexes

starting at 0 in the beginning of the list and working their way to end -1. The plus (+) sign is

the list concatenation operator, and the asterisk (*) is the repetition operator. For example −

This produce the following result −

['abcd', 786, 2.23, 'john', 70.2]

abcd

[786, 2.23]

[2.23, 'john', 70.2]

[123, 'john', 123, 'john']

['abcd', 786, 2.23, 'john', 70.2, 123, 'john']

#!/usr/bin/python

list =['abcd',786,2.23,'john',70.2]

tinylist=[123,'john']

print list # Prints complete list

printlist[0]# Prints first element of the list

printlist[1:3]# Prints elements starting from 2nd till 3rd

printlist[2:]# Prints elements starting from 3rd element

printtinylist*2# Prints list two times

print list +tinylist# Prints concatenated lists

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

#!/usr/bin/python

str ='Hello World!'

print str # Prints complete string

printstr[0]# Prints first character of the string

printstr[2:5]# Prints characters starting from 3rd to 5th

printstr[2:]# Prints string starting from 3rd character

print str *2# Prints string two times

print str +"TEST"# Prints concatenated string

Python Tuples

A tuple is another sequence data type that is similar to the list. A tuple consists of a

number of values separated by commas. Unlike lists, however, tuples are enclosed within

parentheses.

The main differences between lists and tuples are: Lists are enclosed in brackets ([]) and their

elements and size can be changed, while tuples are enclosed in parentheses (()) and cannot

be updated. Tuples can be thought of as read-only lists. For example −

This produce the following result −

The following code is invalid with tuple, because we attempted to update a tuple, which is not
allowed. Similar case is possible with lists −

Python Dictionary

Python's dictionaries are kind of hash table type. They work like associative arrays or

hashes found in Perl and consist of key-value pairs. A dictionary key can be almost any Python

type, but are usually numbers or strings. Values, on the other hand, can be any arbitrary Python

object.

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed using

square braces ([]). For example −

This produce the following result −

#!/usr/bin/python

dict={}

dict['one']="This is one"

dict[2]="This is two"

tinydict={'name':'john','code':6734,'dept':'sales'}

printdict['one']# Prints value for 'one' key

printdict[2]# Prints value for 2 key

printtinydict# Prints complete dictionary

printtinydict.keys()# Prints all the keys

printtinydict.values()# Prints all the values

#!/usr/bin/python

tuple =('abcd',786,2.23,'john',70.2)

list =['abcd',786,2.23,'john',70.2]

tuple[2]=1000# Invalid syntax with tuple

list[2]=1000# Valid syntax with list

('abcd', 786, 2.23, 'john', 70.2)

abcd

(786, 2.23)

(2.23, 'john', 70.2)

(123, 'john', 123, 'john')

('abcd', 786, 2.23, 'john', 70.2, 123, 'john')

#!/usr/bin/python

tuple =('abcd',786,2.23,'john',70.2)

tinytuple=(123,'john')

print tuple # Prints the complete tuple

printtuple[0]# Prints first element of the tuple
printtuple[1:3]# Prints elements of the tuple starting from 2nd till 3rd

printtuple[2:]# Prints elements of the tuple starting from 3rd element

printtinytuple*2# Prints the contents of the tuple twice

print tuple +tinytuple# Prints concatenated tuples

Dictionaries have no concept of order among elements. It is incorrect to say that the elements
are "out of order"; they are simply unordered.

Data Type Conversion

Sometimes, you may need to perform conversions between the built-in types. To

convert between types, you simply use the type name as a function.

There are several built-in functions to perform conversion from one data type to another. These

functions return a new object representing the converted value.

Sr.No. Function & Description

1 int(x [,base])

Converts x to an integer. base specifies the base if x is a string.

2 long(x [,base])

Converts x to a long integer. base specifies the base if x is a string.

3 float(x)

Converts x to a floating-point number.

4 complex(real [,imag])

Creates a complex number.

5 str(x)

Converts object x to a string representation.

6 repr(x)

Converts object x to an expression string.

7 eval(str)

Evaluates a string and returns an object.

8 tuple(s)

Converts s to a tuple.

9 list(s)

Converts s to a list.

10 set(s)

Converts s to a set.

11 dict(d)

Creates a dictionary. d must be a sequence of (key,value) tuples.

12 frozenset(s)

Converts s to a frozen set.

13 chr(x)

Converts an integer to a character.

14 unichr(x)

Converts an integer to a Unicode character.

This is one

This is two

{'dept': 'sales', 'code': 6734, 'name': 'john'}

['dept', 'code', 'name']

['sales', 6734, 'john']

15 ord(x)

Converts a single character to its integer value.

16 hex(x)

Converts an integer to a hexadecimal string.

17 oct(x)

Converts an integer to an octal string.

Topic 5:Lists

Possible Question: Describe Lists?

Possible Marks: 5 or 10 Marks

Outcomes:

The most basic data structure in Python is the sequence. Each element of a sequence is

assigned a number - its position or index. The first index is zero, the second index is one, and

so forth.

Python has six built-in types of sequences, but the most common ones are lists and tuples,

which we would see in this tutorial.

There are certain things you can do with all sequence types. These operations include indexing,

slicing, adding, multiplying, and checking for membership. In addition, Python has built-in

functions for finding the length of a sequence and for finding its largest and smallest elements.

Python Lists

The list is a most versatile datatype available in Python which can be written as a list of

comma-separated values (items) between square brackets. Important thing about a list is that

items in a list need not be of the same type.

Creating a list is as simple as putting different comma-separated values between square

brackets. For example −

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.
Accessing Values in Lists

To access values in lists, use the square brackets for slicing along with the index or indices

to obtain value available at that index. For example −

When the above code is executed, it produces the following result −

Updating Lists

You can update single or multiple elements of lists by giving the slice on the left-hand side

of the assignment operator, and you can add to elements in a list with the append() method. For

example −

#!/usr/bin/python

list =['physics','chemistry',1997,2000];

print"Value available at index 2 : "

printlist[2]

list[2]=2001;

list1[0]: physics

list2[1:5]: [2, 3, 4, 5]

#!/usr/bin/python

list1 =['physics','chemistry',1997,2000];

list2 =[1,2,3,4,5,6,7];

print"list1[0]: ", list1[0]

print"list2[1:5]: ", list2[1:5]

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5];

list3 = ["a", "b", "c", "d"]

Note − append() method is discussed in subsequent section.
When the above code is executed, it produces the following result −

Delete List Elements

To remove a list element, you can use either the del statement if you know exactly which

element(s) you are deleting or the remove() method if you do not know. For example −

When the above code is executed, it produces following result −

Note − remove() method is discussed in subsequent section.
Basic List Operations

Lists respond to the + and * operators much like strings; they mean concatenation and repetition

here too, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings in the prior

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they do for

strings.

Assuming following input −
L = ['spam', 'Spam', 'SPAM!']

Python Expression Results Description

L[2] SPAM! Offsets start at zero

L[-2] Spam Negative: count from the right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

Built-in List Functions & Methods

Python includes the following list functions −

['physics', 'chemistry', 1997, 2000]

After deleting value at index 2 :

['physics', 'chemistry', 2000]

#!/usr/bin/python

list1 =['physics','chemistry',1997,2000];

print list1

del list1[2];

print"After deleting value at index 2 : "

print list1

Value available at index 2 :

1997

New value available at index 2 :

2001

print"New value available at index 2 : "

printlist[2]

Sr.No. Function with Description

1 cmp(list1, list2)

Compares elements of both lists.

2 len(list)

Gives the total length of the list.

3 max(list)

Returns item from the list with max value.

4 min(list)

Returns item from the list with min value.

5 list(seq)

Converts a tuple into list.

Python includes following list methods

Sr.No. Methods with Description

1 list.append(obj)

Appends object obj to list

2 list.count(obj)

Returns count of how many times obj occurs in list

3 list.extend(seq)

Appends the contents of seq to list

4 list.index(obj)

Returns the lowest index in list that obj appears

5 list.insert(index, obj)

Inserts object obj into list at offset index

6 list.pop(obj=list[-1])

Removes and returns last object or obj from list

7 list.remove(obj)

Removes object obj from list

8 list.reverse()

Reverses objects of list in place

9 list.sort([func])

Sorts objects of list, use compare func if given

Topic 6:Tuples

Possible Question: ExplainTuples?

Possible Marks: 5 or 10 Marks

Outcomes:

A tuple is a collection of objects which ordered and immutable. Tuples are sequences,

just like lists. The differences between tuples and lists are, the tuples cannot be changed unlike

lists and tuples use parentheses, whereas lists use square brackets.

https://www.tutorialspoint.com/python/list_cmp.htm
https://www.tutorialspoint.com/python/list_len.htm
https://www.tutorialspoint.com/python/list_max.htm
https://www.tutorialspoint.com/python/list_min.htm
https://www.tutorialspoint.com/python/list_list.htm
https://www.tutorialspoint.com/python/list_append.htm
https://www.tutorialspoint.com/python/list_count.htm
https://www.tutorialspoint.com/python/list_extend.htm
https://www.tutorialspoint.com/python/list_index.htm
https://www.tutorialspoint.com/python/list_insert.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_remove.htm
https://www.tutorialspoint.com/python/list_reverse.htm
https://www.tutorialspoint.com/python/list_sort.htm

Creating a tuple is as simple as putting different comma-separated values. Optionally you can

put these comma-separated values between parentheses also. For example −

The empty tuple is written as two parentheses containing nothing −
 tup1 = ();

To write a tuple containing a single value you have to include a comma, even though there is

only one value −

 tup1 = (50,);

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so on.

Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along with the index or indices

to obtain value available at that index. For example −

When the above code is executed, it produces the following result −

Updating Tuples

Tuples are immutable which means you cannot update or change the values of tuple

elements. You are able to take portions of existing tuples to create new tuples as the following

example demonstrates −

When the above code is executed, it produces the following result −
 (12, 34.56, 'abc', 'xyz')

Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of course, nothing wrong with

putting together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement. For example −

This produces the following result. Note an exception raised, this is because after del tup tuple
does not exist any more −

('physics', 'chemistry', 1997, 2000)

After deleting tup :

#!/usr/bin/python

tup =('physics','chemistry',1997,2000);

print tup;

del tup;

print"After deleting tup : ";

print tup;

#!/usr/bin/python

tup1 =(12,34.56);

tup2 =('abc','xyz');

Following action is not valid for tuples

tup1[0] = 100;

So let's create a new tuple as follows

tup3 = tup1 + tup2;

print tup3;

tup1[0]: physics

tup2[1:5]: [2, 3, 4, 5]

#!/usr/bin/python

tup1 =('physics','chemistry',1997,2000);

tup2 =(1,2,3,4,5,6,7);

print"tup1[0]: ", tup1[0];

print"tup2[1:5]: ", tup2[1:5];

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5);

tup3 = "a", "b", "c", "d";

Basic Tuples Operations

Tuples respond to the + and * operators much like strings; they mean concatenation and

repetition here too, except that the result is a new tuple, not a string.

In fact, tuples respond to all of the general sequence operations we used on strings in the prior

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes

Because tuples are sequences, indexing and slicing work the same way for tuples as they do

for strings. Assuming following input −

Python Expression Results Description

L[2] 'SPAM!' Offsets start at zero

L[-2] 'Spam' Negative: count from the right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

No Enclosing Delimiters

Any set of multiple objects, comma-separated, written without identifying symbols, i.e.,

brackets for lists, parentheses for tuples, etc., default to tuples, as indicated in these short

examples −

When the above code is executed, it produces the following result −

Built-in Tuple Functions

Python includes the following tuple functions −

Sr.No. Function with Description

1 cmp(tuple1, tuple2)

Compares elements of both tuples.

2 len(tuple)

Gives the total length of the tuple.

abc -4.24e+93 (18+6.6j) xyz

Value of x , y : 1 2

#!/usr/bin/python

print'abc',-4.24e93,18+6.6j,'xyz';

x, y =1,2;

print"Value of x , y : ",x,y;

L =('spam','Spam','SPAM!')

Traceback (most recent call last):

File "test.py", line 9, in <module>

print tup;

NameError: name 'tup' is not defined

https://www.tutorialspoint.com/python/tuple_cmp.htm
https://www.tutorialspoint.com/python/tuple_len.htm

3 max(tuple)

Returns item from the tuple with max value.

4 min(tuple)

Returns item from the tuple with min value.

5 tuple(seq)

Converts a list into tuple.

Topic7:Dictionaries

Possible Question: Explain Dictionaries?

Possible Marks: 5 or 10 Marks

Outcomes:

Each key is separated from its value by a colon (:), the items are separated by commas, and the

whole thing is enclosed in curly braces. An empty dictionary without any items is written with

just two curly braces, like this: {}.

Keys are unique within a dictionary while values may not be. The values of a dictionary can

be of any type, but the keys must be of an immutable data type such as strings, numbers, or

tuples.

Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square brackets along with the key to

obtain its value. Following is a simple example −

When the above code is executed, it produces the following result −

If we attempt to access a data item with a key, which is not part of the dictionary, we get an
error as follows −

When the above code is executed, it produces the following result −

Updating Dictionary

You can update a dictionary by adding a new entry or a key-value pair, modifying an existing

entry, or deleting an existing entry as shown below in the simple example −

#!/usr/bin/python

dict={'Name':'Zara','Age':7,'Class':'First'}

dict['Age']=8;# update existing entry

dict['School']="DPS School";# Add new entry

print"dict['Age']: ",dict['Age']

dict['Alice']:

Traceback (most recent call last):

File "test.py", line 4, in <module>

print "dict['Alice']: ", dict['Alice'];

KeyError: 'Alice'

#!/usr/bin/python

dict={'Name':'Zara','Age':7,'Class':'First'}

print"dict['Alice']: ",dict['Alice']

dict['Name']: Zara

dict['Age']: 7

#!/usr/bin/python

dict={'Name':'Zara','Age':7,'Class':'First'}

print"dict['Name']: ",dict['Name']

print"dict['Age']: ",dict['Age']

https://www.tutorialspoint.com/python/tuple_max.htm
https://www.tutorialspoint.com/python/tuple_min.htm
https://www.tutorialspoint.com/python/tuple_tuple.htm

When the above code is executed, it produces the following result −

Delete Dictionary Elements

You can either remove individual dictionary elements or clear the entire contents of a

dictionary. You can also delete entire dictionary in a single operation.

To explicitly remove an entire dictionary, just use the del statement. Following is a simple

example −

This produces the following result. Note that an exception is raised because after del

dict dictionary does not exist any more −

Note − del() method is discussed in subsequent section.

Properties of Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, either

standard objects or user-defined objects. However, same is not true for the keys.

There are two important points to remember about dictionary keys −

(a) More than one entry per key not allowed. Which means no duplicate key is allowed. When

duplicate keys encountered during assignment, the last assignment wins. For example −

When the above code is executed, it produces the following result −
 dict['Name']: Manni

(b) Keys must be immutable. Which means you can use strings, numbers or tuples as dictionary

keys but something like ['key'] is not allowed. Following is a simple example −

When the above code is executed, it produces the following result −

Built-in Dictionary Functions & Methods

Python includes the following dictionary functions −

Sr.No. Function with Description

Traceback (most recent call last):

File "test.py", line 3, in <module>

dict = {['Name']: 'Zara', 'Age': 7};

TypeError: unhashable type: 'list'

#!/usr/bin/python

dict={['Name']:'Zara','Age':7}

print"dict['Name']: ",dict['Name']

#!/usr/bin/python

dict={'Name':'Zara','Age':7,'Name':'Manni'}

print"dict['Name']: ",dict['Name']

dict['Age']:

Traceback (most recent call last):

File "test.py", line 8, in <module>

print "dict['Age']: ", dict['Age'];

TypeError: 'type' object is unsubscriptable

#!/usr/bin/python

dict={'Name':'Zara','Age':7,'Class':'First'}

deldict['Name'];# remove entry with key 'Name'

dict.clear();# remove all entries in dict

deldict;# delete entire dictionary

print"dict['Age']: ",dict['Age']

print"dict['School']: ",dict['School']

dict['Age']: 8

dict['School']: DPS School

print"dict['School']: ",dict['School']

1 cmp(dict1, dict2)

Compares elements of both dict.

2 len(dict)

Gives the total length of the dictionary. This would be equal to the number of items in the

dictionary.

3 str(dict)

Produces a printable string representation of a dictionary

4 type(variable)

Returns the type of the passed variable. If passed variable is dictionary, then it would

return a dictionary type.

Python includes following dictionary methods −

Sr.No. Methods with Description

1 dict.clear()

Removes all elements of dictionary dict

2 dict.copy()

Returns a shallow copy of dictionary dict

3 dict.fromkeys()

Create a new dictionary with keys from seq and values set to value.

4 dict.get(key, default=None)

For key key, returns value or default if key not in dictionary

5 dict.has_key(key)

Returns true if key in dictionary dict, false otherwise

6 dict.items()

Returns a list of dict's (key, value) tuple pairs

7 dict.keys()

Returns list of dictionary dict's keys

8 dict.setdefault(key, default=None)

Similar to get(), but will set dict[key]=default if key is not already in dict

9 dict.update(dict2)

Adds dictionary dict2's key-values pairs to dict

10 dict.values()

Returns list of dictionary dict's values

Topic 8:Sets

Possible Question: ExplainSets?

Possible Marks: 5 or 10 Marks

Outcomes:

Sets are used to store multiple items in a single variable.

Set is one of 4 built-in data types in Python used to store collections of data, the other 3

are List, Tuple, and Dictionary, all with different qualities and usage.

https://www.tutorialspoint.com/python/dictionary_cmp.htm
https://www.tutorialspoint.com/python/dictionary_len.htm
https://www.tutorialspoint.com/python/dictionary_str.htm
https://www.tutorialspoint.com/python/dictionary_type.htm
https://www.tutorialspoint.com/python/dictionary_clear.htm
https://www.tutorialspoint.com/python/dictionary_copy.htm
https://www.tutorialspoint.com/python/dictionary_fromkeys.htm
https://www.tutorialspoint.com/python/dictionary_get.htm
https://www.tutorialspoint.com/python/dictionary_has_key.htm
https://www.tutorialspoint.com/python/dictionary_items.htm
https://www.tutorialspoint.com/python/dictionary_keys.htm
https://www.tutorialspoint.com/python/dictionary_setdefault.htm
https://www.tutorialspoint.com/python/dictionary_update.htm
https://www.tutorialspoint.com/python/dictionary_values.htm
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_dictionaries.asp

A set is a collection which is unordered, unchangeable*, and unindexed.

Sets are written with curly brackets.

 Create a Set:

thisset = {"apple", "banana", "cherry"}

print(thisset)

Set Items

Set items are unordered, unchangeable, and do not allow duplicate values.

Unordered

Unordered means that the items in a set do not have a defined order.

Set items can appear in a different order every time you use them, and cannot be referred to by

index or key.

Unchangeable

Set items are unchangeable, meaning that we cannot change the items after the set has

been created.

Duplicates Not Allowed

Sets cannot have two items with the same value.

 Duplicate values will be ignored:

thisset = {"apple", "banana", "cherry", "apple"}

print(thisset)

Get the Length of a Set

To determine how many items a set has, use the len() function.

thisset = {"apple", "banana", "cherry"}

print(len(thisset))

Set Items - Data Types

Set items can be of any data type:

set1 = {"apple", "banana", "cherry"}

set2 = {1, 5, 7, 9, 3}

set3 = {True, False, False}

A set can contain different data types:

set1 = {"abc", 34, True, 40, "male"}

type()

From Python's perspective, sets are defined as objects with the data type 'set':

myset = {"apple", "banana", "cherry"}

print(type(myset))

The set() Constructor

It is also possible to use the set() constructor to make a set.

thisset = set(("apple", "banana", "cherry")) # note the double round-brackets

print(thisset)

Python Collections (Arrays)

There are four collection data types in the Python programming language:

 List is a collection which is ordered and changeable. Allows duplicate members.

 Tuple is a collection which is ordered and unchangeable. Allows duplicate members.

 Set is a collection which is unordered, unchangeable*, and unindexed. No duplicate

members.

Example

Using the set() constructor to make a set:

<class 'set'>

Example

What is the data type of a set?

Example

A set with strings, integers and boolean values:

Example

String, int and boolean data types:

Example

Get the number of items in a set:

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_tuples.asp

 Dictionary is a collection which is ordered** and changeable. No duplicate members.

Topic 9:Comparison

Possible Question: Explain Comparison?

Possible Marks: 5 or 10 Marks

Outcomes:

These operators compare the values on either sides of them and decide the relation

among them. They are also called Relational operators.

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

== If the values of two operands are equal, then the condition becomes true. (a == b)

is not

true.

!= If values of two operands are not equal, then condition becomes true. (a != b) is

true.

<> If values of two operands are not equal, then condition becomes true. (a <> b)

is true.

This is

similar to

!=

operator.

> If the value of left operand is greater than the value of right operand, then

condition becomes true.

(a > b) is

not true.

< If the value of left operand is less than the value of right operand, then

condition becomes true.

(a < b) is

true.

>= If the value of left operand is greater than or equal to the value of right

operand, then condition becomes true.

(a >= b)

is not

true.

<= If the value of left operand is less than or equal to the value of right

operand, then condition becomes true.

(a <= b)

is true.

Example

Assume variable a holds 10 and variable b holds 20, then −

#!/usr/bin/python

a =21

b =10

c =0

if(a== b):

print"Line 1 - a is equal to b"

else:

print"Line 1 - a is not equal to b"

if(a!= b):

print"Line 2 - a is not equal to b"

else:

https://www.w3schools.com/python/python_dictionaries.asp

When you execute the above program it produces the following result −

Model Questions

Objective

1. Who developed Python Programming Language?

a) Wick van Rossum b) Rasmus Lerdorf c) Guido van Rossumd) NieneStom

Answer: c

2. Which type of Programming does Python support?

a) object-oriented programming b) structured programming

c) functional programming d) all of the mentioned

Answer: d

3. Is Python case sensitive when dealing with identifiers?

a) no b) yes c) machine dependent d) none of the mentioned

Answer: a

4. Which of the following is the correct extension of the Python file?

a) .python b) .pl c) .py d) .p

Answer: c

5. Is Python code compiled or interpreted?

a) Python code is both compiled and interpreted

Line 1 - a is not equal to b

Line 2 - a is not equal to b

Line 3 - a is not equal to b

Line 4 - a is not less than b

Line 5 - a is greater than b

Line 6 - a is either less than or equal to b

Line 7 - b is either greater than or equal to b

print"Line 2 - a is equal to b"

if(a<> b):

print"Line 3 - a is not equal to b"

else:

print"Line 3 - a is equal to b"

if(a< b):

print"Line 4 - a is less than b"

else:

print"Line 4 - a is not less than b"

if(a> b):

print"Line 5 - a is greater than b"

else:

print"Line 5 - a is not greater than b"

a =5;

b =20;

if(a<= b):

print"Line 6 - a is either less than or equal to b"

else:

print"Line 6 - a is neither less than nor equal to b"

if(b>= a):

print"Line 7 - b is either greater than or equal to b"

else:

print"Line 7 - b is neither greater than nor equal to b"

b) Python code is neither compiled nor interpreted

c) Python code is only compiled

d) Python code is only interpreted

Answer: b

6. All keywords in Python are in

a) Capitalized b) lower case c) UPPER CASEd) None of the mentioned

Answer: d

7. What will be the value of the following Python expression?

 4 + 3 % 5

a) 7 b) 2 c) 4 d) 1

Answer: a

8. Which of the following is used to define a block of code in Python language?

a) Indentation b) Key c) Brackets d) All of the mentioned

Answer: a

9. Which keyword is used for function in Python language?

a) Function b) Def c) Fun d) Define

Answer: b

10. Which of the following character is used to give single-line comments in Python?

a) // b) # c) ! d) /*

Answer: b

Subjective

1. Explain overview of Python?

2. Write short notes on Numbers?

3. Explain about Strings?

4. Discuss about Variables?

5. Explain about Lists?

6. Write short notes on Tuples?

7. Discuss about Dictionaries?

8. Explain about Sets?

9. Explain about Comparison operator?

Unit – I – END

Signature of the staff

with date

Sri Ganesh College of Arts & Science – Salem- 14.
Department of Computer Science & Applications

Study Material – 2022(Odd Semester)

Sub: Open source computing Paper Code: 21PCS Class: II M.Sc CS

Staff I/c: K. Aravindhan M.Sc., Date: Head:

UNIT – II

Code Structures: if, elif, and else – Repeat with while – Iterate with for – Comprehensions –

Functions – Generators – Decorators – Namespaces and Scope – Handle Errors with try and

except – User Exceptions. Modules, Packages, and Programs: Standalone Programs –

Command-Line Arguments – Modules and the import Statement – The Python Standard

Library. Objects and Classes: Define a Class with class – Inheritance – Override a Method –

Add a Method – Get Help from Parent with super – In self Defense – Get and Set Attribute

Values with Properties – Name Mangling for Privacy – Method Types – Duck Typing – Special

Methods – Composition

Topic 1: Code Structures

Possible Question: Explain detail about Code Structures of if ,elif and else?

Possible Marks: 5 or 10 Marks

Outcomes:

Decision making is required when we want to execute a code only if a certain condition is

satisfied.

The if…elif…else statement is used in Python for decision making.

Python if Statement Syntax

Here, the program evaluates the test expression and will execute statement(s) only if the test

expression is True.

If the test expression is False, the statement(s) is not executed.

In Python, the body of the if statement is indicated by the indentation. The body starts with an

indentation and the first unindented line marks the end.

Python interprets non-zero values as True. None and 0 are interpreted as False.

Python if Statement Flowchart

Flowchart of if in Python programming

Example: Python if Statement

If the number is positive, we print an appropriate message

num = 3

if num> 0:

print(num, "is a positive number.")

print("This is always printed.")

if test expression:

statement(s)

When you run the program, the output will be:

In the above example, num> 0 is the test expression.

The body of if is executed only if this evaluates to True.

When the variable num is equal to 3, test expression is true and statements inside the body

of if are executed.

If the variable num is equal to -1, test expression is false and statements inside the body of if are

skipped.

The print() statement falls outside of the if block (unindented). Hence, it is executed regardless

of the test expression.

Python if...else Statement

The if..else statement evaluates test expression and will execute the body of if only when the

test condition is True.

If the condition is False, the body of else is executed. Indentation is used to separate the blocks.

Python if..else Flowchart

Flowchart of if...else statement in Python

num = -1

if num> 0:

print(num, "is a positive number.")

print("This is also always printed.")

Syntax of if...else

if test expression:

Body of if

else:

Body of else

Example of if...else

Program checks if the number is positive or negative

And displays an appropriate message

Output

In the above example, when num is equal to 3, the test expression is true and the body of if is

executed and the body of else is skipped.

If num is equal to -5, the test expression is false and the body of else is executed and the body

of if is skipped.

If num is equal to 0, the test expression is true and body of if is executed and body of else is

skipped.

Python if...elif...else Statement

num = 3

Try these two variations as well.

num = -5

num = 0

if num>= 0:

print("Positive or Zero")

else:

print("Negative number")

Syntax of if...elif...else

if test expression:

Body of if

elif test expression:

The elif is short for else if. It allows us to check for multiple expressions.

If the condition for if is False, it checks the condition of the next elif block and so on.

If all the conditions are False, the body of else is executed.

Only one block among the several if...elif...else blocks is executed according to the condition.

The if block can have only one else block. But it can have multiple elif blocks.

Flowchart of if...elif...else

Example of if...elif...else

'''In this program,

we check if the number is positive or

negative or zero and

display an appropriate message'''

Body of elif

else:

Body of else

num = 3.4

Try these two variations as well:

num = 0

num = -4.5

if num> 0:

When variable num is positive, Positive number is printed.

If num is equal to 0, Zero is printed.

If num is negative, Negative number is printed.

Python Nested if statements

We can have a if...elif...else statement inside another if...elif...else statement. This is called

nesting in computer programming.

Any number of these statements can be nested inside one another. Indentation is the only way

to figure out the level of nesting. They can get confusing, so they must be avoided unless

necessary.

Python Nested if Example

'''In this program, we input a number

check if the number is positive or

negative or zero and display

an appropriate message

This time we use nested if statement'''

Output 1

Enter a number: 5

Positive number

Output 2

Enter a number: -1

Negative number

Output 3

Enter a number: 0

print("Positive number")

elifnum == 0:

print("Zero")

else:

print("Negative number")

num = float(input("Enter a number: "))

if num>= 0:

if num == 0:

print("Zero")

else:

print("Positive number")

else:

print("Negative number")

test_expression

Zero

Topic 2: Repeat with while

Possible Question: Explain detail about Repeat with while statement?

Possible Marks: 5 or 10 Marks

Outcomes:

 The while loop in Python is used to iterate over a block of code as long as the test expression

 In the while loop, test expression is checked first. The body of the loop is entered only if

 the evaluates to True. After one iteration, the test expression is checked again.

This process continues until the test_expression evaluates to False .

In Python, the body of the while loop is determined through indentation.

The body starts with indentation and the first unindented line marks the end.

Python interprets any non-zero value as True. None and 0 are interpreted as False.

Flowchart of while Loop

(condition) is true.

We generally use this loop when we don't know the number of times to iterate beforehand.

Syntax of while Loop in Python

while test_expression:

Body of while

True

 Example: Python while Loop

 When you run the program, the output will be:

 In the above program, the test expression will be as long as our counter variable i is less

than or equal to n (10 in our program).

We need to increase the value of the counter variable in the body of the loop. This is very

important (and mostly forgotten). Failing to do so will result in an infinite loop (never-ending

loop).

Finally, the result is displayed.

While loop with else

Same as with for loops, while loops can also have an optional else block.

The else part is executed if the condition in the while loop evaluates to False.

The while loop can be terminated with a break statement. In such cases, the else part is ignored.

Hence, a while loop's else part runs if no break occurs and the condition is false.

Here is an example to illustrate this.

'''Example to illustrate

the use of else statement

with the while loop'''

Program to add natural

numbers up to

sum = 1+2+3+...+n

To take input from the user,

n = int(input("Enter n: "))

n = 10

initialize sum and counter

sum = 0

i = 1

whilei<= n:

sum = sum + i

i = i+1# update counter

print the sum

print("The sum is", sum)

Enter n: 10

The sum is 55

https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/break-continue

Here, we use a counter variable to print the string Inside loop three times.

On the fourth iteration, the condition in while becomes False. Hence, the else part is executed.

Topic 3: Iterate with for

Possible Question: Explain Iterate with for statement?

Possible Marks: 5 or 10 Marks

Outcomes:

 The for loop in Python is used to iterate over a sequence (list, tuple, string) or other iterable

 objects. Iterating over a sequence is called traversal.

 Syntax of for Loop

 Flowchart of for Loop

Output

counter = 0

while counter <3:

print("Inside loop")

counter = counter + 1

else:

print("Inside else")
Run Code

Inside loop

Inside loop

Inside loop

Inside else

forvalin sequence:

loop body

Here, val is the variable that takes the value of the item inside the sequence on each iteration.

Loop continues until we reach the last item in the sequence. The body of for loop is separated

from the rest of the code using indentation.

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string
https://www.programiz.com/python-programming/online-compiler

 Example: Python for Loop

 When you run the program, the output will be:

Program to find the sum of all numbers stored in a list

List of numbers

numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

variable to store the sum

sum = 0

iterate over the list

forvalin numbers:

sum = sum+val

print("The sum is", sum)

Run Code

The sum is 48

The range() function

We can generate a sequence of numbers using

numbers from 0 to 9 (10 numbers).

function. will generate

We can also define the start, stop and step size as range(start, stop,step_size). step_size defaults

to 1 if not provided.

range(10) range()

https://www.programiz.com/python-programming/online-compiler

len()

The range object is "lazy" in a sense because it doesn't generate every number that it "contains"

when we create it. However, it is not an iterator since it

supports in, len and getitem operations.

This function does not store all the values in memory; it would be inefficient. So it remembers

the start, stop, step size and generates the next number on the go.

To force this function to output all the items, we can use the function list().

The following example will clarify this.

print(range(10))

print(list(range(10)))

print(list(range(2, 8)))

print(list(range(2, 20, 3)))

Run Code

Output

range(0, 10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[2, 3, 4, 5, 6, 7]

[2, 5, 8, 11, 14, 17]

 We can use the function in loops to iterate through a sequence of numbers. It can

 be combined with the function to iterate through a sequence using indexing. Here is an

 example.

 Output

 for loop with else

Program to iterate through a list using indexing

genre = ['pop', 'rock', 'jazz']

iterate over the list using index

foriin range(len(genre)):

print("I like", genre[i])

Run Code

for range()

I like pop

I like rock

I like jazz

https://www.programiz.com/python-programming/online-compiler
https://www.programiz.com/python-programming/online-compiler

 Here, the for loop prints items of the list until the loop exhausts. When the for loop exhausts,

it executes the block of code in the else and prints No items left.

This for...else statement can be used with the break keyword to run the else block only when

the break keyword was not executed. Let's take an

example:

program to display student's marks from record

student_name = 'Soyuj'

marks = {'James': 90, 'Jules': 55, 'Arthur': 77}

for student in marks:

if student == student_name:

print(marks[student])

break

else:

print('No entry with that name found.')

 Output

Topic 4: Comprehensions

Possible Question: Describe about Comprehensions?

Possible Marks: 5 or 10 Marks

When you run the program, the output will be:

digits = [0, 1, 5]

foriin digits:

print(i)

else:

print("No items left.")

Here is an example to illustrate this.

A for loop can have an optional else block as well. The else part is executed if the items in the

sequence used in for loop exhausts.

The break keyword can be used to stop a for loop. In such cases, the else part is ignored.

Hence, a for loop's else part runs if no break occurs.

0

1

5

No items left.

No entry with that name found.

https://www.programiz.com/python-programming/break-continue

Outcomes:

We can create new sequences using a given python sequence. This is called comprehension.

It basically a way of writing a concise code block to generate a sequence which can be a list,

dictionary, set or a generator by using another sequence. It may involve multiple steps of

conversion between different types of sequences.

List Comprehension

In this method, we create a new list by manipulating the values of an existing list. In the below

example we take a list and create a new list by adding 3 to each element of the given list.

Example

Output

Running the above code gives us the following result −

Dictionary Comprehensions

Similar to the above we can take in a list and create a dictionary from it.

Example

Output

Running the above code gives us the following result −

We can also take in two lists and create a new dictionary out of it.

Example

Output

Running the above code gives us the following result −

Set Comprehension

We can take a similar approach as above and create new set from existing set or list. In the

below example we create a new set by adding 3 to the elements of the existing set.

Example

given_set={x for x inrange(5)}

print(given_set)

[0, 1, 2, 3, 4]

['Mon', 'Tue', 'Wed', 'Thu', 'Fri']

{0: 'Mon', 1: 'Tue', 2: 'Wed', 3: 'Thu', 4: 'Fri'}

list1 =[x for x inrange(5)]

list2 =['Mon','Tue','Wed','Thu','Fri']

print(list1)

print(list2)

new_dict={key:valuefor(key,value)in zip(list1, list2)}

print(new_dict)

[0, 1, 2, 3, 4]

{0: 3, 1: 4, 2: 5, 3: 6, 4: 7}

given_list=[x for x inrange(5)]

print(given_list)

#new_list = [var+3 for var in given_list]

new_dict={var:var+3forvaringiven_list}

print(new_dict)

[0, 1, 2, 3, 4]

[3, 4, 5, 6, 7]

given_list=[x for x inrange(5)]

print(given_list)

new_list=[var+3forvaringiven_list]

print(new_list)

Output

Running the above code gives us the following result −

Generator comprehension

New generators can be created from the existing list. These generators are memory efficient

as they allocate memory as the items are generated instead of allocating it at the beginning.

Example

Output

Running the above code gives us the following result −

Topic 5: Functions

Possible Question: Describe about Functions?

Possible Marks: 5 or 10 Marks

Outcomes:

A function is a block of organized, reusable code that is used to perform a single, related

action. Functions provide better modularity for your application and a high degree of code

reusing.

As you already know, Python gives you many built-in functions like print(), etc. but you can

also create your own functions. These functions are called user-defined functions.

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to

define a function in Python.

 Function blocks begin with the keyword def followed by the function name and

parentheses (()).

 Any input parameters or arguments should be placed within these parentheses. You

can also define parameters inside these parentheses.

 The first statement of a function can be an optional statement - the documentation

string of the function or docstring.

 The code block within every function starts with a colon (:) and is indented.

 The statement return [expression] exits a function, optionally passing back an

expression to the caller. A return statement with no arguments is the same as return

None.

Syntax

[0, 1, 2, 3, 4]

3 4 5 6 7

given_list=[x for x inrange(5)]

print(given_list)

new_set=(var+3forvaringiven_list)

for var1 innew_set:

print(var1,end=" ")

{0, 1, 2, 3, 4}

{3, 4, 5, 6, 7}

new_set={var+3forvaringiven_set}

print(new_set)

def functionname(parameters):

"function_docstring"

function_suite

return [expression]

By default, parameters have a positional behavior and you need to inform them in the same

order that they were defined.

Example

The following function takes a string as input parameter and prints it on standard screen.

def printme(str):

"This prints a passed string into this function"

print str

return

Calling a Function

Defining a function only gives it a name, specifies the parameters that are to be included in

the function and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it from

another function or directly from the Python prompt. Following is the example to call

printme() function −

#!/usr/bin/python

Function definition is here

def printme(str):

"This prints a passed string into this function"

print str

return;

Now you can call printme function

printme("I'm first call to user defined function!")

printme("Again second call to the same function")

When the above code is executed, it produces the following result −

I'm first call to user defined function!

Again second call to the same function

Pass by reference vs value

All parameters (arguments) in the Python language are passed by reference. It means if you

change what a parameter refers to within a function, the change also reflects back in the

calling function. For example −

#!/usr/bin/python

Function definition is here

def changeme(mylist):

"This changes a passed list into this function"

mylist.append([1,2,3,4]);

print "Values inside the function: ", mylist

return

Now you can call changeme function

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

Here, we are maintaining reference of the passed object and appending values in the same

object. So, this would produce the following result −

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]

Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

There is one more example where argument is being passed by reference and the reference is

being overwritten inside the called function.

#!/usr/bin/python

Function definition is here

def changeme(mylist):

"This changes a passed list into this function"

mylist = [1,2,3,4]; # This would assig new reference in mylist

print "Values inside the function: ", mylist

return

Now you can call changeme function

mylist = [10,20,30];

changeme(mylist);

print "Values outside the function: ", mylist

The parameter mylist is local to the function changeme. Changing mylist within the function

does not affect mylist. The function accomplishes nothing and finally this would produce the

following result −

Values inside the function: [1, 2, 3, 4]

Values outside the function: [10, 20, 30]

Function Arguments

You can call a function by using the following types of formal arguments −

 Required arguments

 Keyword arguments

 Default arguments

 Variable-length arguments

Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here,

the number of arguments in the function call should match exactly with the function

definition.

To call the function printme(), you definitely need to pass one argument, otherwise it gives a

syntax error as follows −

#!/usr/bin/python

Function definition is here

def printme(str):

"This prints a passed string into this function"

print str

return;

Now you can call printme function

printme()

When the above code is executed, it produces the following result −

Traceback (most recent call last):

File "test.py", line 11, in <module>

printme();

TypeError: printme() takes exactly 1 argument (0 given)

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a

function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python interpreter

is able to use the keywords provided to match the values with parameters. You can also make

keyword calls to the printme() function in the following ways −

#!/usr/bin/python

Function definition is here

def printme(str):

"This prints a passed string into this function"

print str

return;

Now you can call printme function

printme(str = "My string")

When the above code is executed, it produces the following result −

My string

The following example gives more clear picture. Note that the order of parameters does not

matter.

#!/usr/bin/python

Function definition is here

def printinfo(name, age):

"This prints a passed info into this function"

print "Name: ", name

print "Age ", age

return;

Now you can call printinfo function

printinfo(age=50, name="miki")

When the above code is executed, it produces the following result −

Name: miki

Age 50

Default arguments

A default argument is an argument that assumes a default value if a value is not provided in

the function call for that argument. The following example gives an idea on default

arguments, it prints default age if it is not passed −

#!/usr/bin/python

Function definition is here

def printinfo(name, age = 35):

"This prints a passed info into this function"

print "Name: ", name

print "Age ", age

return;

Now you can call printinfo function

printinfo(age=50, name="miki")

printinfo(name="miki")

When the above code is executed, it produces the following result −

Name: miki

Age 50

Name: miki

Age 35

Variable-length arguments

You may need to process a function for more arguments than you specified while defining

the function. These arguments are called variable-length arguments and are not named in the

function definition, unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is this −

def functionname([formal_args,] *var_args_tuple):

"function_docstring"

function_suite

return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword

variable arguments. This tuple remains empty if no additional arguments are specified during

the function call. Following is a simple example −

#!/usr/bin/python

Function definition is here

def printinfo(arg1, *vartuple):

"This prints a variable passed arguments"

print "Output is: "

print arg1

for var in vartuple:

print var

return;

Now you can call printinfo function

printinfo(10)

printinfo(70, 60, 50)

When the above code is executed, it produces the following result −

Output is:

10

Output is:

70

60

50

The Anonymous Functions

These functions are called anonymous because they are not declared in the standard manner

by using the def keyword. You can use the lambda keyword to create small anonymous

functions.

 Lambda forms can take any number of arguments but return just one value in the form

of an expression. They cannot contain commands or multiple expressions.

 An anonymous function cannot be a direct call to print because lambda requires an

expression

 Lambda functions have their own local namespace and cannot access variables other

than those in their parameter list and those in the global namespace.

 Although it appears that lambda's are a one-line version of a function, they are not

equivalent to inline statements in C or C++, whose purpose is by passing function

stack allocation during invocation for performance reasons.

Syntax

The syntax of lambda functions contains only a single statement, which is as follows −

lambda [arg1 [,arg2,. ... argn]]:expression

Following is the example to show how lambda form of function works −

#!/usr/bin/python

Function definition is here

sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function

print "Value of total : ", sum(10, 20)

print "Value of total : ", sum(20, 20)

When the above code is executed, it produces the following result −

Value of total : 30

Value of total : 40

The return Statement

The statement return [expression] exits a function, optionally passing back an expression to

the caller. A return statement with no arguments is the same as return None.

All the above examples are not returning any value. You can return a value from a function as

follows −

#!/usr/bin/python

Function definition is here

def sum(arg1, arg2):

Add both the parameters and return them."

total = arg1 + arg2

print "Inside the function : ", total

return total;

Now you can call sum function

total = sum(10, 20);

print "Outside the function : ", total

When the above code is executed, it produces the following result −

Inside the function : 30

Outside the function : 30

Scope of Variables

All variables in a program may not be accessible at all locations in that program. This

depends on where you have declared a variable.

The scope of a variable determines the portion of the program where you can access a

particular identifier. There are two basic scopes of variables in Python −

 Global variables

 Local variables

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those defined

outside have a global scope.

This means that local variables can be accessed only inside the function in which they are

declared, whereas global variables can be accessed throughout the program body by all

functions. When you call a function, the variables declared inside it are brought into scope.

Following is a simple example −

#!/usr/bin/python

total = 0; # This is global variable.

Function definition is here

def sum(arg1, arg2):

Add both the parameters and return them."

total = arg1 + arg2; # Here total is local variable.

print "Inside the function local total : ", total

return total;

Now you can call sum function

sum(10, 20);

print "Outside the function global total : ", total

When the above code is executed, it produces the following result −

Inside the function local total : 30

Outside the function global total : 0

Topic 6:Generators

Possible Question: Explain in detail about Generators?

Possible Marks: 5 or 10 Marks

Outcomes:

Generators have been an important part of python ever since they were introduced with PEP

255.

Generator in python are special routine that can be used to control the iteration behaviour of a

loop. A generator is similar to a function returning an array. A generator has parameter, which

we can called and it generates a sequence of numbers. But unlike functions, which return a

whole array, a generator yields one value at a time which requires less memory.

Any python function with a keyword “yield” may be called as generator. A normal python

function starts execution from first line and continues until we got a return statement or an

exception or end of the function however, any of the local variables created during the function

scope are destroyed and not accessible further. While in case of generator when it encounters

a yield keyword the state of the function is frozen and all the variables are stored in memory

until the generator is called again.

We can used generator in accordance with an iterator or can be explicitly called using the

“next” keyword.

Generally generators in Python:

 Defined with the def keyword

 Use the yield keyword

 May contain several yield keywords.

 Returns an iterator.

Generators with Iterators

Output

Generator using next

We can think of generators as the one returning multiple items one by one instead of all at
once and the generator function is paused until the next item is requested.

Program to print square of numbers from 1 to n

Consider we want to calculate the square of number from 1 to n, where n is really big number,

such that creating a list of numbers up to ‘n’ would occupy the entire system memory space.

Without generator, our approach will be something like -

Above approach will consume lot of system memory. Better approach would be, is to iterate
over the numbers without ever creating the list of numbers so that the system memory isn’t

occupied. Here comes the use of generators.

Our generator program for the same would be -

So in above approach, when the for loop is first initialised the num_generator is called and the
value of n = 200000000000 is stored in memory and num=1 is initialised and is entered into

while loop which loops forever. Then the yield num is encountered, at this time the while loop

defnum_generator(n):

num=1

whileTrue:

yieldnum

ifnum== n:

return

else:

num+=1

foriinnum_generator(200000000000):

print(i*i)

>>> n=200000000000

>>>number_list=range(1, n+1)

>>>foriinnumber_list:

print(i*i)

defgenerator_thr_iter():

yield'xyz'

yield246

yield40.50

>>> g =generator_thr_iter()

>>>g. next ()

'xyz'

>>>g. next ()

246

>>>g. next ()

40.5

>>>g. next ()

Traceback(most recent call last):

File"<pyshell#39>", line 1,in<module>

g. next ()

StopIteration

xyz

246

40.5

defgenerator_thr_iter():

yield'xyz'

yield246

yield40.50

foriingenerator_thr_iter():

print(i)

is frozen and all the local variables are stored in memory. Since num=1, yield num is returned

to the for loop and is assigned to I, where 1(i*i) is printed and the next call to num_generator

is made.

Now the execution starts from the point where it has frozen previously, so it executes the line

num == n (1 == 200000000000), which is false so num +=1 is executed which comes to num

= 2 and the while loop is executed once again and the process continues.

Finally while loop is executed till n=200000000000, when 200000000000 is yielded then the

next line ‘num == n’(200000000000 == 200000000000) is executed, since it is true the return

statement is executed.

So when generator executes a return statement or encounters exception or reached end of the

generator the “StopIteration” exception is raised and the for loop iteration stops at the moment.

So above we are able to print square of number upto 200000000000 without ever creating a

big list of numbers which would be have occupied large system memory.

Consider above scenario, we could use generators in our daily programming practice to create

more efficient program.>

Topic 7: Decorators

Possible Question: Explain detail about Decorators?

Possible Marks: 5 or 10 Marks

Outcomes:

Python developers can extend and modify the behavior of a callable functions, methods or

classes without permanently modifying the callable itself by using decorators. In short we can

say they are callable objects which are used to modify functions or classes.

Function decorators are functions which accepts function references as arguments and adds a

wrapper around them and returns the function with the wrapper as a new function.

Let’s understand function decorator bye an example:

Code1

Above code is same as:

Code2

So from above, we can see a decorator is simply another function which takes a function as an
argument and returns one.

Decorators basically “decoratre” or “wrap” another function and let you execute code before

and after the wrapped function runs as explained in below example:

def func(arg):

return "value"

func = decorator(func)

@decorator

def func(arg):

return "value"

defour_decorator(func):

deffunction_wrapper(x):

print("Before calling "+func. name)

func(x)

print("After calling "+func. name)

returnfunction_wrapper

def foo(x):

print("Hi, foo has been called with "+ str(x))

Output

If you think above is little bit complex, let write the simplest possible decorator:

Above null_decorator is a callable(function), it takes another callable as its input and it returns

the same input callable without modifying it.

Let’s extend our above simplest decorator by decorating (or wrap) another function.

Above we have defined a greet function and then immediately decorated it by running it

through the null_decorator function.

Much simpler way to writing above python decorative program (instead of explicitly calling

null_decorator on greet and then reassigning the greet variable) is to use python @syntax for

decorating a function in one step:

print("We call foo before decoration:")

foo("Hi")

print("We now decorate foo with f:")

foo =our_decorator(foo)

print("We call foo after decoration:")

foo(90)

We call foo before decoration:

Hi, foo has been called with Hi

We now decorate foo with f:

We call foo after decoration:

Before calling foo

Hi, foo has been called with 90

After calling foo

def null_decorator(func):

return func

def null_decorator(func):

return func

def greet():

return "Hello, Python!"

greet = null_decorator(greet)

>>>greet()

'Hello, Python!'

@null_decorator

def greet():

return "Hello, Python!"

>>>greet()

 'Hello, Python!'

Topic 8:Namespaces and Scope

Possible Question: Explain detail about Namespaces and Scope?

Possible Marks: 5 or 10 Marks

Outcomes:

Variables are names (identifiers) that map to objects. A namespace is a dictionary of variable

names (keys) and their corresponding objects (values).

A Python statement can access variables in a local namespace and in the global namespace. If

a local and a global variable have the same name, the local variable shadows the global

variable.

Each function has its own local namespace. Class methods follow the same scoping rule as

ordinary functions.

Python makes educated guesses on whether variables are local or global. It assumes that any

variable assigned a value in a function is local.

Therefore, in order to assign a value to a global variable within a function, you must first use

the global statement.

The statement global VarName tells Python that VarName is a global variable. Python stops

searching the local namespace for the variable.

For example, we define a variable Money in the global namespace. Within the

function Money, we assign Money a value, therefore Python assumes Money as a local

variable. However, we accessed the value of the local variable Money before setting it, so an

UnboundLocalError is the result. Uncommenting the global statement fixes the problem.

Topic 9:Handle Errors with try and except

Possible Question: Explain Handle Errors with try and except?

Possible Marks: 5 or 10 Marks

Outcomes:

To use exception handling in python, we first need to catch the all except clauses.

Python provides, “try” and “except” keywords to catch exceptions. The “try” block code will

be executed statement by statement. However, if an exception occurs, the remaining “try” code

will not be executed and the except clause will be executed.

try:
some_statements_here

except:

exception_handling

#!/usr/bin/python

Money=2000

defAddMoney():

Uncomment the following line to fix the code:

global Money

Money=Money+1

printMoney

AddMoney()

printMoney

Let’s see above syntax with a very simple example −

Output

 Hello, World!

Above is a very simple example, let’s understand the above concept with another example −

Output

In the above program, the loops run until we get (as user input) an integer that has a valid

reciprocal. The code which causes an exception to raise is placed within the try block.

In case some exception occurs, it will be caught by the except block. We can test the above

program with different exception errors. Below are some of the common exception errors −

 IOError

Raised in case we cannot open the file.

 ImportError

Raised in case module is missing.

 ValueError

It happened whenever we pass the argument with the correct type but an

inappropriate value of a built-in operator or function.

 KeyboardInterrupt

Whenever the user hits the interrupt key (generally control-c)

 EOFError

Exception raised when the built-in functions hit an end-of-file condition (EOF)

without reading any data.

import sys

List=['abc',0,2,4]

for item inList:

try:

print("The List Item is", item)

r =1/int(item)

break

except:

print("Oops!",sys.exc_info()[0],"occured.")

print('\n')

print("Next Item from the List is: ")

print()

print("The reciprocal of",item,"is",r)

try:

print("Hello, World!")

except:

print("This is an error message!")

The List Item is abc

Oops! <class 'ValueError'>occured.

Next Item from the List is:

The List Item is 0

Oops! <class 'ZeroDivisionError'>occured.

Next Item from the List is:

The List Item is 2

The reciprocal of 2 is 0.5

Topic 10:User Exceptions

Possible Question: Describe about User Exceptions?

Possible Marks: 5 or 10 Marks

Outcomes:

An exception is an event, which occurs during the execution of a program that disrupts the

normal flow of the program's instructions. In general, when a Python script encounters a

situation that it cannot cope with, it raises an exception. An exception is a Python object that

represents an error.

When a Python script raises an exception, it must either handle the exception immediately

otherwise it terminates and quits.

Handling an exception

If you have some suspicious code that may raise an exception, you can defend your program

by placing the suspicious code in a try: block. After the try: block, include

an except: statement, followed by a block of code which handles the problem as elegantly as

possible.

Syntax

Here is simple syntax of try....except...else blocks −

Here are few important points about the above-mentioned syntax −

 A single try statement can have multiple except statements. This is useful when

the try block contains statements that may throw different types of exceptions.

 You can also provide a generic except clause, which handles any exception.

 After the except clause(s), you can include an else-clause. The code in the else-

block executes if the code in the try: block does not raise an exception.

 The else-block is a good place for code that does not need the try: block's

protection.

Example

This example opens a file, writes content in the, file and comes out gracefully because there is

no problem at all −

try:

You do your operations here;

......................

except ExceptionI:

If there is ExceptionI, then execute this block.

except ExceptionII:

If there is ExceptionII, then execute this block.

......................

else:

If there is no exception then execute this block.

#!/usr/bin/python

try:

fh=open("testfile","w")

fh.write("This is my test file for exception handling!!")

exceptIOError:

print"Error: can\'t find file or read data"

else:

This produces the following result −

 Written content in the file successfully

Example

This example tries to open a file where you do not have write permission, so it raises an

exception −

This produces the following result −

 Error: can't find file or read data

The except Clause with No Exceptions

You can also use the except statement with no exceptions defined as follows −

This kind of a try-except statement catches all the exceptions that occur. Using this kind of

try-except statement is not considered a good programming practice though, because it catches

all exceptions but does not make the programmer identify the root cause of the problem that

may occur.

The except Clause with Multiple Exceptions

You can also use the same except statement to handle multiple exceptions as follows −

The try-finally Clause

You can use a finally: block along with a try: block. The finally block is a place to put any

code that must execute, whether the try-block raised an exception or not. The syntax of the try-

finally statement is this −

print"Written content in the file successfully"

fh.close()

#!/usr/bin/python

try:

fh=open("testfile","r")

fh.write("This is my test file for exception handling!!")

exceptIOError:

print"Error: can\'t find file or read data"

else:

print"Written content in the file successfully"

try:

You do your operations here;

......................

except:

If there is any exception, then execute this block.

......................

else:

If there is no exception then execute this block.

try:

Youdo your operations here;

......................

except(Exception1[,Exception2[,...ExceptionN]]]):

If there is any exception from the given exception list,

then execute this block.

......................

else:

If there isno exception then execute this block.

try:

You cannot use else clause as well along with a finally clause.

Example

If you do not have permission to open the file in writing mode, then this will produce the

following result −

 Error: can't find file or read data

Same example can be written more cleanly as follows −

When an exception is thrown in the try block, the execution immediately passes to

the finally block. After all the statements in the finally block are executed, the exception is

raised again and is handled in the except statements if present in the next higher layer of the try-

except statement.

Argument of an Exception

An exception can have an argument, which is a value that gives additional information about

the problem. The contents of the argument vary by exception. You capture an exception's

argument by supplying a variable in the except clause as follows −

If you write the code to handle a single exception, you can have a variable follow the name of

the exception in the except statement. If you are trapping multiple exceptions, you can have a

variable follow the tuple of the exception.

This variable receives the value of the exception mostly containing the cause of the exception.

The variable can receive a single value or multiple values in the form of a tuple. This tuple

usually contains the error string, the error number, and an error location.

#!/usr/bin/python

try:

fh=open("testfile","w")

fh.write("This is my test file for exception handling!!")

finally:

print"Error: can\'t find file or read data"

Youdo your operations here;

......................

Due to any exception,this may be skipped.

finally:

This would always be executed.

......................

#!/usr/bin/python

try:

fh=open("testfile","w")

try:

fh.write("This is my test file for exception handling!!")

finally:

print"Going to close the file"

fh.close()

exceptIOError:

print"Error: can\'t find file or read data"

try:

Youdo your operations here;

......................

exceptExceptionType,Argument:

You can printvalueofArgument here...

Example

Following is an example for a single exception −

This produces the following result −

Raising an Exceptions

You can raise exceptions in several ways by using the raise statement. The general syntax for

the raise statement is as follows.

Syntax

 raise [Exception [, args [, traceback]]]

Here, Exception is the type of exception (for example, NameError) and argument is a value for

the exception argument. The argument is optional; if not supplied, the exception argument is

None.

The final argument, traceback, is also optional (and rarely used in practice), and if present, is

the traceback object used for the exception.

Example

An exception can be a string, a class or an object. Most of the exceptions that the Python core

raises are classes, with an argument that is an instance of the class. Defining new exceptions is

quite easy and can be done as follows −

Note: In order to catch an exception, an "except" clause must refer to the same exception

thrown either class object or simple string. For example, to capture above exception, we must

write the except clause as follows −

User-Defined Exceptions

Python also allows you to create your own exceptions by deriving classes from the standard

built-in exceptions.

#!/usr/bin/python

Define a function here.

deftemp_convert(var):

try:

returnint(var)

exceptValueError,Argument:

print"The argument does not contain numbers\n",Argument

Call above function here.

temp_convert("xyz");

The argument does not contain numbers

invalid literal for int() with base 10: 'xyz'

deffunctionName(level):

if level <1:

raise"Invalid level!", level

The code below to this would not be executed

if we raise the exception

try:

BusinessLogic here...

except"Invalid level!":

Exception handling here...

else:

Restof the code here...

Here is an example related to RuntimeError. Here, a class is created that is subclassed

from RuntimeError. This is useful when you need to display more specific information when

an exception is caught.

In the try block, the user-defined exception is raised and caught in the except block. The

variable e is used to create an instance of the class Networkerror.

So once you defined above class, you can raise the exception as follows −

Topic 11:Modules, Packages, and Programs

Possible Question: Describe about Modules, Packages, and Programs?

Possible Marks: 5 or 10 Marks

Outcomes:

A module allows you to logically organize your Python code. Grouping related code into a

module makes the code easier to understand and use. A module is a Python object with

arbitrarily named attributes that you can bind and reference.

Simply, a module is a file consisting of Python code. A module can define functions, classes

and variables. A module can also include runnable code.

Example

The Python code for a module named aname normally resides in a file named aname.py. Here's

an example of a simple module, support.py

The import Statement

You can use any Python source file as a module by executing an import statement in some

other Python source file. The import has the following syntax −

 import module1[, module2[,...moduleN]

When the interpreter encounters an import statement, it imports the module if the module is

present in the search path. A search path is a list of directories that the interpreter searches

before importing a module. For example, to import the module support.py, you need to put the

following command at the top of the script −

classNetworkerror(RuntimeError):

def init (self,arg):

self.args=arg

try:

raiseNetworkerror("Bad hostname")

exceptNetworkerror,e:

printe.args

defprint_func(par):

print"Hello : ", par

return

#!/usr/bin/python

Import module support

import support

When the above code is executed, it produces the following result −

 Hello : Zara

A module is loaded only once, regardless of the number of times it is imported. This prevents

the module execution from happening over and over again if multiple imports occur.

The from...import Statement

Python's from statement lets you import specific attributes from a module into the current

namespace. The from...import has the following syntax −

 from modname import name1[, name2[, ... nameN]]

For example, to import the function fibonacci from the module fib, use the following statement

−

 from fib import fibonacci

This statement does not import the entire module fib into the current namespace; it just

introduces the item fibonacci from the module fib into the global symbol table of the importing

module.

The from...import * Statement

It is also possible to import all names from a module into the current namespace by using the

following import statement −

 from modname import *

This provides an easy way to import all the items from a module into the current namespace;

however, this statement should be used sparingly.

Locating Modules

When you import a module, the Python interpreter searches for the module in the following

sequences −

 The current directory.

 If the module isn't found, Python then searches each directory in the shell

variable PYTHONPATH.

 If all else fails, Python checks the default path. On UNIX, this default path is

normally /usr/local/lib/python/.

The module search path is stored in the system module sys as the sys.path variable. The

sys.path variable contains the current directory, PYTHONPATH, and the installation-

dependent default.

The PYTHONPATH Variable

The PYTHONPATH is an environment variable, consisting of a list of directories. The syntax

of PYTHONPATH is the same as that of the shell variable PATH.

Here is a typical PYTHONPATH from a Windows system −

 set PYTHONPATH = c:\python20\lib;

Now you can call defined function that module as follows

support.print_func("Zara")

And here is a typical PYTHONPATH from a UNIX system −

 set PYTHONPATH = /usr/local/lib/python

Namespaces and Scoping

Variables are names (identifiers) that map to objects. A namespace is a dictionary of variable

names (keys) and their corresponding objects (values).

A Python statement can access variables in a local namespace and in the global namespace. If

a local and a global variable have the same name, the local variable shadows the global variable.

Each function has its own local namespace. Class methods follow the same scoping rule as

ordinary functions.

Python makes educated guesses on whether variables are local or global. It assumes that any

variable assigned a value in a function is local.

Therefore, in order to assign a value to a global variable within a function, you must first use

the global statement.

The statement global VarName tells Python that VarName is a global variable. Python stops

searching the local namespace for the variable.

For example, we define a variable Money in the global namespace. Within the function Money,

we assign Money a value, therefore Python assumes Money as a local variable. However, we

accessed the value of the local variable Money before setting it, so an UnboundLocalError is

the result. Uncommenting the global statement fixes the problem.

The dir() Function

The dir() built-in function returns a sorted list of strings containing the names defined by a

module.

The list contains the names of all the modules, variables and functions that are defined in a

module. Following is a simple example −

#!/usr/bin/python

Money=2000

defAddMoney():

Uncomment the following line to fix the code:

global Money

Money=Money+1

printMoney

AddMoney()

printMoney

#!/usr/bin/python

Import built-in module math

import math

content =dir(math)

print content

When the above code is executed, it produces the following result −

Here, the special string variable name is the module's name, and file is the filename

from which the module was loaded.

The globals() and locals() Functions

The globals() and locals() functions can be used to return the names in the global and local

namespaces depending on the location from where they are called.

If locals() is called from within a function, it will return all the names that can be accessed

locally from that function.

If globals() is called from within a function, it will return all the names that can be accessed

globally from that function.

The return type of both these functions is dictionary. Therefore, names can be extracted using

the keys() function.

The reload() Function

When the module is imported into a script, the code in the top-level portion of a module is

executed only once.

Therefore, if you want to reexecute the top-level code in a module, you can use

the reload() function. The reload() function imports a previously imported module again. The

syntax of the reload() function is this −

 reload(module_name)

Here, module_name is the name of the module you want to reload and not the string containing

the module name. For example, to reload hello module, do the following −

 reload(hello)

Packages in Python

A package is a hierarchical file directory structure that defines a single Python application

environment that consists of modules and subpackages and sub-subpackages, and so on.

Consider a file Pots.py available in Phone directory. This file has following line of source code

−

Similar way, we have another two files having different functions with the same name as above

−

 Phone/Isdn.py file having function Isdn()

 Phone/G3.py file having function G3()

[' doc ', ' file ', ' name ', 'acos', 'asin', 'atan',

'atan2', 'ceil', 'cos', 'cosh', 'degrees', 'e', 'exp',

'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log',

'log10', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh',

'sqrt', 'tan', 'tanh']

#!/usr/bin/python

defPots():

print"I'm Pots Phone"

Now, create one more file init .py in Phone directory −

 Phone/ init .py

To make all of your functions available when you've imported Phone, you need to put explicit

import statements in init .py as follows −

After you add these lines to init .py, you have all of these classes available when you import

the Phone package.

When the above code is executed, it produces the following result −

In the above example, we have taken example of a single functions in each file, but you can

keep multiple functions in your files. You can also define different Python classes in those files

and then you can create your packages out of those classes.

Topic 12:Standalone Programs

Possible Question: Explain in detail about Standalone Programs?

Possible Marks: 5 or 10 Marks

Outcomes:

With BuildApplet you can build a standalone Python application that works like any other Mac

application: you can double-click it, run it while the Python interpreter is running other scripts,

drop files on it, etc. It is, however, still dependent on the whole Python installation on your

machine: the PythonCore engine, the plugin modules and the various Lib folders.

In some cases you may want to create a true application, for instance because you want to send

it off to people who may not have Python installed on their machine, or because you the

application is important and you do not want changes in your Python installation like new

versions to influence it.

The easy way

The easiest way to create an application from a Python script is simply by dropping it on

the BuildApplication applet in the main Python folder. BuildApplication has a similar interface

as BuildApplet: you drop a script on it and it will process it, along with an optional .rsrc file.

What BuildApplication does, however, is very different. It parses your script, recursively

looking for all modules you use, bundles the compiled code for all these modules in PYC

from Pots import Pots

from Isdn import Isdn

from G3 import G3

#!/usr/bin/python

Now import your Phone Package.

importPhone

Phone.Pots()

Phone.Isdn()

Phone.G3()

I'm Pots Phone

I'm 3G Phone

I'm ISDN Phone

https://svn.python.org/projects/python/tags/r23/Mac/Demo/example2.html#applet

resources, adds the executable machine code for the PythonCore engine, any dynamically

loaded modules you use and a main program, combines all this into a single file and adds a few

preference resources (which you can inspect with EditPythonPrefs, incidentally) to isolate the

new program from the existing Python installation.

Usually you do not need to worry about all this, but occasionally you may have to exercise

some control over the process, for instance because your program imports modules that don't

exist (which can happen if your script is multi-platform and those modules will never be used

on the Mac). See the section on directives below for details. If you get strange error messages

about missing modules it may also be worthwhile to run macfreeze in report mode on your

program, see below.

Doing it the hard way

With the macfreeze script, for which BuildApplication is a simple wrapper, you can go a step

further and create CodeWarrior projects and sourcefiles which can then be used to build your

final application. While BuildApplication is good enough for 90% of the use cases there are

situations where you need macfreeze itself, mainly if you want to embed your frozen Python

script into an existing C application, or when you need the extra bit of speed: the resulting

application will start up a bit quicker than one generated with BuildApplication.

When you start Mac:Tools:macfreeze:macfreeze.py you are asked for the script file, and you

can select which type of freeze to do. The first time you should always choose report only,

which will produce a listing of modules and where they are included from in the console

window. Macfreeze actually parses all modules, so it may crash in the process. If it does try

again with a higher debug value, this should show you where it crashes.

Directives

For more elaborate programs you will often see that freeze includes modules you don't need

(because they are for a different platform, for instance) or that it cannot find all your modules

(because you modify sys.path early in your initialization). It is possible to include directives to

tell macfreeze to add items to the search path and include or exclude certain modules. All your

directives should be in the main script file.

Directives have the following form:

macfreeze: command argument

The trigger macfreeze: must be spelled exactly like that, but the whitespace can be any

combination of spaces and tabs. Macfreeze understands the following directives:

path

include

Prepend a folder to sys.path. The argument is a pathname, which should probably be

relative (starting with a colon) and is interpreted relative to the folder where the script

lives.

Include a module. The module can either be given by filename or by module name, in

which case it is looked up through the normal method.

exclude

Exclude a module. The module must be given by modulename. Even when freeze

deems the module necessary it will not be included in the application.

optional

Include a module if it can be found, but don't complain if it can't.

There is actually a fourth way that macfreeze can operate: it can be used to generate only the

resource file containing the compiled PYC resources. This may be useful if you have embedded

Python in your own application. The resource file generated is the same as for the CodeWarrior

generation process.

https://svn.python.org/projects/python/tags/r23/Mac/Demo/freezing.html#directives

Freezing with CodeWarrior

To freeze with CodeWarrior you need CodeWarrior, obviously, and a full source distribution

of Python. You select the Code warrior source and project option. You specify an output folder,

which is by default the name of your script with .py removed and build. prepended. If the

output folder does not exist yet it is created, and a template project file and bundle resource file

are deposited there. Next, a source file mac freeze config.c is created which includes all builtin

modules your script uses, and a resource file frozen modules.rsrc which contains

the PYC resources for all your Python modules.

The project expects to live in a folder one level below the Python root folder, so the next thing

you should do is move the build folder there. It is a good idea to leave an alias with the same

name in the original location: when you run freeze again it will regenerate the frozen modules.

rsrc file but not the project and bundle files. This is probably what you want: if you modify

your python sources you have to re-freeze, but you may have changed the project and bundle

files, so you don't want to regenerate them.

An alternative is to leave the build folder where it is, but then you have to adapt the search path

in the project.

The project is set up to include all the standard builtin modules, but the CW linker is smart

enough to exclude any object code that isn't referenced. Still, it may be worthwhile to remove

any sources for modules that you are sure are not used to cut back on compilation time. You

may also want to examine the various resource files (for Tcl/Tk, for instance): the loader has

no way to know that these aren't used.

You may also need to add sourcefiles if your script uses non-standard builtin modules, like

anything from the Extensions folder.

The frozenbundle.rsrc resource file contains the bundle information. It is almost identical to

the bundle file used for applets, with the exception that it sets the sys.path initialization

to $(APPLICATION) only. This means that all modules will only be looked for in PYC

resources in your application.

Topic 13: Command-Line Arguments

Possible Question: Explain in detail about Command-Line Arguments?

Possible Marks: 5 or 10 Marks

Outcomes:

Python provides a getopt module that helps you parse command-line options and arguments.

The Python sys module provides access to any command-line arguments via the sys.argv. This

serves two purposes −

 sys.argv is the list of command-line arguments.

 len(sys.argv) is the number of command-line arguments.

Here sys.argv[0] is the program ie. script name.

Example

Consider the following script test.py −

$ python test.py arg1 arg2 arg3

#!/usr/bin/python

Now run above script as follows −

This produce following result −

NOTE − As mentioned above, first argument is always script name and it is also being counted

in number of arguments.

Parsing Command-Line Arguments

Python provided a getopt module that helps you parse command-line options and arguments.

This module provides two functions and an exception to enable command line argument

parsing.

getopt.getopt method

This method parses command line options and parameter list. Following is simple syntax for

this method −

 getopt.getopt(args, options, [long_options])

Here is the detail of the parameters −

 args − This is the argument list to be parsed.

 options − This is the string of option letters that the script wants to recognize,

with options that require an argument should be followed by a colon (:).

 long_options − This is optional parameter and if specified, must be a list of

strings with the names of the long options, which should be supported. Long

options, which require an argument should be followed by an equal sign ('=').

To accept only long options, options should be an empty string.

 This method returns value consisting of two elements: the first is a list

of (option, value) pairs. The second is the list of program arguments left after

the option list was stripped.

 Each option-and-value pair returned has the option as its first element, prefixed

with a hyphen for short options (e.g., '-x') or two hyphens for long options (e.g.,

'--long-option').

Exception getopt.GetoptError

This is raised when an unrecognized option is found in the argument list or when an option

requiring an argument is given none.

The argument to the exception is a string indicating the cause of the error. The

attributes msg and opt give the error message and related option.

Example

Consider we want to pass two file names through command line and we also want to give an

option to check the usage of the script. Usage of the script is as follows −

 usage: test.py -i<inputfile> -o <outputfile>

Here is the following script to test.py −

#!/usr/bin/python

import sys,getopt

import sys

print'Number of arguments:',len(sys.argv),'arguments.'

print'Argument List:', str(sys.argv)

$ python test.py arg1 arg2 arg3

Number of arguments: 4 arguments.

Argument List: ['test.py', 'arg1', 'arg2', 'arg3']

Now, run above script as follows −

Topic 14: Modules and the import Statement

Possible Question: Explain detail about Modules and the import Statement?

Possible Marks: 5 or 10 Marks

Outcomes:

A module is basically a file which has many lines of python code that can be referred or used

by other python programs. A big python program should be organized to keep different parts

of the program in different modules. That helps in all aspects like debugging, enhancements

and packaging the program efficiently. To use a module in any python program we should first

import it to the new program. All the functions, methods etc. from this module then will be

available to the new program.

With import statement

Let’s create a file named profit.py which contains program for a specific calculation as shown

below.

Example

Next we want to use the above function in another python program. We can then use the import
function in the new program to refer to this module and its function named getprofit.

defgetprofit(cp,sp):

result =((sp-cp)/cp)*100

return result

$ test.py -h

usage: test.py -i<inputfile>-o <outputfile>

$ test.py -i BMP -o

usage: test.py -i<inputfile>-o <outputfile>

$ test.py -iinputfile

Input file is" inputfile

Output file is "

def main(argv):

inputfile=''

outputfile=''

try:

opts,args=getopt.getopt(argv,"hi:o:",["ifile=","ofile="])

exceptgetopt.GetoptError:

print'test.py -i<inputfile> -o <outputfile>'

sys.exit(2)

for opt,argin opts:

if opt =='-h':

print'test.py -i<inputfile> -o <outputfile>'

sys.exit()

elif opt in("-i","--ifile"):

inputfile=arg

elif opt in("-o","--ofile"):

outputfile=arg

print'Input file is "',inputfile

print'Output file is "',outputfile

if name ==" main ":

main(sys.argv[1:])

Example

Output

Running the above code gives us the following result −

 42.857142857142854

With From Module Import

We can also import only a specific method from a module instead of the entire module. For

that we use the from Module import statement as shown below. In the below example we

import the value of pi from math module to be used in some calculation in the program.

Example

Output

Running the above code gives us the following result −

 94.24777960769379

Investigating modules

If we want to know the location of various inbuilt modules we can use the sys module to find

out. Similarly to know the various function available in a module we can use the dir method

as shown below.

Example

Output

Running the above code gives us the following result −

Topic 15: The Python Standard Library

Possible Question: Explain detail about The Python Standard Library?

Possible Marks: 5 or 10 Marks

Outcomes:

Python has a standard library, which includes a wide variety of routines that help you code and

reuse these codes easily. A Module is a Python file that has definitions of variables and a set

of related routines or functions.

Some of the core Modules provided by the Python library are as follows −

 Built-in Functions and Exceptions − Python imports both these modules when

it starts up and makes their content available for all programs. The built-in

[' ',

'C:\\Windows\\system32\\python38.zip',

'C:\\Python38\\DLLs',

'C:\\Python38\\lib',

'C:\\Python38',

'C:\\Python38\\lib\\site-packages']

['…..log2', 'modf', 'nan', 'perm', 'pi', 'pow', 'prod',….]

import sys

import math

print(sys.path)

print(dir(math))

from math import pi

x =30*pi

print(x)

import profit

perc=profit.getprofit(350,500)

print(perc)

module defines built-in functions like len, int, range, while the exceptions

module defines all built-in exceptions.

 Operating System Interface Modules − The OS module makes available, the

functions that enables performing OS level operations through scripts.

 Type Support Modules − Type support modules include string module-to

implement, commonly used string operations; math module provides

mathematical operations etc.

 Regular Expressions − Regular Expressions are string patterns written in a

specific syntax, which can be used to match or extract strings or substrings. The

re module provides Regex support for Python.

 Language Support Modules − The sys module gives you access to various

interpreter variables, such as the module search path, and the interpreter version.

The operator module provides functional equivalents to many built-in operators.

The copy module allows you to copy objects. Finally, the gc module gives you

more control over the garbage collector facilities in python 2.0.

About JSON

The JavaScript Object Notation (JSON) is a data-interchange format. Though many

programming languages support JSON, it is especially useful for JavaScript-based apps,

including websites and browser extensions. JSON can represent numbers, Booleans, strings,

null, arrays (ordered sequences of values), and objects (string-value mappings) made up of

these values (or of other arrays and objects).

Topic 16: Objects and Classes

Possible Question: Explain Objects and Classes?

Possible Marks: 5 or 10 Marks

Outcomes:

A class is a user-defined blueprint or prototype from which objects are created. Classes

provide a means of bundling data and functionality together. Creating a new class creates a

new type of object, allowing new instances of that type to be made. Each class instance can

have attributes attached to it for maintaining its state. Class instances can also have methods

(defined by their class) for modifying their state.

To understand the need for creating a class in Python let’s consider an example, let’s say you

wanted to track the number of dogs that may have different attributes like breed, age. If a list

is used, the first element could be the dog’s breed while the second element could represent

its age. Let’s suppose there are 100 different dogs, then how would you know which element

is supposed to be which? What if you wanted to add other properties to these dogs? This

lacks organization and it’s the exact need for classes.

Class Definition Syntax:

class ClassName:

Statement

Object Definiation Syntax:

obj = ClassName()

print(obj.atrr)

Class creates a user-defined data structure, which holds its own data members and member

functions, which can be accessed and used by creating an instance of that class. A class is

like a blueprint for an object.

Some points on Python class:

 Classes are created by keyword class.

 Attributes are the variables that belong to a class.

 Attributes are always public and can be accessed using the dot (.) operator. Eg.:

Myclass.Myattribute

Defining a class

https://www.geeksforgeeks.org/python-programming-language/

Python3 program to

demonstrate defining

a class

classDog:

pass

In the above example, the class keyword indicates that you are creating a class followed by

the name of the class (Dog in this case).

Class Objects

An Object is an instance of a Class. A class is like a blueprint while an instance is a copy of

the class with actual values. It’s not an idea anymore, it’s an actual dog, like a dog of breed

pug who’s seven years old. You can have many dogs to create many different instances, but

without the class as a guide, you would be lost, not knowing what information is required.

An object consists of :

 State: It is represented by the attributes of an object. It also reflects the properties

of an object.

 Behavior: It is represented by the methods of an object. It also reflects the

response of an object to other objects.

 Identity: It gives a unique name to an object and enables one object to interact

with other objects.

Declaring Objects (Also called instantiating a class)

When an object of a class is created, the class is said to be instantiated. All the instances share

the attributes and the behavior of the class. But the values of those attributes, i.e. the state are

unique for each object. A single class may have any number of instances.

Example:

Declaring an object

Python3 program to

demonstrate instantiating

a class

classDog:

A simple class

attribute

attr1 ="mammal"

attr2 ="dog"

A sample method

deffun(self):

print("I'm a", self.attr1)

print("I'm a", self.attr2)

Driver code

Object instantiation

Rodger =Dog()

Accessing class attributes

and method through objects

print(Rodger.attr1)

Rodger.fun()

Output:

mammal

I'm a mammal

I'm a dog

In the above example, an object is created which is basically a dog named Rodger. This class

only has two class attributes that tell us that Rodger is a dog and a mammal.

The self

 Class methods must have an extra first parameter in the method definition. We do

not give a value for this parameter when we call the method, Python provides it.

 If we have a method that takes no arguments, then we still have to have one

argument.

 This is similar to this pointer in C++ and this reference in Java.

When we call a method of this object as myobject.method(arg1, arg2), this is automatically

converted by Python into MyClass.method(myobject, arg1, arg2) – this is all the special self

is about.

__init__ method

The __init__ method is similar to constructors in C++ and Java. Constructors are used to

initializing the object’s state. Like methods, a constructor also contains a collection of

statements(i.e. instructions) that are executed at the time of Object creation. It runs as soon

as an object of a class is instantiated. The method is useful to do any initialization you want

to do with your object.

A Sample class with init method

classPerson:

init method or constructor

 Python3

def init (self, name):

self.name =name

Sample Method

defsay_hi(self):

print('Hello, my name is', self.name)

p =Person('Nikhil')

p.say_hi()

Output:

Hello, my name is Nikhil

Class and Instance Variables

Instance variables are for data, unique to each instance and class variables are for attributes

and methods shared by all instances of the class. Instance variables are variables whose value

is assigned inside a constructor or method with self whereas class variables are variables

whose value is assigned in the class.

Defining instance variables using a constructor.

Python3 program to show that the variables with a value

assigned in the class declaration, are class variables and

variables inside methods and constructors are instance

variables.

Class for Dog

classDog:

Class Variable

animal ='dog'

The init method or constructor

def init (self, breed, color):

Instance Variable

self.breed=breed

self.color=color

Objects of Dog class

Rodger =Dog("Pug", "brown")

Buzo=Dog("Bulldog", "black")

print('Rodger details:')

print('Rodger is a', Rodger.animal)

print('Breed: ', Rodger.breed)

print('Color: ', Rodger.color)

print('\nBuzo details:')

print('Buzo is a', Buzo.animal)

print('Breed: ', Buzo.breed)

print('Color: ', Buzo.color)

Class variables can be accessed using class

name also

print("\nAccessing class variable using class name")

print(Dog.animal)

Output:

Rodger details:

Rodger is a dog

Breed: Pug

Color: brown

Buzo details:

Buzo is a dog

Breed: Bulldog

Color: black

Accessing class variable using class name

dog

Defining instance variables using the normal method.

Python3 program to show that we can create

instance variables inside methods

Class for Dog

classDog:

Class Variable

animal ='dog'

The init method or constructor

def init (self, breed):

Instance Variable

self.breed=breed

Adds an instance variable

defsetColor(self, color):

self.color=color

Retrieves instance variable

defgetColor(self):

returnself.color

Driver Code

Rodger =Dog("pug")

Rodger.setColor("brown")

print(Rodger.getColor())

Output: brown

Topic 17: Define a Class with class

Possible Question: Describe about Define a Class with class?

Possible Marks: 5 or 10 Marks

Outcomes:

Python is a completely object-oriented language. You have been working with classes and

objects right from the beginning of these tutorials. Every element in a Python program is an

object of a class. A number, string, list, dictionary, etc., used in a program is an object of a

corresponding built-in class. You can retrieve the class name of variables or objects using

the type() method, as shown below.

Example: Python Built-in Classes

>>> num=20

>>> type(num)

<class 'int'>

>>> s="Python"

>>> type(s)

<class 'str'>

Defining a Class

A class in Python can be defined using the class keyword.

class <ClassName>:

<statement1>

<statement2>

.

.

<statementN>

As per the syntax above, a class is defined using the class keyword followed by the class

name and : operator after the class name, which allows you to continue in the next indented

line to define class members. The followings are class members.

1. Class Attributes

2. Constructor

3. Instance Attributes

4. Properties

5. Class Methods

A class can also be defined without any members. The following example defines an empty

class using the pass keyword.

Example: Define Python Class

class Student:

pass

Class instantiation uses function notation. To create an object of the class, just call a class

like a parameterless function that returns a new object of the class, as shown below.

Example: Creating an Object of a Class

std = Student()

Above, Student() returns an object of the Student class, which is assigned to a

local variable std. The Student class is an empty class because it does not contain any

members.

https://www.tutorialsteacher.com/python/type-method
https://www.tutorialsteacher.com/python/python-class#class-attributes
https://www.tutorialsteacher.com/python/python-class#constructor
https://www.tutorialsteacher.com/python/python-class#instance-attributes
https://www.tutorialsteacher.com/python/python-class#properties
https://www.tutorialsteacher.com/python/python-class#methods
https://www.tutorialsteacher.com/python/python-variable

Class Attributes

Class attributes are the variables defined directly in the class that are shared by all objects

of the class. Class attributes can be accessed using the class name as well as using the

objects.

Example: Define Python Class

class Student:

schoolName = 'XYZ School'

Above, the schoolName is a class attribute defined inside a class. The value of

the schoolName will remain the same for all the objects unless modified explicitly.

Example: Define Python Class

>>> Student.schoolName

'XYZ School'

>>> std = Student()

>>> std.schoolName

'XYZ School'

As you can see, a class attribute is accessed by Student.schoolName as well

as std.schoolName. Changing the value of class attribute using the class name would change

it across all instances. However, changing class attribute value using instance will not reflect

to other instances or class.

Example: Define Python Class

>>> Student.schoolName = 'ABC School' # change attribute value using class name

>>> std = Student()

>>> std.schoolName

'ABC School' # value changed for all instances

>>> std.schoolName = 'My School' # changing instance's attribute

>>> std.schoolName

'My School'

>>> Student.schoolName # instance level change not reflectd to class attribute

'ABC School'

>>> std2 = Student()

>>> std2.schoolName

'ABC School'

The following example demonstrates the use of class attribute count.

Example: Student.py

class Student:

count = 0

def init (self):

Student.count += 1

In the above example, count is an attribute in the Student class. Whenever a new object is

created, the value of count is incremented by 1. You can now access the count attribute after

creating the objects, as shown below.

Example:

>>> std1=Student()

>>> Student.count

1

>>> std2 = Student()

>>> Student.count

2

Constructor

In Python, the constructor method is invoked automatically whenever a new object of a class

is instantiated, same as constructors in C# or Java. The constructor must have a special

name __init__() and a special parameter called self.

The first parameter of each method in a class must be the self , which refers to the calling

object. However, you can give any name to the first parameter, not necessarily self.

The following example defines a constructor.

Example: Constructor

class Student:

def init (self): # constructor method

print('Constructor invoked')

Now, whenever you create an object of the Student class, the __init__() constructor method

will be called, as shown below.

Example: Constructor Call on Creating Object

>>>s1 = Student()

Constructor invoked

>>>s2 = Student()

Constructor invoked

The constructor in Python is used to define the attributes of an instance and assign values to

them.

Instance Attributes

Instance attributes are attributes or properties attached to an instance of a class. Instance

attributes are defined in the constructor.

The following example defines instance attributes name and age in the constructor.

Example: Instance Attributes

class Student:

schoolName = 'XYZ School' # class attribute

def init (self): # constructor

self.name = '' # instance attribute

self.age = 0 # instance attribute

An instance attribute can be accessed using dot notation: [instance name].[attribute name],

as shown below.

Example:

>>> std = Student()

>>> std.name

''

>>> std.age

0

You can set the value of attributes using the dot notation, as shown below.

Example:

>>> std = Student()

>>> std.name = "Bill" # assign value to instance attribute

>>> std.age=25 # assign value to instance attribute

>>> std.name # access instance attribute value

Bill

>>> std.age # access value to instance attribute

25

You can specify the values of instance attributes through the constructor. The following

constructor includes the name and age parameters, other than the self parameter.

Example: Setting Attribute Values

class Student:

def init (self, name, age):

self.name = name

self.age = age

Now, you can specify the values while creating an instance, as shown below.

Example: Passing Instance Attribute Values in Constructor

Copy

>>> std = Student('Bill',25)

>>> std.name

'Bill'

>>> std.age

25

You don't have to specify the value of the self parameter. It will be assigned internally in

Python.

You can also set default values to the instance attributes. The following code sets the default

values of the constructor parameters. So, if the values are not provided when creating an

object, the values will be assigned latter.

Example: Setting Default Values of Attributes

Copy

class Student:

def init (self, name="Guest", age=25)

self.name=name

self.age=age

Now, you can create an object with default values, as shown below.

Example: Instance Attribute Default Value

>>> std = Student()

>>> std.name

'Guest'

>>> std.age

25

Visit class attributes vs instance attributes in Python for more information.

Class Properties

In Python, a property in the class can be defined using the property() function.

The property() method in Python provides an interface to instance attributes. It encapsulates

instance attributes and provides a property, same as Java and C#.

The property() method takes the get, set and delete methods as arguments and returns an

object of the property class.

The following example demonstrates how to create a property in Python using

the property() function.

Example: property()

class Student:

def init (self):

self. name=''

def setname(self, name):

print('setname() called')

self. name=name

def getname(self):

print('getname() called')

return self. name

name=property(getname, setname)

In the above example, property(getname, setname) returns the property object and assigns it

to name. Thus, the name property hides the private instance attribute name.

The name property is accessed directly, but internally it will invoke

the getname() or setname() method, as shown below.

Example: property()

>>> std = Student()

>>> std.name="Steve"

setname() called

>>> std.name

getname() called

'Steve'

It is recommended to use the property decorator instead of the property() method.

Class Methods

You can define as many methods as you want in a class using the def keyword. Each method

must have the first parameter, generally named as self, which refers to the calling instance.

Example: Class Method

class Student:

def displayInfo(self): # class method

print('Student Information')

Self is just a conventional name for the first argument of a method in the class. A method

defined as mymethod(self, a, b) should be called as x.mymethod(a, b) for the object x of the

class.

https://www.tutorialsteacher.com/articles/class-attributes-vs-instance-attributes-in-python
https://www.tutorialsteacher.com/python/property-function
https://www.tutorialsteacher.com/python/public-private-protected-modifiers#private
https://www.tutorialsteacher.com/python/property-decorator

The above class method can be called as a normal function, as shown below.

Example: Class Method

>>> std = Student()

>>> std.displayInfo()

'Student Information'

The first parameter of the method need not be named self. You can give any name that refers

to the instance of the calling method. The following displayInfo() method names the first

parameter as obj instead of self and that works perfectly fine.

Example: Class Method

class Student:

def displayInfo(obj): # class method

print('Student Information')

Defining a method in the class without the self parameter would raise an exception when

calling a method.

Example: Class Method

class Student:

def displayInfo(): # method without self parameter

print('Student Information')

>>> std = Student()

>>> std.displayInfo()

Traceback (most recent call last):

std.displayInfo()

TypeError: displayInfo() takes 0 positional arguments but 1 was given

The method can access instance attributes using the self parameter.

Example: Class Method

class Student:

def init (self, name, age):

self.name = name

self.age = age

def displayInfo(self): # class method

print('Student Name: ', self.name,', Age: ', self.age)

You can now invoke the method, as shown below.

Example: Calling a Method

>>> std = Student('Steve', 25)

>>> std.displayInfo()

Student Name: Steve , Age: 25

Deleting Attribute, Object, Class

You can delete attributes, objects, or the class itself, using the del keyword, as shown below.

Example: Delete Attribute, Object, Class

>>> std = Student('Steve', 25)

>>> del std.name # deleting attribute

>>> std.name

Traceback (most recent call last):

File "<pyshell#42>", line 1, in <module>

std.name

AttributeError: 'Student' object has no attribute 'name'

>>> del std # deleting object

>>> std.name

Traceback (most recent call last):

File "<pyshell#42>", line 1, in <module>

std.name

NameError: name 'std' is not defined

>>> del Student # deleting class

>>> std = Student('Steve', 25)

Traceback (most recent call last):

File "<pyshell#42>", line 1, in <module>

std = Student()

NameError: name 'Student' is not defined

Topic 18: Inheritance

Possible Question: Describe about Inheritance?

Possible Marks: 5 or 10 Marks

Outcomes:

Instead of starting from scratch, you can create a class by deriving it from a preexisting class

by listing the parent class in parentheses after the new class name.

The child class inherits the attributes of its parent class, and you can use those attributes as if

they were defined in the child class. A child class can also override data members and methods

from the parent.

Syntax

Derived classes are declared much like their parent class; however, a list of base classes to

inherit from is given after the class name −

class SubClassName (ParentClass1[, ParentClass2, ...]):

'Optional class documentation string'

class_suite

#!/usr/bin/python

class Parent: # define parent class

parentAttr = 100

def init (self):

print "Calling parent constructor"

def parentMethod(self):

print 'Calling parent method'

def setAttr(self, attr):

Parent.parentAttr = attr

def getAttr(self):

print "Parent attribute :", Parent.parentAttr

class Child(Parent): # define child class

def init (self):

print "Calling child constructor"

When the above code is executed, it produces the following result −
Calling child constructor

Calling child method

Calling parent method

Parent attribute : 200

Similar way, you can drive a class from multiple parent classes as follows −

class A: # define your class A

.....

class B: # define your class B

.....

class C(A, B): # subclass of A and B

.....

You can use issubclass() or isinstance() functions to check a relationships of two classes and

instances.

 The issubclass(sub, sup) boolean function returns true if the given subclass sub is

indeed a subclass of the superclass sup.

 The isinstance(obj, Class) boolean function returns true if obj is an instance of

class Class or is an instance of a subclass of Class

Topic 19: Override a Method

Possible Question: Explain in detail about Override a Method?

Possible Marks: 5 or 10 Marks

Outcomes:

You can always override your parent class methods. One reason for overriding parent's

methods is because you may want special or different functionality in your subclass.

When the above code is executed, it produces the following result −

def childMethod(self):
print 'Calling child method'

c = Child() # instance of child

c.childMethod() # child calls its method

c.parentMethod() # calls parent's method

c.setAttr(200) # again call parent's method

c.getAttr() # again call parent's method

#!/usr/bin/python

class Parent: # define parent class

def myMethod(self):

print 'Calling parent method'

class Child(Parent): # define child class

def myMethod(self):

print 'Calling child method'

c = Child() # instance of child

c.myMethod() # child calls overridden method

Calling child method

Topic 20: Add a Method

Possible Question: Explain detail about Add a Method?

Possible Marks: 5 or 10 Marks

Outcomes:

The normal way to add functionality (methods) to a class in Python is to define functions in

the class body. There are many other ways to accomplish this that can be useful in different

situations.

This is the traditional way

class A(object):

def print_classname(self):

print self. class . name

The method can also be defined outside the scope of the class. This allows the function

“print_classname” to be used as a standalone function and as a method of the class.

def print_classname(a):

print a. class . name

class A(object):

print_classname = print_classname

Or, equivalently

def print_classname(a):

print a. class . name

class A(object):

pass

setattr(A, "print_classname", print_classname)

Adding the method to an object of type “A” is also possible. However, you need to specify that

the attribute “print_classname” of the object is a method to make sure it will receive a reference

to “self” as implicit first parameter when it is called.

from types import MethodType

def print_classname(a):

print a. class . name

class A(object):

pass

this assigns the method to the instance a, but not to the class definition

a = A()

a.print_classname = MethodType(print_classname, a, A)

this assigns the method to the class definition

A.print_classname = MethodType(print_classname, None, A)

Specific methods from another class can also be added (without inherit everything else) by

adding the underlying function of the method. Otherwise the method will expect a reference to

an instance of the original class as implicit first parameter.

class B(object):

super()

def print_classname(self):

print self. class . name

option 1

class A(object):

print_classname = B.print_classname. func

option 2

class A(object):

pass

setattr(A, "print_classname", B.print_classname. func)

Topic 21:Get Help from Parent with super

Possible Question: Explain detail about Get Help from Parent with super?

Possible Marks: 5 or 10 Marks

Outcomes:

 The builtin returns a proxy object (temporary object of the superclass) that allows us

class Animal(object):

def init (self, animal_type):

print('Animal Type:', animal_type)

class Mammal(Animal):

def init (self):

 # call superclass

 super(). init ('Mammal')

print('Mammals give birth directly')

dog = Mammal()

Output: Animal Type: Mammal

Mammals give birth directly

Run Code

Use of super()

In Python, super() has two major use cases:

 Example 1: super() with Single Inheritance

to access methods of the base class.

Example

 Allows us to avoid using the base class name explicitly

 Working with Multiple Inheritance

https://www.programiz.com/python-programming/online-compiler

super()

 Here, we called the init () method of the Mammal class (from the Dog class) using code

super(). init ('Dog')

 instead of

 Since we do not need to specify the name of the base class when we call its members, we can

 easily change the base class name (if we need to).

 The builtin returns a proxy object, a substitute object that can call methods of the base

Output

class Mammal(object):

def init (self, mammalName):

print(mammalName, 'is a warm-blooded animal.')

class Dog(Mammal):

def init (self):

print('Dog has four legs.')

super(). init ('Dog')

d1 = Dog()

Run Code

super() to refer to the base class. In the case of single inheritance, we use

Dog has four legs.

Dog is a warm-blooded animal.

Mammal. init (self, 'Dog')

changing base class to CanidaeFamily

class Dog(CanidaeFamily):

def init (self):

print('Dog has four legs.')

no need to change this

super(). init ('Dog')

class via delegation. This is called indirection (ability to reference base object with super())

Since the indirection is computed at the runtime, we can use different base classes at different

times (if we need to).

Example 2: super() with Multiple Inheritance

class Animal:

https://www.programiz.com/python-programming/online-compiler

Method Resolution Order (MRO)

Method Resolution Order (MRO) is the order in which methods should be inherited in the

 def init (self, Animal):

print(Animal, 'is an animal.');

class Mammal(Animal):

def init (self, mammalName):

print(mammalName, 'is a warm-blooded animal.')

super(). init (mammalName)

class NonWingedMammal(Mammal):

def init (self, NonWingedMammal):

print(NonWingedMammal, "can't fly.")

super(). init (NonWingedMammal)

class NonMarineMammal(Mammal):

def init (self, NonMarineMammal):

print(NonMarineMammal, "can't swim.")

super(). init (NonMarineMammal)

class Dog(NonMarineMammal, NonWingedMammal):

def init (self):

print('Dog has 4 legs.');

super(). init ('Dog')

d = Dog()

print('')

bat = NonMarineMammal('Bat')

Run Code

Output

Dog has 4 legs.

Dog can't swim.

Dog can't fly.

Dog is a warm-blooded animal.

Dog is an animal.

Bat can't swim.

Bat is a warm-blooded animal.

Bat is an animal.

presence of multiple inheritance. You can view the MRO by using the mro attribute.

>>> Dog. mro

(<class 'Dog'>,

<class 'NonMarineMammal'>,

https://www.programiz.com/python-programming/online-compiler

 Here is how MRO works:

 A method in the derived calls is always called before the method of the base class.

In our example, Dog class is called

before NonMarineMammal or NoneWingedMammal. These two classes are called

before Mammal, which is called before Animal, and Animal class is called before

the object.

 If there are multiple parents like Dog(NonMarineMammal, NonWingedMammal),

methods of NonMarineMammal is invoked first because it appears first.

Topic 22: In self Defense

Possible Question: Explain In self Defense?

Possible Marks: 5 or 10 Marks

Outcomes:

The self parameter is a reference to the current instance of the class, and is used to access

variables that belongs to the class.

It does not have to be named self , you can call it whatever you like, but it has to be the first

parameter of any function in the class:

Example

Use the words mysillyobject and abc instead of self:

class Person:

def init (mysillyobject, name, age):

mysillyobject.name = name

mysillyobject.age = age

def myfunc(abc):

print("Hello my name is " + abc.name)

p1 = Person("John", 36)

p1.myfunc()

Topic 23: Get and Set Attribute Values with Properties

Possible Question: Describe about Get and Set Attribute Values with Properties?

Possible Marks: 5 or 10 Marks

Outcomes:

For the purpose of data encapsulation, most object oriented languages use getters and setters

method. This is because we want to hide the attributes of a object class from other classes so

that no accidental modification of the data happens by methods in other classes.

<class 'NonWingedMammal'>,

<class 'Mammal'>,

<class 'Animal'>,

<class 'object'>)

As the name suggests, getters are the methods which help access the private attributes or get

the value of the private attributes and setters are the methods which help change or set the

value of private attributes.

Accessing Private Attribute

Below we write code to create a class, initialize it and access it variables without creating any

additional methods.

Example

Output

Running the above code gives us the following result -

While the first print statement gives us the details of the object created, the second print object

gives us the default value of the private attribute.

Using getters and setters

In the below examples we will make a class, initialize is and then add a getter and setter method

to each of them. Then access the variables in these methods by instantiating the class and using

these getter and setter methods. So you can hide your logic inside the setter method.

Example

class year_graduated:

def init (self, year=0):

self._year = year

Instantiating the class

grad_obj = year_graduated()

#Printing the object

print(grad_obj)

#Printing the object attribute

print(grad_obj.year)

< main .year_graduated object at 0x00F2DD50>

0

class year_graduated:

def init (self, year=0):

self._year = year

getter method

def get_year(self):

return self._year

setter method

def set_year(self, a):

self._year = a

grad_obj = year_graduated()

Output

Running the above code gives us the following result:

Making the Attributes Private

In the next example we see how to make the methods private so that the variables in it cannot

be manipulated by external calling functions. They can only be manipulated by functions

inside the class. They become private by prefixing them with two underscores.

Example

Output

Running the above code gives us the following result:

Before using setter

print(grad_obj.get_year())

After using setter

grad_obj.set_year(2019)

print(grad_obj._year)

0

2019

class year_graduated:

def init (self, year=32):

self._year = year

make the getter method

def get_year(self):

return self. year

make the setter method

def set_year(self, a):

self. year = a

grad_obj = year_graduated()

print(grad_obj._year)

Before using setter

print(grad_obj.get_year())

After using setter

grad_obj.set_year(2019)

print(grad_obj._year)

32

AttributeError: 'year_graduated' object has no attribute '_year_graduated year'

Reading Values from Private Methods

No we can access the private attribute values by using the property method and without using

the getter method.

Example

Output

Running the above code gives us the following result:

Topic 24: Name Mangling for Privacy

Possible Question: Describe about Name Mangling for Privacy?

Possible Marks: 5 or 10 Marks

Outcomes:

Python doesn't have the concept called private variables. But, most of the Python developers
follow a naming convention to tell that a variable is not public and it's private.

We have to start a variable name with a double underscore to represent it as a private variable

(not really). Example:- one, two, etc..,.

As we already said the variables whose names start with a double underscore are not private.

We can still access. Let's see how to create private type variables and then we will see how to

access them.

creating a class

class Sample:

def init (self, nv, pv):

normal variable

self.nv = nv

class year_graduated:

def init (self, year=32):

self._year = year

@property

def Aboutyear(self):

return self. year

@Aboutyear.setter

def Aboutyear(self, a):

self. year = a

grad_obj = year_graduated()

print(grad_obj._year)

grad_obj.year = 2018

print(grad_obj.year)

32

2018

We have created a class and its instance. We have two variables one is normal and the other
is private inside the init method. Now, try to access the variables. And see what happens.

Example

Output

If you run the above code, then you will get the following output.

Normal variable

AttributeError Traceback (most recent call last)

<ipython-input-13-bc324b2d20ef> in <module>

14

15 # accessing * pv**

---> 16 print(sample. pv)

AttributeError: 'Sample' object has no attribute '__pv'

The program displayed the nv variable without any errors. But we got AttributeError when

we try to access the pv variable.

Why do we get this error? Because there is no any attribute with the variable name pv. Then

what about self. pv = pv statement in the init method? We'll discuss this in a bit. First, let's

see how to access the pv variable.

We have access any class variable whose name startswith a double

underscore as _className_variableName_. So, in or example it is_Sample_pv_. Now,

access it using the _Sample_pv_ name.

Example

Output

If you run the above code, then you will get the following result.

 Normal variable

creating a class

class Sample:

def init (self, nv, pv):

normal variable

self.nv = nv

private variable(not really)

self. pv = pv

creating an instance of the class Sample

sample = Sample('Normal variable', 'Private variable')

accessing *nv*

print(sample.nv)

accessing * pv** using _Sample pv name

print(sample._Sample pv)

creating a class

class Sample:

def init (self, nv, pv):

normal variable

self.nv = nv

private variable(not really)

self. pv = pv

creating an instance of the class Sample

sample = Sample('Normal variable', 'Private variable')

accessing *nv*

print(sample.nv)

accessing * pv**

print(sample. pv)

private variable(not really)

self. pv = pv

creating an instance of the class Sample

sample = Sample('Normal variable', 'Private variable')

 Private variable

Why the name of the variable pv has changed?

In Python, there is a concept called name mangling. Python changes the names of the variables

that start with a double underscore. So, any class variable whose name starts with a double

underscore will change to the form _className_variableName_.

So, the concept will apply for the methods of the class as well. You can see it with the

following code.

Example

Output

If you run the above code, then you will get the following result.

5

AttributeError Traceback (most recent call last)

<ipython-input-19-55650c4990c8> in <module>

14

15 # invoking the method with wrong name

---> 16 print(sample. get_a())

AttributeError: 'Sample' object has no attribute '__get_a'

Topic 25: Method Types

Possible Question: Explain in detail about Method Types?

Possible Marks: 5 or 10 Marks

Outcomes:

There are basically three types of methods in Python:

 Instance Method

 Class Method

 Static Method

Let’s talk about each method in detail.

Instance Methods

The purpose of instance methods is to set or get details about instances (objects), and that is

why they’re known as instance methods. They are the most common type of methods used in

a Python class.

class Sample:

def init (self, a):

self.a = a

private method(not really)

def get_a(self):

return self.a

creating an instance of the class Sample

sample = Sample(5)

invoking the method with correct name

print(sample._Sample get_a())

invoking the method with wrong name

print(sample. get_a())

obj = My_class()

obj.instance_method(10)

obj = My_class()

obj.instance_method()

class My_class:

def instance_method(self):

return "This is an instance method."

They have one default parameter- self, which points to an instance of the class. Although you

don’t have to pass that every time. You can change the name of this parameter but it is better

to stick to the convention i.e self.

Any method you create inside a class is an instance method unless you specially specify Python

otherwise. Let’s see how to create an instance method:

It’s as simple as that!

In order to call an instance method, you’ve to create an object/instance of the class. With the

help of this object, you can access any method of the class.

When the instance method is called, Python replaces the self argument with the instance

object, obj. That is why we should add one default parameter while defining the instance

methods. Notice that when instance_method() is called, you don’t have to pass self. Python

does this for you.

Along with the default parameter self, you can add other parameters of your choice as well:

We have an additional parameter “a” here. Now let’s create the object of the class and call this

instance method:

Again you can see we have not passed ‘self’ as an argument, Python does that for us. But have

to mention other arguments, in this case, it is just one. So we have passed 10 as the value of

“a”.

You can use “self” inside an instance method for accessing the other attributes and methods of

the same class:

class My_class:

def instance_method(self, a):

return f"This is an instance method with a parameter a = {a}."

class My_class():

def instance_method(self):

print("Hello! from %s" % self. class . name)

obj = My_class()

obj.instance_method()

obj = My_class(2,4)

obj.instance_method()

Note that the init () method is a special type of method known as a constructor. This

method is called when an object is created from the class and it allows the class to initialize the

attributes of a class.

Let’s try this code in the live coding window below.

With the help of the “self” keyword- self.a and self.b, we have accessed the variables present

in the init () method of the same class.

Along with the objects of a class, an instance method can access the class itself with the help

of self. class attribute. Let’s see how:

The self. class . name

instance(self) is related.

2. Class Methods

attribute returns the name of the class to which class

The purpose of the class methods is to set or get the details (status) of the class. That is why

they are known as class methods. They can’t access or modify specific instance data. They are

bound to the class instead of their objects. Two important things about class methods:

 In order to define a class method, you have to specify that it is a class method with the

help of the @classmethod decorator

 Class methods also take one default parameter- cls, which points to the class. Again,

this not mandatory to name the default parameter “cls”. But it is always better to go

with the conventions

class My_class:

def init (self, a, b):

self.a = a

self.b = b

def instance_method(self):

return f"This is the instance method and it can access the variables a = {self.a} and\

b = {self.b} with the help of self."

My_class.instance_method(obj)

My_class.instance_method()

My_class.class_method()

Now let’s look at how to create class methods:

As simple as that!

As I said earlier, with the help of the instance of the class, you can access any method. So we’ll

create the instance of this My_class as well and try calling this class_method():

This works too! We can access the class methods with the help of a class instance/object. But

we can access the class methods directly without creating an instance or object of the class.

Let’s see how:

Without creating an instance of the class, you can call the class method with

– Class_name.Method_name().

But this is not possible with instance methods where we have to create an instance of the class

in order to call instance methods. Let’s see what happens when we try to call the instance

method directly:

We got an error stating missing one positional argument – “self”. And it is obvious because

instance methods accept an instance of the class as the default parameter. And you are not

providing any instance as an argument. Though this can be bypassing the object name as the

argument:

obj = My_class()

obj.class_method()

class My_class:

@classmethod

def class_method(cls):

return "This is a class method."

obj = My_class()

obj.static_method()

class My_class:

@staticmethod

def static_method():

return "This is a static method."

Awesome!

3. Static Methods

Static methods cannot access the class data. In other words, they do not need to access the class

data. They are self-sufficient and can work on their own. Since they are not attached to any

class attribute, they cannot get or set the instance state or class state.

In order to define a static method, we can use the @staticmethod decorator (in a similar way

we used @classmethod decorator). Unlike instance methods and class methods, we do not need

to pass any special or default parameters. Let’s look at the implementation:

And done!

Notice that we do not have any default parameter in this case. Now how do we call static

methods? Again, we can call them using object/instance of the class as:

And we can call static methods directly, without creating an object/instance of the class:

You can notice the output is the same using both ways of calling static methods.

Topic 26: Duck Typing

Possible Question: Describe about Duck Typing?

Possible Marks: 5 or 10 Marks

Outcomes:

The main reason for using duck typing is to provide support for dynamic typing in Python

programming. In Python, we don't need to specify the variable's data type and we can reassign

the different data type values to same variable in further code. Let's see the following example.

Example -

1. x = 12000

2. print(type(x))

3.

4. x = 'Dynamic Typing'

My_class.static_method()

https://www.javatpoint.com/python-tutorial
https://www.javatpoint.com/python-tutorial

5. print(type(x))

6.

7. x = [1, 2, 3, 4]

8. print(type(x))

Output:

As we can see in the above code, we assigned an integer to a variable x, making it of
the int type. Then, we assigned a string and a list to the same variable. Python interpreter

accepts the changes of data types of the same variable. This is a dynamic typing behavior.

Many other programming languages such as Java, swift are the static type. We need to declare

variable with the data types. In the below example, we try to do the same thing using the Swift

instead of Python.

Example -

1. # integer value assigning in JavaScript

2. var a = 10

3.

4. # Assinging string in swift

5. a = 'Swift language'

Above code cannot be compiled, because we couldn't assign a string in Swift language.

Because variable a was declared as an integer.

Concept of Duck Typing

Earlier, we have discussed that Python is a dynamic typed language. However, we can use the

dynamic approach with custom data types. Let's understand the following example.

Example -

1. class VisualStudio:

2. def execute(self):

3. print('Compiling')

4. print('Running')

5. print('Spell Check')

6. print('Convention Check')

7.

8. class Desktop:

9. def code(self, ide):

10. ide.execute()

11.

12.

13. ide = VisualStudio()

14. desk = Desktop()

15. desk.code(ide)

Output:

Compiling

Running

Spell Check

Convention Check

<class 'int'>

<class 'str'>

<class 'list'>

In the above code, we have created a VisualStudio class that has to execute() method. In the

desktop-class, we have passed the ide as an argument in the code(). An ide is an object

of VisualStudio class. With the help of ide, we called the execute() method of VisualStudio

class.

Let's see another example.

Example - 2

1. class Duck:

2. def swim(self):

3. print("I'm a duck, and I can swim.")

4.

5. class Sparrow:

6. def swim(self):

7. print("I'm a sparrow, and I can swim.")

8.

9. class Crocodile:

10. def swim_walk(self):

11. print("I'm a Crocodile, and I can swim, but not quack.")

12.

13. def duck_testing(animal):

14. animal.swim()

15.

16.

17. duck_testing(Duck())

18. duck_testing(Sparrow())

19. duck_testing(Crocodile())

Output:

In the above code, the Duck class's instance is reflected by calling the duck_testing function.
It also happens with the Sparrow class, which implements the swim() function. But in the case

of the Crocodile class, it fails the duck testing evaluation because it doesn't implement

the swim() function.

How duck typing supports EAFP

The duck typing is the most appropriate style for the EAFP because we don't need to focus on

the "type" of the object. We only need to take care of its behavior and capability. Let's see

the following statements.

When we see a lot of if-else blocks, then it is an LBYL coding style.

But if we see a lot of try-except blocks, then it is a probability an EAFP coder.

I'm a duck, and I can swim.

I'm a sparrow, and I can swim.

Traceback (most recent call last):

File "<string>", line 24, in <module>

File "<string>", line 19, in duck_testing

AttributeError: 'Crocodile' object has no attribute 'swim'

Topic 27: Special Methods

Possible Question: Describe about Special Methods?

Possible Marks: 5 or 10 Marks

Outcomes:

Python magic method is defined as the special method which adds "magic" to a class. It starts

and ends with double underscores, for example, _init_ or _str_.

The built-in classes define many magic methods. The dir() function can be used to see the

number of magic methods inherited by a class. It has two prefixes, and suffix underscores in

the method name.

It is most frequently used to define the overloaded behaviors of predefined operators.

 init

The _init_ method is called after the instance of the class has been created but before it returned

to the caller. It is invoked without any call, when an instance of the class is created like

constructors in other programming languages such as C++, Java, C#, PHP, etc. These methods

are also known as initialize and are called after _new_. Its where you should initialize the

instance variables.

 str

This function computes "informal" or a nicely printable string representation of an object and

must return a string object.

 repr

This function is called by the repr() built-in function to compute the "official" string

representation of an object and returns a machine-readable representation of a type. The goal

of the _repr_ is to be unambiguous.

 len

This function should return the length of an object.

 call

We can make an object callable by adding the _call_ magic method, and it is another method

that is not needed quite as often is _call_.

If defined in a class, then that class can be called. But if it was a function, instance itself rather

than modifying.

 del

Just as _init_, which is a constructor method, _del_ is like a destructor. If you have opened a

file in _init _, then _del_ can close it.

 bytes

It offers to compute a byte-string representation of an object and should return a string object.

 ge

This method gets invoked when >= operator is used and returns True or False.

 neg

This function gets called for the unary operator.

 ipow

This function gets called on the exponents with arguments. e.g. a**=b.

 le

This function gets called on comparison using <= operator.

nonzero

This function returns the Boolean value of the object. It gets invoked when the bool (self)

function is called.

Topic 28: Composition

Possible Question: Explain in detail about Composition?

Possible Marks: 5 or 10 Marks

Outcomes:

The Composition is a way to design or implement the "has-a" relationship. Composition and

Inheritance both are design techniques. The Inheritance is used to implement the "is-

a" relationship. The "has-a" relationship is used to ensure the code reusability in our program.

In Composition, we use an instance variable that refers to another object.

The composition relationship of two objects is possible when one object contains another

object, and that object is fully dependent on it. The contained object should not exist without

the existence of its parent object. In a simple way, we can say it is a technique through which

we can describe the reference between two or more classes. And for that, we use the instance

variable, which should be created before it is used.

Key Points

o The Composition represents a part-of relationship.

o Both entities are related to each other in the Composition.

o The Composition between two entities is done when an object contains a composed

object, and the composed object cannot exist without another entity. For example, if a

university HAS-A college-lists, then a college is a whole, and college-lists are parts of

that university.

o Favor Composition over Inheritance.

o If a university is deleted, then all corresponding colleges for that university should be

deleted.

Let's take an example of a university and its colleges to understand the concept

of Composition.

We create a class College that contains variables, i.e., name and address. We also create a

class University that has a reference to refer to the list of colleges. A University can have more

than one collages. So, if a university is permanently closed, then all colleges within that

particular university will be closed because colleges cannot exist without a university. The

relationship between the university and colleges is Composition.

CompositionExample.java

1. import java.io.*;

2. import java.util.*;

3. // class College

4. class College {

5. public String name;

6. public String address;

7. College(String name, String address)

8. {

9. this.name = name;

10. this.address = address;

11. }

12. }

13. // University has more than one college.

14. class University {

15. // reference to refer to list of college.

16. private final List<College> colleges;

17. University(List<College> colleges)

18. {

19. this.colleges = colleges;

20. }

21. // Getting total number of colleges

22. public List<College> getTotalCollegesInUniversity()

23. {

24. return colleges;

25. }

26. }

27. class CompositionExample {

28. public static void main(String[] args)

29. {

30. // Creating the Objects of College class.

31. College c1

32. = new College("ABES Engineering College", "Ghaziabad");

33. College c2

34. = new College("AKG Engineering College", "Ghaziabad");

35. College c3 = new College("ACN College of Engineering & Management Sudies

 ",

36. "Aligarh");

37. // Creating list which contains the no. of colleges.

38. List<College> college = new ArrayList<College>();

39. college.add(c1);

40. college.add(c2);

41. college.add(c3);

42. University university = new University(college);

43. List<College> colleges = university.getTotalCollegesInUniversity();

44. for (College cg : colleges) {

45. System.out.println("Name : " + cg.name

46. + " and "

47. + " Address : " + cg.address);

48. }

49. }

50. }

Output:

Benefits of using Composition:

o Composition allows us to reuse the code.

o In Java, we can use multiple Inheritance by using the composition concept.

o The Composition provides better test-ability of a class.

o Composition allows us to easily replace the composed class implementation with a

better and improved version.

o Composition allows us to dynamically change our program's behavior by changing the

member objects at run time.

Model Questions

Objective

1. What will be the output of the following Python code?

a) 1 2 3 b) error c) 1 2 d) none of the mentioned
Answer: b

2. Which of the following functions can help us to find the version of python that we are

currently working on?

a) sys.version(1) b) sys.version(0) c) sys.version() d) sys.version

Answer: a

3. Python supports the creation of anonymous functions at runtime, using a construct called

a) pi b) anonymous c) lambda d) none of the mentioned
Answer: c

4. What is the order of precedence in python?

a) Exponential, Parentheses, Multiplication, Division, Addition, Subtraction

b) Exponential, Parentheses, Division, Multiplication, Addition, Subtraction

c) Parentheses, Exponential, Multiplication, Division, Subtraction, Addition

d) Parentheses, Exponential, Multiplication, Division, Addition, Subtraction

Answer: d

5. What will be the output of the following Python code snippet if x=1?

 x<<2

a) 4 b) 2 c) 1 d) 8

Answer: a

i = 1

while True:

if i%3 == 0:

break

print(i)

i + = 1

6. What does pip stand for python?

a) unlimited length

b) all private members must have leading and trailing underscores

c) Preferred Installer Program

d) none of the mentioned

Answer: c

Explanation: Variable names can be of any length.

7. Which of the following is true for variable names in Python?

a) underscore and ampersand are the only two special characters allowed

b) unlimited length

c) all private members must have leading and trailing underscores

d) none of the mentioned

Answer: b

8. What are the values of the following Python expressions?

a) 512, 64, 512 b) 512, 512, 512 c) 64, 512, 64 d) 64, 64, 64
Answer: a

9. Which of the following is the truncation division operator in Python?

a) | b) // c) / d) %

Answer: b

10. What will be the output of the following Python code?

a) [1, 0, 2, ‘hello’, ”, []] b) Error c) [1, 2, ‘hello’] d) [1, 0, 2, 0, ‘hello’, ”, []]

Answer: c

Subjective

1. Explain Code Structures in details about if, elif, and else Statement?

2. Explain about Repeat with while & iterate with for?

3. Discuss about Functions of Generators ?

4. Describe about Modules, Packages, and Programs?

5. Explain about Command-Line Arguments?

6. Explain about Objects and Classes?

7. Define a Class with class & Inheritance in detailed?

8. Explain detail about Override a Method & Add a Method?

9. Explain in detail about Get and Set Attribute Values with Properties?

10. Discuss about Method Types , Duck Typing & Special Methods

Unit – II – END

Signature of the staff

with date

l=[1, 0, 2, 0, 'hello', '', []]

list(filter(bool, l))

2**(3**2)

(2**3)**2

2**3**2

Sri Ganesh College of Arts & Science – Salem- 14.
Department of Computer Science & Applications

Study Material – 2022(Odd Semester)

Sub: Open source computing Paper Code: 21PCS Class: II M.Sc CS

Staff I/c: K. Aravindhan M.Sc., Date: Head:

UNIT – III

Data Types: Text Strings – Binary Data. Storing and Retrieving Data: File Input/Output –

Structured Text Files – Structured Binary Files - Relational Databases – No SQL Data Stores

Topic 1: Data Types

Possible Question: Discuss about Data Types in text strings?

Possible Marks: 5 or 10 Marks

Outcomes:

Strings in python are surrounded by either single quotation marks, or double quotation

marks.

'hello' is the same as "hello".

You can display a string literal with the print() function:

Example

print("Hello")

print('Hello')

Assign String to a Variable

Assigning a string to a variable is done with the variable name followed by an equal sign and

the string:

Example

a = "Hello"

print(a)

Multiline Strings

You can assign a multiline string to a variable by using three quotes:

You can use three double quotes:

a = """Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua."""

print(a)

Or three single quotes:

Example

a = '''Lorem ipsum dolor sit amet,

consectetur a dipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.'''

print(a)

Strings are Arrays

Like many other popular programming languages, strings in Python are arrays of bytes

representing unicode characters.

However, Python does not have a character data type, a single character is simply a string with

a length of 1.

Square brackets can be used to access elements of the string.

Example

Get the character at position 1 (remember that the first character has the position 0):

a = "Hello, World!"

print(a[1])

Looping Through a String

Since strings are arrays, we can loop through the characters in a string, with a for loop.

Example

Loop through the letters in the word "banana":

for x in "banana":

print(x)

Learn more about For Loops in our Python For Loops

String Length

To get the length of a string, use the len() function.

Example

The len() function returns the length of a string:

a = "Hello, World!"

print(len(a))

Check String

To check if a certain phrase or character is present in a string, we can use the keyword in.

Example

Check if "free" is present in the following text:

txt = "The best things in life are free!"

print("free" in txt)

Use it in an if statement:

Example

Print only if "free" is present:

txt = "The best things in life are free!"

if "free" in txt:

print("Yes, 'free' is present.")

Check if NOT

To check if a certain phrase or character is NOT present in a string, we can use the keyword not

in.

Example

Check if "expensive" is NOT present in the following text:

txt = "The best things in life are free!"

print("expensive" not in txt)

Use it in an if statement:

Example

print only if "expensive" is NOT present:

txt = "The best things in life are free!"

if "expensive" not in txt:

print("No, 'expensive' is NOT present.")

https://www.w3schools.com/python/python_for_loops.asp

Topic 2: Binary Data

Possible Question: Discuss about Binary Data?

Possible Marks: 5 or 10 Marks

Outcomes:

The bytes type in Python is immutable and stores a sequence of values ranging from 0-255

(8-bits). You can get the value of a single byte by using an index like an array, but the values

can not be modified.

Create empty bytes

empty_bytes = bytes(4)

print(type(empty_bytes))

print(empty_bytes)

The Bytearray Type

To create a mutable object you need to use the bytearray type. With a bytearray you can do

everything you can with other mutables like push, pop, insert, append, delete, and sort.

Cast bytes to bytearray

mutable_bytes = bytearray(b'\x00\x0F')

Bytearray allows modification

mutable_bytes[0] = 255

mutable_bytes.append(255)

print(mutable_bytes)

Cast bytearray back to bytes

immutable_bytes = bytes(mutable_bytes)

print(immutable_bytes)

The BytesIO Class

The io.BytesIO inherits from io.BufferedReader class comes with functions like read(),

write(), peek(), getvalue(). It is a general buffer of bytes that you can work with.

binary_stream = io.BytesIO()

Binary data and strings are different types, so a str

must be encoded to binary using ascii, utf-8, or other.

binary_stream.write("Hello, world!\n".encode('ascii'))

binary_stream.write("Hello, world!\n".encode('utf-8'))

Move cursor back to the beginning of the buffer

binary_stream.seek(0)

Read all data from the buffer

stream_data = binary_stream.read()

The stream_data is type 'bytes', immutable

print(type(stream_data))

print(stream_data)

To modify the actual contents of the existing buffer

use getbuffer() to get an object you can modify.

Modifying this object updates the underlying BytesIO buffer

mutable_buffer = binary_stream.getbuffer()

https://docs.python.org/3/library/io.html#io.BytesIO

print(type(mutable_buffer)) # class 'memoryview'

mutable_buffer[0] = 0xFF

Re-read the original stream. Contents will be modified

because we modified the mutable buffer

binary_stream.seek(0)

print(binary_stream.read())

Writing Bytes to a File

Pass "wb" to write a new file, or "ab" to append

with open("test.txt", "wb") as binary_file:

Write text or bytes to the file

binary_file.write("Write text by encoding\n".encode('utf8'))

num_bytes_written = binary_file.write(b'\xDE\xAD\xBE\xEF')

print("Wrote %d bytes." % num_bytes_written)

Alternatively, you could explicitly call open and close, but if you do it this way you will need

to do the error handling yourself and ensure the file is always closed, even if there is an error

during writing. I don't recommend this method unless you have a strong reason.

binary_file = open("test.txt", "wb")

binary_file.write(b'\x00')

binary_file.close()

Reading Bytes From a File

with open("test_file.dat", "rb") as binary_file:

Read the whole file at once

data = binary_file.read()

print(data)

Read file line by line

If you are working a text file, you can read the data in line by line.

with open("test.txt", "rb") as text_file:

One option is to call readline() explicitly

single_line = text_file.readline()

It is easier to use a for loop to iterate each line

for line in text_file:

print(line)

Getting the size of a file

import os

file_length_in_bytes = os.path.getsize("test.txt")

print(file_length_in_bytes)

Seeking a specific position in a file

You can move to a specific position in file before reading or writing using seek(). You can

pass a single parameter to seek() and it will move to that position, relative to the beginning of

the file.

Seek can be called one of two ways:

x.seek(offset)

x.seek(offset, starting_point)

starting_point can be 0, 1, or 2

0 - Default. Offset relative to beginning of file

1 - Start from the current position in the file

2 - Start from the end of a file (will require a negative offset)

with open("test_file.dat", "rb") as binary_file:

Seek a specific position in the file and read N bytes

binary_file.seek(0, 0) # Go to beginning of the file

couple_bytes = binary_file.read(2)

print(couple_bytes)

Integer to Bytes

i = 16

Create one byte from the integer 16

single_byte = i.to_bytes(1, byteorder='big', signed=True)

print(single_byte)

Create four bytes from the integer

four_bytes = i.to_bytes(4, byteorder='big', signed=True)

print(four_bytes)

Compare the difference to little endian

print(i.to_bytes(4, byteorder='little', signed=True))

Create bytes from a list of integers with values from 0-255

bytes_from_list = bytes([255, 254, 253, 252])

print(bytes_from_list)

Create a byte from a base 2 integer

one_byte = int('11110000', 2)

print(one_byte)

Print out binary string (e.g. 0b010010)

print(bin(22))

Bytes to Integer

Create an int from bytes. Default is unsigned.

some_bytes = b'\x00\xF0'

i = int.from_bytes(some_bytes, byteorder='big')

print(i)

Create a signed int

i = int.from_bytes(b'\x00\x0F', byteorder='big', signed=True)

print(i)

Use a list of integers 0-255 as a source of byte values

i = int.from_bytes([255, 0, 0, 0], byteorder='big')

print(i)

Text Encoding

Binary to Text

binary_data = b'I am text.'

text = binary_data.decode('utf-8')

print(text)

binary_data = bytes([65, 66, 67]) # ASCII values for A, B, C

text = binary_data.decode('utf-8')

print(text)

Text to Binary

message = "Hello" # str

binary_message = message.encode('utf-8')

print(type(binary_message)) # bytes

Python has many built in encodings for different languages,

and even the Caeser cipher is built in

import codecs

cipher_text = codecs.encode(message, 'rot_13')

print(cipher_text)

Base 64 Encoding

Encode binary data to a base 64 string

binary_data = b'\x00\xFF\x00\xFF'

Use the codecs module to encode

import codecs

base64_data = codecs.encode(binary_data, 'base64')

print(base64_data)

Or use the binascii module

import binascii

base64_data = binascii.b2a_base64(binary_data)

print(base64_data)

The base64_string is still a bytes type

It may need to be decoded to an ASCII string

print(base64_data.decode('utf-8'))

Decoding is done similarly

print(codecs.decode(base64_data, 'base64'))

print(binascii.a2b_base64(base64_data))

Hexadecimal

Starting with a hex string you can unhexlify it to bytes

deadbeef = binascii.unhexlify('DEADBEEF')

print(deadbeef)

Given raw bytes, get an ASCII string representing the hex values

hex_data = binascii.hexlify(b'\x00\xff') # Two bytes values 0 and 255

The resulting value will be an ASCII string but it will be a bytes type

It may be necessary to decode it to a regular string

text_string = hex_data.decode('utf-8') # Result is string "00ff"

print(text_string)

Format Strings

Format strings can be helpful to visualize or output byte values. Format strings require an

integer value so the byte will have to be converted to an integer first.

a_byte = b'\xff' # 255

i = ord(a_byte) # Get the integer value of the byte

bin = "{0:b}".format(i) # binary: 11111111

hex = "{0:x}".format(i) # hexadecimal: ff

oct = "{0:o}".format(i) # octal: 377

print(bin)

print(hex)

print(oct)

Bitwise Operations

Some bytes to play with

byte1 = int('11110000', 2) # 240

byte2 = int('00001111', 2) # 15

byte3 = int('01010101', 2) # 85

Ones Complement (Flip the bits)

print(~byte1)

AND

print(byte1 & byte2)

OR

print(byte1 | byte2)

XOR

print(byte1 ^ byte3)

Shifting right will lose the right-most bit

print(byte2 >> 3)

Shifting left will add a 0 bit on the right side

print(byte2 << 1)

See if a single bit is set

bit_mask = int('00000001', 2) # Bit 1

print(bit_mask & byte1) # Is bit set in byte1?

print(bit_mask & byte2) # Is bit set in byte2?

Struct Packing and Unpacking

Packing and unpacking requires a string that defines how the binary data is structured. It

needs to know which bytes represent values. It needs to know whether the entire set of bytes

represets characters or if it is a sequence of 4-byte integers. It can be structured in any

number of ways. The format strings can be simple or complex. In this example I am packing

a single four-byte integer followed by two characters. The letters i and c represent integers

and characters.

import struct

Packing values to bytes

The first parameter is the format string. Here it specifies the data is structured

with a single four-byte integer followed by two characters.

The rest of the parameters are the values for each item in order

binary_data = struct.pack("icc", 8499000, b'A', b'Z')

print(binary_data)

When unpacking, you receive a tuple of all data in the same order

tuple_of_data = struct.unpack("icc", binary_data)

print(tuple_of_data)

For more information on format strings and endiannes, refer to

https://docs.python.org/3.5/library/struct.html

System Byte Order

You might need to know what byte order your system uses. Byte order refers to big endian or

little endian. The sys module can provide that value.

Find out what byte order your system uses

import sys

print("Native byteorder: ", sys.byteorder)

Examples

diff.py - Do two files match?

Exercise: Rewrite this code to compare the files part at a time so it

will not run out of RAM with large files.

import sys

with open(sys.argv[1], 'rb') as file1, open(sys.argv[2], 'rb') as file2:

data1 = file1.read()

data2 = file2.read()

if data1 != data2:

print("Files do not match.")

else:

print("Files match.")

#is_jpeg.py - Does the file have a JPEG binary signature?

import sys

import binascii

jpeg_signatures = [

binascii.unhexlify(b'FFD8FFD8'),

binascii.unhexlify(b'FFD8FFE0'),

binascii.unhexlify(b'FFD8FFE1')

]

with open(sys.argv[1], 'rb') as file:

first_four_bytes = file.read(4)

if first_four_bytes in jpeg_signatures:

print("JPEG detected.")

else:

print("File does not look like a JPEG.")

Topic 3: File Input/Output

Possible Question: Explain in detail about File Input/Outpu?

Possible Marks: 5 or 10 Marks

Outcomes:

Till now, we were taking the input from the console and writing it back to the console to interact

with the user.

Sometimes, it is not enough to only display the data on the console. The data to be displayed

may be very large, and only a limited amount of data can be displayed on the console since the

memory is volatile, it is impossible to recover the programmatically generated data again and

again.

The file handling plays an important role when the data needs to be stored permanently into

the file. A file is a named location on disk to store related information. We can access the stored

information (non-volatile) after the program termination.

The file-handling implementation is slightly lengthy or complicated in the other programming

language, but it is easier and shorter in Python.

In Python, files are treated in two modes as text or binary. The file may be in the text or binary

format, and each line of a file is ended with the special character.

Hence, a file operation can be done in the following order.

o Open a file

o Read or write - Performing operation

o Close the file

Opening a file

Python provides an open() function that accepts two arguments, file name and access mode in

which the file is accessed. The function returns a file object which can be used to perform

various operations like reading, writing, etc.

Syntax:

file object = open(<file-name>, <access-mode>, <buffering>)

The files can be accessed using various modes like read, write, or append. The following are

the details about the access mode to open a file.

Let's look at the simple example to open a file named "file.txt" (stored in the same directory)

in read mode and printing its content on the console.

Example

1. #opens the file file.txt in read mode

2. fileptr = open("file.txt","r")

3.

4. if fileptr:

5. print("file is opened successfully")

Output:

<class '_io.TextIOWrapper'>

SN Access

mode

Description

1 r It opens the file to read-only mode. The file pointer exists at the beginning. The file is by

default open in this mode if no access mode is passed.

2 rb It opens the file to read-only in binary format. The file pointer exists at the beginning of the

file.

3 r+ It opens the file to read and write both. The file pointer exists at the beginning of the file.

4 rb+ It opens the file to read and write both in binary format. The file pointer exists at the beginning

of the file.

5 w It opens the file to write only. It overwrites the file if previously exists or creates a new one if

no file exists with the same name. The file pointer exists at the beginning of the file.

6 wb It opens the file to write only in binary format. It overwrites the file if it exists previously or

creates a new one if no file exists. The file pointer exists at the beginning of the file.

7 w+ It opens the file to write and read both. It is different from r+ in the sense that it overwrites the

previous file if one exists whereas r+ doesn't overwrite the previously written file. It creates a

new file if no file exists. The file pointer exists at the beginning of the file.

8 wb+ It opens the file to write and read both in binary format. The file pointer exists at the beginning

of the file.

9 a It opens the file in the append mode. The file pointer exists at the end of the previously written

file if exists any. It creates a new file if no file exists with the same name.

10 ab It opens the file in the append mode in binary format. The pointer exists at the end of the

previously written file. It creates a new file in binary format if no file exists with the same

name.

11 a+ It opens a file to append and read both. The file pointer remains at the end of the file if a file

exists. It creates a new file if no file exists with the same name.

12 ab+ It opens a file to append and read both in binary format. The file pointer remains at the end of

the file.

file is opened successfully
In the above code, we have passed filename as a first argument and opened file in read mode

as we mentioned r as the second argument. The fileptr holds the file object and if the file is

opened successfully, it will execute the print statement

The close() method

Once all the operations are done on the file, we must close it through our Python script using

the close() method. Any unwritten information gets destroyed once the close() method is called

on a file object.

We can perform any operation on the file externally using the file system which is the currently

opened in Python; hence it is good practice to close the file once all the operations are done.

The syntax to use the close() method is given below.

Syntax

1. fileobject.close()

Consider the following example.

1. # opens the file file.txt in read mode

2. fileptr = open("file.txt","r")

3.

4. if fileptr:

5. print("file is opened successfully")

6.

7. #closes the opened file

8. fileptr.close()

After closing the file, we cannot perform any operation in the file. The file needs to be properly

closed. If any exception occurs while performing some operations in the file then the program

terminates without closing the file.

We should use the following method to overcome such type of problem.

1. try:

2. fileptr = open("file.txt")

3. # perform file operations

4. finally:

5. fileptr.close()

The with statement

The with statement was introduced in python 2.5. The with statement is useful in the case of

manipulating the files. It is used in the scenario where a pair of statements is to be executed

with a block of code in between.

The syntax to open a file using with the statement is given below.

1. with open(<file name>, <access mode>) as <file-pointer>:

2. #statement suite

The advantage of using with statement is that it provides the guarantee to close the file

regardless of how the nested block exits.

It is always suggestible to use the with statement in the case of files because, if the break,

return, or exception occurs in the nested block of code then it automatically closes the file, we

don't need to write the close() function. It doesn't let the file to corrupt.

Consider the following example.

Example

1. with open("file.txt",'r') as f:

2. content = f.read();

3. print(content)

Writing the file

To write some text to a file, we need to open the file using the open method with one of the
following access modes.

w: It will overwrite the file if any file exists. The file pointer is at the beginning of the file.

a: It will append the existing file. The file pointer is at the end of the file. It creates a new file

if no file exists.

Consider the following example.

Example

1. # open the file.txt in append mode. Create a new file if no such file exists.

2. fileptr = open("file2.txt", "w")

3.

4. # appending the content to the file

5. fileptr.write('''''Python is the modern day language. It makes things so simple.

6. It is the fastest-growing programing language''')

7.

8. # closing the opened the file

9. fileptr.close()

Output:

File2.txt

Python is the modern-day language. It makes things so simple. It is the fastest growing

programming language.

Snapshot of the file2.txt

We have opened the file in w mode. The file1.txt file doesn't exist, it created a new file and we

have written the content in the file using the write() function.

Example 2

1. #open the file.txt in write mode.

2. fileptr = open("file2.txt","a")

3.

4. #overwriting the content of the file

5. fileptr.write(" Python has an easy syntax and user-friendly interaction.")

6.

7. #closing the opened file

8. fileptr.close()

Output:

Python is the modern day language. It makes things so simple.

It is the fastest growing programing language Python has an easy syntax and user-friendly

interaction.

Snapshot of the file2.txt

We can see that the content of the file is modified. We have opened the file in a mode and it

appended the content in the existing file2.txt.

To read a file using the Python script, the Python provides the read() method.

The read() method reads a string from the file. It can read the data in the text as well as a binary

format.

The syntax of the read() method is given below.

Syntax:

1. fileobj.read(<count>)

Here, the count is the number of bytes to be read from the file starting from the beginning of

the file. If the count is not specified, then it may read the content of the file until the end.

Consider the following example.

Example

1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file2.txt","r")

3. #stores all the data of the file into the variable content

4. content = fileptr.read(10)

5. # prints the type of the data stored in the file

6. print(type(content))

7. #prints the content of the file

8. print(content)

9. #closes the opened file

10. fileptr.close()

Output:

<class 'str'>

Python is

In the above code, we have read the content of file2.txt by using the read() function. We have

passed count value as ten which means it will read the first ten characters from the file.

If we use the following line, then it will print all content of the file.

1. content = fileptr.read()

2. print(content)

Output:

Python is the modern-day language. It makes things so simple.

It is the fastest-growing programing language Python has easy an syntax and user-friendly

interaction.

Read file through for loop

We can read the file using for loop. Consider the following example.

1. #open the file.txt in read mode. causes an error if no such file exists.

2. fileptr = open("file2.txt","r");

3. #running a for loop

4. for i in fileptr:

5. print(i) # i contains each line of the file

Output:

Python is the modern day language.

It makes things so simple.

Python has easy syntax and user-friendly interaction.

Read Lines of the file

Python facilitates to read the file line by line by using a function readline() method.
The readline() method reads the lines of the file from the beginning, i.e., if we use the

readline() method two times, then we can get the first two lines of the file.

Consider the following example which contains a function readline() that reads the first line

of our file "file2.txt" containing three lines. Consider the following example.

Example 1: Reading lines using readline() function

1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file2.txt","r");

3. #stores all the data of the file into the variable content

4. content = fileptr.readline()

5. content1 = fileptr.readline()

6. #prints the content of the file

7. print(content)

8. print(content1)

9. #closes the opened file

10. fileptr.close()

Output:

Python is the modern day language.

It makes things so simple.

We called the readline() function two times that's why it read two lines from the file.

Python provides also the readlines() method which is used for the reading lines. It returns the

list of the lines till the end of file(EOF) is reached.

Example 2: Reading Lines Using readlines() function

1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file2.txt","r");

3.

4. #stores all the data of the file into the variable content

5. content = fileptr.readlines()

6.

7. #prints the content of the file

8. print(content)

9.

10. #closes the opened file

11. fileptr.close()

Output:

['Python is the modern day language.\n', 'It makes things so simple.\n', 'Python has easy syntax

and user-friendly interaction.']

Creating a new file

The new file can be created by using one of the following access modes with the function

open().

x: it creates a new file with the specified name. It causes an error a file exists with the same

name.

a: It creates a new file with the specified name if no such file exists. It appends the content to

the file if the file already exists with the specified name.

w: It creates a new file with the specified name if no such file exists. It overwrites the existing

file.

Consider the following example.

Example 1

1. #open the file.txt in read mode. causes error if no such file exists.

2. fileptr = open("file2.txt","x")

3. print(fileptr)

4. if fileptr:

5. print("File created successfully")

Output:

<_io.TextIOWrapper name='file2.txt' mode='x' encoding='cp1252'>

File created successfully

File Pointer positions

Python provides the tell() method which is used to print the byte number at which the file

pointer currently exists. Consider the following example.

1. # open the file file2.txt in read mode

2. fileptr = open("file2.txt","r")

3.

4. #initially the filepointer is at 0

5. print("The filepointer is at byte :",fileptr.tell())

6.

7. #reading the content of the file

8. content = fileptr.read();

9.

10. #after the read operation file pointer modifies. tell() returns the location of the fileptr.

11.

12. print("After reading, the filepointer is at:",fileptr.tell())

Output:

The filepointer is at byte : 0

After reading, the filepointer is at: 117

Modifying file pointer position

In real-world applications, sometimes we need to change the file pointer location externally

since we may need to read or write the content at various locations.

For this purpose, the Python provides us the seek() method which enables us to modify the file

pointer position externally.

The syntax to use the seek() method is given below.

Syntax:

<file-ptr>.seek(offset[, from)

The seek() method accepts two parameters:

offset: It refers to the new position of the file pointer within the file.

from: It indicates the reference position from where the bytes are to be moved. If it is set to 0,

the beginning of the file is used as the reference position. If it is set to 1, the current position

of the file pointer is used as the reference position. If it is set to 2, the end of the file pointer is

used as the reference position.

Consider the following example.

Example

1. # open the file file2.txt in read mode

2. fileptr = open("file2.txt","r")

3.

4. #initially the filepointer is at 0

5. print("The filepointer is at byte :",fileptr.tell())

6.

7. #changing the file pointer location to 10.

8. fileptr.seek(10);

9.

10. #tell() returns the location of the fileptr.

11. print("After reading, the filepointer is at:",fileptr.tell())

Output:

The filepointer is at byte : 0

After reading, the filepointer is at: 10

Python OS module

Renaming the file

The Python os module enables interaction with the operating system. The os module provides

the functions that are involved in file processing operations like renaming, deleting, etc. It

provides us the rename() method to rename the specified file to a new name. The syntax to use

the rename() method is given below.

Syntax:

1. rename(current-name, new-name)

The first argument is the current file name and the second argument is the modified name. We

can change the file name bypassing these two arguments.

Example 1:

1. import os

2.

3. #rename file2.txt to file3.txt

4. os.rename("file2.txt","file3.txt")

Output:

The above code renamed current file2.txt to file3.txt

Removing the file

The os module provides the remove() method which is used to remove the specified file. The
syntax to use the remove() method is given below.

1. remove(file-name)

Example 1

1. import os;

2. #deleting the file named file3.txt

3. os.remove("file3.txt")

Creating the new directory

The mkdir() method is used to create the directories in the current working directory. The

syntax to create the new directory is given below.

Syntax:

1. mkdir(directory name)

Example 1

1. import os

2.

3. #creating a new directory with the name new

4. os.mkdir("new")

The getcwd() method

This method returns the current working directory.
The syntax to use the getcwd() method is given below.

Syntax

1. os.getcwd()

Example

1. import os

2. os.getcwd()

Output:

'C:\\Users\\DEVANSH SHARMA'

Changing the current working directory

The chdir() method is used to change the current working directory to a specified directory.

The syntax to use the chdir() method is given below.

Syntax

1. chdir("new-directory")

Example

1. import os

2. # Changing current directory with the new directiory

3. os.chdir("C:\\Users\\DEVANSH SHARMA\\Documents")

4. #It will display the current working directory

5. os.getcwd()

Output:

'C:\\Users\\DEVANSH SHARMA\\Documents'

Deleting directory

The rmdir() method is used to delete the specified directory.

The syntax to use the rmdir() method is given below.

Syntax

1. os.rmdir(directory name)

Example 1

1. import os

2. #removing the new directory

3. os.rmdir("directory_name")

It will remove the specified directory.

Writing Python output to the files

In Python, there are the requirements to write the output of a Python script to a file.

The check_call() method of module subprocess is used to execute a Python script and write

the output of that script to a file.

The following example contains two python scripts. The script file1.py executes the script

file.py and writes its output to the text file output.txt.

Example

file.py

SN Method Description

1 file.close() It closes the opened file. The file once closed, it can't be read or write anymore.

2 File.fush() It flushes the internal buffer.

3 File.fileno() It returns the file descriptor used by the underlying implementation to request

I/O from the OS.

4 File.isatty() It returns true if the file is connected to a TTY device, otherwise returns false.

5 File.next() It returns the next line from the file.

6 File.read([size]) It reads the file for the specified size.

7 File.readline([size]) It reads one line from the file and places the file pointer to the beginning of the

new line.

8 File.readlines([sizehint]) It returns a list containing all the lines of the file. It reads the file until the EOF

occurs using readline() function.

9 File.seek(offset[,from) It modifies the position of the file pointer to a specified offset with the specified

reference.

10 File.tell() It returns the current position of the file pointer within the file.

11 File.truncate([size]) It truncates the file to the optional specified size.

12 File.write(str) It writes the specified string to a file

13 File.writelines(seq) It writes a sequence of the strings to a file.

1. temperatures=[10,-20,-289,100]

2. def c_to_f(c):

3. if c< -273.15:

4. return "That temperature doesn't make sense!"

5. else:

6. f=c*9/5+32

7. return f

8. for t in temperatures:

9. print(c_to_f(t))

file.py

1. import subprocess

2.

3. with open("output.txt", "wb") as f:

4. subprocess.check_call(["python", "file.py"], stdout=f)

The file related methods

The file object provides the following methods to manipulate the files on various operating
systems.

Topic 4: Structured Text Files

Possible Question: Describe about Structured Text Files?

Possible Marks: 5 or 10 Marks

Outcomes:

A text file is structured as a sequence of lines.

 Each line of the text file consists of a sequence of characters.

 A separator, or delimiter, character like tab ('\t'), comma (','), or vertical bar

 ('|'). This is an example of the comma-separated values (CSV) format.

 '<' and '>' around tags. Examples include XML and HTML.

 Punctuation. An example is JavaScript Object Notation (JSON).

Steps for writing to text files

To write to a text file in Python, you follow these steps:

 First, open the text file for writing (or appending) using the open() function.

 Second, write to the text file using the write() or writelines() method.

 Third, close the file using the close() method.

The following shows the basic syntax of the open() function:

f = open(path_to_file, mode)

The open() function accepts many parameters. But you’ll focus on the first two:

 The path_to_file parameter specifies the path to the text file that you want to open for

writing.

 The mode parameter specifies the mode for which you want to open the text file.

For writing to a text file, you use one of the following modes:

The open() function returns a file object. And the file object has two useful methods for writing

text to the file: write() and writelines().

The write() method writes a string to a text file and the writelines() method write a list of

strings to a file at once.

In fact, the writelines() method accepts an iterable object, not just a list, so you can pass

a tuple of strings, a set of strings, etc., to the writelines() method.

To write a line to a text file, you need to manually add a new line character:

f.write('\n')

f.writelines('\n')

Code language: JavaScript (javascript)

And it’s up to you to add the new line characters.

Writing text file examples

The following example shows how to use the write() function to write a list of texts to a text

file:

lines = ['Readme', 'How to write text files in Python']

with open('readme.txt', 'w') as f:

 for line in lines:

 f.write(line)

 f.write('\n')

Mode Description

'w' Open a text file for writing text

'a' Open a text file for appending text

https://www.pythontutorial.net/python-basics/python-iterables/
https://www.pythontutorial.net/python-basics/python-list/
https://www.pythontutorial.net/python-basics/python-tuples/
https://www.pythontutorial.net/python-basics/python-set/

Code language: JavaScript (javascript)

If the readme.txt file doesn’t exist, the open() function will create a new file.

The following shows how to write a list of text strings to a text file:

lines = ['Readme', 'How to write text files in Python']

with open('readme.txt', 'w') as f:

 f.writelines(lines)

Code language: JavaScript (javascript)

If you treat each element of the list as a line, you need to concatenate it with the newline

character like this:

lines = ['Readme', 'How to write text files in Python']

with open('readme.txt', 'w') as f:

 f.write('\n'.join(lines))

Code language: JavaScript (javascript)

Appending text files

To append to a text file, you need to open the text file for appending mode. The following

example appends new lines to the readme.txt file:

more_lines = ['', 'Append text files', 'The End']

with open('readme.txt', 'a') as f:

 f.writelines('\n'.join(more_lines))

Code language: JavaScript (javascript)

Output:

Writing to a UTF-8 text file

If you write UTF-8 characters to a text file using the code from the previous examples, you’ll

get an error like this:

UnicodeEncodeError: 'charmap' codec can't encode characters in position 0-44: character maps

to <undefined>

Code language: HTML, XML (xml)

To open a file and write UTF-8 characters to a file, you need to pass the encoding='utf-

8' parameter to the open() function.

Topic 5: Structured Binary Files

Possible Question: Describe about Structured Binary Files?

Possible Marks: 5 or 10 Marks

Outcomes:

The file that contains the binary data is called a binary file. Any formatted or unformatted

binary data is stored in a binary file, and this file is not human-readable and is used by the

computer directly. When a binary file is required to read or transfer from one location to

another location, the file’s content is converted or encoded into a human-readable format.

The extension of the binary file is .bin. The content of the binary file can be read by using a

built-in function or module. Different ways to read binary files in Python have been shown in

this tutorial.

Pre-requisite:

Before checking the examples of this tutorial, it is better to create one or more binary files to

use in the example script. The script of two python files has given below to create two binary

files. The binary1.py will create a binary file named string.bin that will contain string data,

and the binary2.py will create a binary file named number_list.bin that will contain a list of

numeric data.

Binary1.py

Binary2.py

Open a file handler to create a binary file

file=open("number_list.bin","wb")

Declare a list of numeric values

numbers=[10,30,45,60,70,85,99]

Convert the list to array

barray=bytearray(numbers)

Write array into the file

file.write(barray)

Open a file handler to create a binary file

file_handler = open("string.bin", "wb")

Add two lines of text in the binary file

file_handler.write(b"Welcome to LinuxHint.\nLearn Python Programming.")

Close the file handler

file_handler.close()

Example-1: Read the binary file of string data into the byte array

Many ways exist in Python to read the binary file. You can read the particular number of

bytes or the full content of the binary file at a time. Create a python file with the following

script. The open() function has used to open the string.bin for reading. The read()

function has been used to read 7 characters from the file in each iteration of while loop and

print. Next, the read() function has been used without any argument to read the full content

of the binary file that will be printed later.

Output:

The following output will appear after executing the above script.

Open the binary file for reading

file_handler = open("string.bin", "rb")

Read the first three bytes from the binary file

data_byte = file_handler.read(7)

print("Print three characters in each iteration:")

Iterate the loop to read the remaining part of the file

while data_byte:

print(data_byte)

data_byte = file_handler.read(7)

Read the entire file as a single byte string

with open('string.bin', 'rb') as fh:

content = fh.read()

print("Print the full content of the binary file:")

print(content)

file.close()

Topic 6: Relational Databases

Possible Question: Explain detail about Relational Databases?

Possible Marks: 5 or 10 Marks

Outcomes:

We can connect to relational databases for analysing data using the pandas library as well as

another additional library for implementing database connectivity. This package is named

as sqlalchemy which provides full SQL language functionality to be used in python.

Installing SQLAlchemy

The installation is very straight forward using Anaconda Data Science Environment., run the

following command in the Anaconda Prompt Window to install the SQLAlchemy package.

Reading Relational Tables
We will use Sqlite3 as our relational database as it is very light weight and easy to use. Though

the SQLAlchemy library can connect to a variety of relational sources including MySql, Oracle

and Postgresql and Mssql. We first create a database engine and then connect to the database

engine using the to_sql function of the SQLAlchemy library.

In the below example we create the relational table by using the to_sql function from a

dataframe already created by reading a csv file. Then we use the read_sql_query function

from pandas to execute and capture the results from various SQL queries.

When we execute the above code, it produces the following result.

Result 1

index id
0
1

2

3

4

5

6

7

0
1

2

3

4

5

6

7

1
2

3

4

5

6

name salary start_date

Rick 623.30 2012-01-01

dept
IT

Dan 515.20 2013-09-23 Operations

Tusar 611.00 2014-11-15
Ryan 729.00 2014-05-11

IT

HR
Gary 843.25 2015-03-27 Finance

Rasmi 578.00 2013-05-21 IT

7 Pranab 632.80 2013-07-30 Operations
8 Guru 722.50 2014-06-17 Finance

Result 2

dept sum(salary)

from sqlalchemy import create_engine

import pandas as pd

data = pd.read_csv('/path/input.csv')

Create the db engine

engine = create_engine('sqlite:///:memory:')

Store the dataframe as a table

data.to_sql('data_table', engine)

Query 1 on the relational table

res1 = pd.read_sql_query('SELECT * FROM data_table', engine)

print('Result 1')

print(res1)

print('')

Query 2 on the relational table

res2 = pd.read_sql_query('SELECT dept,sum(salary) FROM data_table group by dept',

engine)

print('Result 2')

print(res2)

conda install sqlalchemy

https://www.tutorialspoint.com/python/python_data_science_environment_setup.htm

Inserting Data to Relational Tables

We can also insert data into relational tables using sql.execute function available in pandas. In

the below code we previous csv file as input data set, store it in a relational table and then insert

another record using sql.execute.

When we execute the above code, it produces the following result.

Deleting Data from Relational Tables

We can also delete data into relational tables using sql.execute function available in pandas.

The below code deletes a row based on the input condition given.

from sqlalchemy import create_engine

from pandas.io import sql

import pandas as pd

data = pd.read_csv('C:/Users/Rasmi/Documents/pydatasci/input.csv')

engine = create_engine('sqlite:///:memory:')

data.to_sql('data_table', engine)

sql.execute('Delete from data_table where name = (?) ', engine, params=[('Gary')])

res = pd.read_sql_query('SELECT ID,Dept,Name,Salary,start_date FROM data_table',

engine)

0
1

2

3

4

5

6

7

8

id

1

dept name salary start_date

IT Rick 623.30 2012-01-01
2 Operations Dan 515.20 2013-09-23

3
4

5

6

IT Tusar 611.00 2014-11-15
HR Ryan 729.00 2014-05-11

Finance Gary 843.25 2015-03-27

IT Rasmi 578.00 2013-05-21

7 Operations Pranab 632.80 2013-07-30

8
9

Finance Guru 722.50 2014-06-17
IT Ruby 711.20 2015-03-27

from sqlalchemy import create_engine

from pandas.io import sql

import pandas as pd

data = pd.read_csv('C:/Users/Rasmi/Documents/pydatasci/input.csv')

engine = create_engine('sqlite:///:memory:')

Store the Data in a relational table

data.to_sql('data_table', engine)

Insert another row

sql.execute('INSERT INTO data_table VALUES(?,?,?,?,?,?)', engine,

params=[('id',9,'Ruby',711.20,'2015-03-27','IT')])

Read from the relational table

res = pd.read_sql_query('SELECT ID,Dept,Name,Salary,start_date FROM data_table',

engine)

print(res)

0 Finance 1565.75

1 HR 729.00

2 IT 1812.30

3 Operations 1148.00

When we execute the above code, it produces the following result.

Topic 7: No SQL Data Stores

Possible Question: Explain detail about No SQL Data Stores?

Possible Marks: 5 or 10 Marks

Outcomes:

As more and more data become available as unstructured or semi-structured, the need of

managing them through NoSql database increases. Python can also interact with NoSQL

databases in a similar way as is interacts with Relational databases. we will use python to

interact with MongoDB as a NoSQL database. In case you are new to MongoDB, you can learn

it in our tutorial here.

In order to connect to MongoDB, python uses a library known as pymongo. You can add this

library to your python environment, using the below command from the Anaconda

environment.

This library enables python to connect to MOngoDB using a db client. Once connected we
select the db name to be used for various operations.

Inserting Data

To insert data into MongoDB we use the insert() method which is available in the database

environment. First we connect to the db using python code shown below and then we provide

the document details in form of a series of key-value pairs.

Import the python libraries

from pymongo import MongoClient

from pprint import pprint

Choose the appropriate client

client = MongoClient()

Connect to the test db

db=client.test

Use the employee collection

employee = db.employee

employee_details = {

'Name': 'Raj Kumar',

'Address': 'Sears Streer, NZ',

'Age': '42'

}

Use the insert method

result = employee.insert_one(employee_details)

Query for the inserted document.

Queryresult = employee.find_one({'Age': '42'})

conda install pymongo

0
1

2

3

4

5

6

id

1

dept name salary start_date

IT Rick 623.3 2012-01-01
2 Operations Dan 515.2 2013-09-23

3
4

6

IT Tusar 611.0 2014-11-15
HR Ryan 729.0 2014-05-11

IT Rasmi 578.0 2013-05-21

7 Operations Pranab 632.8 2013-07-30

8 Finance Guru 722.5 2014-06-17

print(res)

https://www.tutorialspoint.com/mongodb/index.htm

When we execute the above code, it produces the following result.

Updating Data

Updating an existing MongoDB data is similar to inserting. We use the update() method which

is native to mongoDB. In the below code we are replacing the existing record with new key-

value pairs. Please note how we are using the condition criteria to decide which record to

update.

When we execute the above code, it produces the following result.

Deleting Data

Deleting a record is also straight forward where we use the delete method. Here also we

mention the condition which is used to choose the record to be deleted.

Import the python libraries

from pymongo import MongoClient

from pprint import pprint

Choose the appropriate client

client = MongoClient()

Connect to db

{u'Address': u'New Omsk, WC',

u'Age': u'35',

u'Name': u'Srinidhi',

u'_id': ObjectId('5adc5a9f84e7cd3940399f93')}

Import the python libraries

from pymongo import MongoClient

from pprint import pprint

Choose the appropriate client

client = MongoClient()

Connect to db

db=client.test

employee = db.employee

Use the condition to choose the record

and use the update method

db.employee.update_one(

{"Age":'42'},

{

"$set": {

"Name":"Srinidhi",

"Age":'35',

"Address":"New Omsk, WC"

}

}

)

Queryresult = employee.find_one({'Age':'35'})

pprint(Queryresult)

{u'Address': u'Sears Streer, NZ',

u'Age': u'42',

u'Name': u'Raj Kumar',

u'_id': ObjectId('5adc5a9f84e7cd3940399f93')}

pprint(Queryresult)

When we execute the above code, it produces the following result.

So we see the particular record does not exist in the db any more.

Model Questions

Objective

1. Which of the following functions is a built-in function in python?

a) factorial() b) print() c) seed() d) sqrt()

Answer: b

2. Which of the following is the use of id() function in python?

a) Every object doesn’t have a unique id b) Id returns the identity of the object

c) All of the mentioned d) None of the mentioned

Answer: b

3. The following python program can work with _ parameters.

a) any number of b) 0 c) 1 d) 2

Answer: a

4. What will be the output of the following Python function?

 min(max(False,-3,-4), 2,7)

a) -4 b) -3 c) 2 d) False

Answer: d

5. Which of the following is not a core data type in Python programming?

a) Tuples b) Lists c) Class d) Dictionary

Answer: c

6. What will be the output of the following Python expression if x=56.236?

 print("%.2f"%x)

a) 56.236 b) 56.23 c) 56.0000 d) 56.24

Answer: d

7. Which of these is the definition for packages in Python?

a) A set of main modules

b) A folder of python modules

c) A number of files containing Python definitions and statements

d) A set of programs making use of Python modules

Answer: b

8. What will be the output of the following Python function?

 len(["hello",2, 4, 6])

a) Error b) 6 c) 4 d) 3

Answer: c

def f(x):

def f1(*args, **kwargs):

print("Sanfoundry")

return x(*args, **kwargs)

return f1

None

db=client.test

employee = db.employee

Use the condition to choose the record

and use the delete method

db.employee.delete_one({"Age":'35'})

Queryresult = employee.find_one({'Age':'35'})

pprint(Queryresult)

9. What will be the output of the following Python code?

a) a B C D b) a b c d c) error d) A B C D
Answer: d

10. What is the order of namespaces in which Python looks for an identifier?

a) Python first searches the built-in namespace, then the global namespace and finally the

local namespace

b) Python first searches the built-in namespace, then the local namespace and finally the

global namespace

c) Python first searches the local namespace, then the global namespace and finally the built-

in namespace

d) Python first searches the global namespace, then the local namespace and finally the built-

in namespace

Answer: c

Subjective

1. Explain in detail about Data Types?

2. Discuss about Text Strings?

3. Discuss about Binary Data?

4. Describe about Storing and Retrieving Data?

5. Explain in detail about File Input/Output?

6. Explain detail about Structured Text Files?

7. Discuss about Structured Binary Files?

8. Explain about Relational Databases?

9. Explain about No SQL Data Stores

Unit – III – END

Signature of the staff

with date

x = 'abcd'

for i in x:

print(i.upper())

Sri Ganesh College of Arts & Science – Salem- 14.
Department of Computer Science & Applications

Study Material – 2022(Odd Semester)

Sub: Open source computing Paper Code: 21PCS Class: II M.Sc CS

Staff I/c: K. Aravindhan M.Sc., Date: Head:

UNIT – IV

Web: Web Clients – Web Servers – Web Services and Automation – Systems: Files –

Directories – Programs and Processes – Calendars and Clocks

Topic 1: Web Clients

Possible Question: Explain detail about Web Clients?

Possible Marks: 5 or 10 Marks

Outcomes:

The low-level network plumbing of the Internet is called Transmission Control

Protocol/Internet Protocol, or more commonly, simply TCP/IP (“TCP/IP” goes into more

detail about this). It moves bytes among computers, but doesn’t care about what those bytes

mean. That’s the job of higher-level protocols—syntax definitions for specific purposes.

HTTP is the standard protocol for web data interchange.

The Web is a client-server system. The client makes a request to a server: it opens a TCP/IP

connection, sends the URL and other information via HTTP, and receives a response.

The format of the response is also defined by HTTP. It includes the status of the request, and

(if the request succeeded) the response’s data and format.

The most well-known web client is a web browser. It can make HTTP requests in a number

of ways. You might initiate a request manually by typing a URL into the location bar or

clicking on a link in a web page. Very often, the data returned is used to display a website—

HTML documents, JavaScript files, CSS files, and images—but it can be any type of data,

not just that intended for display.

An important aspect of HTTP is that it’s stateless. Each HTTP connection that you make is

independent of all the others. This simplifies basic web operations but complicates others.

Here are just a few samples of the challenges:

Caching

Remote content that doesn’t change should be saved by the web client and used to avoid

downloading from the server again.

Sessions

A shopping website should remember the contents of your shopping cart.

Authentication

Sites that require your username and password should remember them while you’re logged

in.

Solutions to statelessness include cookies, in which the server sends the client enough

specific information to be able to identify it uniquely when the client sends the cookie back.

Test with telnet

HTTP is a text-based protocol, so you can actually type it yourself for web testing. The

ancient telnet program lets you connect to any server and port and type commands.

Let’s ask everyone’s favorite test site, Google, some basic information about its home page.

Type this:

$ telnet www.google.com 80

If there is a web server on port 80 at google.com (I think that’s a safe bet), telnet will print

some reassuring information and then display a final blank line that’s your cue to type

something else:

Trying 74.125.225.177...

Connected to www.google.com.

Escape character is '^]'.

Now, type an actual HTTP command for telnet to send to the Google web server. The most

common HTTP command (the one your browser uses when you type a URL in its location

bar) is GET. This retrieves the contents of the specified resource, such as an HTML file, and

returns it to the client. For our first test, we’ll use the HTTP command HEAD, which just

retrieves some basic information about the resource:

HEAD / HTTP/1.1

That HEAD / sends the HTTP HEAD verb (command) to get information about the home

page (/). Add an extra carriage return to send a blank line so the remote server knows you’re

all done and want a response. You’ll receive a response such as this (we trimmed some of the

long lines using … so they wouldn’t stick out of the book):

HTTP/1.1 200 OK

Date: Sat, 26 Oct 2013 17:05:17 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=ISO-8859-1

Set-Cookie: PREF=ID=962a70e9eb3db9d9:FF=0:TM=1382807117:LM=1382807117:S=y...

expires=Mon, 26-Oct-2015 17:05:17 GMT;

path=/;

domain=.google.com

Set-Cookie:

NID=67=hTvtVC7dZJmZzGktimbwVbNZxPQnaDijCz716B1L56GM9qvsqqeIGb...

expires=Sun, 27-Apr-2014 17:05:17 GMT

path=/;

domain=.google.com;

HttpOnly

P3P: CP="This is not a P3P policy! See http://www.google.com/support/accounts...

Server: gws

X-XSS-Protection: 1; mode=block

http://www.google.com/
http://www.google.com/
http://www.google.com/support/accounts

X-Frame-Options: SAMEORIGIN

Alternate-Protocol: 80:quic

Transfer-Encoding: chunked

These are HTTP response headers and their values. Some, like Date and Content-Type, are

required. Others, such as Set-Cookie, are used to track your activity across multiple visits

When you make an HTTP HEAD request, you get back only headers. If you had used the

HTTP GET or POST commands, you would also receive data from the home page (a mixture

of HTML, CSS, JavaScript, and whatever else Google decided to throw into its home page).

I don’t want to leave you stranded in telnet. To close telnet, type the following:

Topic 2: Web Servers

Possible Question: Discuss about Web Servers?

Possible Marks: 5 or 10 Marks

Outcomes:

Web developers have found Python to be an excellent language for writing web servers and

server-side programs. This has led to such a variety of Python-based web frameworks that it

can be hard to navigate among them and make choices—not to mention deciding what

deserves to go into a book.

A web framework provides features with which you can build websites, so it does more than

a simple web (HTTP) server. You’ll see features such as routing (URL to server function),

templates (HTM with dynamic inclusions), debugging, and more.

I’m not going to cover all of the frameworks here—just those that I’ve found to be relatively

simple to use and suitable for real websites. I’ll also show how to run the dynamic parts of a

website with Python and other parts with a traditional web server.

The Simplest Python Web Server

You can run a simple web server by typing just one line of Python:

$ python -m http.server

This implements a bare-bones Python HTTP server. If there are no problems, this will print

an initial status message:

Serving HTTP on 0.0.0.0 port 8000 ...

That 0.0.0.0 means any TCP address, so web clients can access it no matter what address the

server has. There’s more low-level details on TCP and other network plumbing

You can now request files, with paths relative to your current directory, and they will be

returned. If you type http://localhost:8000 in your web browser, you should see a directory

listing there, and the server will print access log lines such as this:

127.0.0.1 - - [20/Feb/2013 22:02:37] "GET / HTTP/1.1" 200 -

localhost and 127.0.0.1 are TCP synonyms for your local computer, so this works regardless

of whether you’re connected to the Internet. You can interpret this line as follows:

127.0.0.1 is the client’s IP address

The first "-" is the remote username, if found

The second "-" is the login username, if required

[20/Feb/2013 22:02:37] is the access date and time

"GET / HTTP/1.1" is the command sent to the web server:

The HTTP method (GET)

The resource requested (/, the top)

The HTTP version (HTTP/1.1)

The final 200 is the HTTP status code returned by the web server

Click any file. If your browser can recognize the format (HTML, PNG, GIF, JPEG, and so

on) it should display it, and the server will log the request. For instance, if you have the file

oreilly.png in your current directory, a request for http://localhost:8000/oreilly.png should

return the image of the unsettling fellow in Figure 7-1, and the log should show something

such as this:

127.0.0.1 - - [20/Feb/2013 22:03:48] "GET /oreilly.png HTTP/1.1" 200 -

If you have other files in the same directory on your computer, they should show up in a

listing on your display, and you can click any one to download it. If your browser is

configured to display that file’s format, you’ll see the results on your screen; otherwise, your

browser will ask you if you want to download and save the file.

The default port number used is 8000, but you can specify another:

$ python -m http.server 9999

You should see this:

Serving HTTP on 0.0.0.0 port 9999 ...

This Python-only server is best suited for quick tests. You can stop it by killing its process; in

most terminals, press Ctrl+C.

You should not use this basic server for a busy production website. Traditional web servers

such as Apache and Nginx are much faster for serving static files. In addition, this simple

server has no way to handle dynamic content, which more extensive servers can do by

accepting parameters.

Web Server Gateway Interface

All too soon, the allure of serving simple files wears off, and we want a web server that can

also run programs dynamically. In the early days of the Web, the Common Gateway Interface

(CGI) was designed for clients to make web servers run external programs and return the

results. CGI also handled getting input arguments from the client through the server to the

external programs. However, the programs were started anew for each client access. This

could not scale well, because even small programs have appreciable startup time.

To avoid this startup delay, people began merging the language interpreter into the web

server. Apache ran PHP within its mod_php module, Perl in mod_perl, and Python in

mod_python. Then, code in these dynamic languages could be executed within the long-

running Apache process itself rather than in external programs.

An alternative method was to run the dynamic language within a separate long-running

program and have it communicate with the web server. FastCGI and SCGI are examples.

Python web development made a leap with the definition of Web Server Gateway Interface

(WSGI), a universal API between Python web applications and web servers. All of the

Python web frameworks and web servers in the rest of this use WSGI. You don’t normally

need to know how WSGI works (there really isn’t much to it), but it helps to know what

some of the parts under the hood are called.

Frameworks

Web servers handle the HTTP and WSGI details, but you use web frameworks to actually

write the Python code that powers the site. So, we’ll talk about frameworks for a while and

then get back to alternative ways of actually serving sites that use them.

If you want to write a website in Python, there are many Python web frameworks (some

might say too many). A web framework handles, at a minimum, client requests and server

responses. It might provide some or all of these features:

Routes

Interpret URLs and find the corresponding server files or Python server code

Templates

Merge server-side data into pages of HTML

Authentication and authorization

Handle usernames, passwords, permissions

Sessions

Maintain transient data storage during a user’s visit to the website

In the coming sections, we’ll write example code for two frameworks (bottle and flask).

Then, we’ll talk about alternatives, especially for database-backed websites. You can find a

Python framework to power any site that you can think of.

Topic 3: Web Services and Automation

Possible Question: Explain about Web Services and Automation?

Possible Marks: 5 or 10 Marks

Outcomes:

We’ve just looked at traditional web client and server applications, consuming and generating

HTML pages. Yet the Web has turned out to be a powerful way to glue applications and data

in many more formats than HTML.

The webbrowser Module

Let’s start begin a little surprise. Start a Python session in a terminal window and type the

following:

>>> import antigravity

This secretly calls the standard library’s webbrowser module and directs your browser to an

enlightening Python link.1

You can use this module directly. This program loads the main Python site’s page in your

browser:

>>> import webbrowser

>>> url = 'http://www.python.org/'

>>> webbrowser.open(url)

True

This opens it in a new window:

>>> webbrowser.open_new(url)

True

And this opens it in a new tab, if your browser supports tabs:

>>> webbrowser.open_new_tab('http://www.python.org/')

True

The webbrowser makes your browser do all the work.

Web APIs and Representational State Transfer

Often, data is only available within web pages. If you want to access it, you need to access

the pages through a web browser and read it. If the authors of the website made any changes

since the last time you visited, the location and style of the data might have changed.

Instead of publishing web pages, you can provide data through a web application

programming interface (API). Clients access your service by making requests to URLs and

getting back responses containing status and data. Instead of HTML pages, the data is in

formats that are easier for programs to consume, such as JSON or XML

Representational State Transfer (REST) was defined by Roy Fielding in his doctoral thesis.

Many products claim to have a REST interface or a RESTful interface. In practice, this often

only means that they have a web interface—definitions of URLs to access a web service.

A RESTful service uses the HTTP verbs in specific ways, as is described here:

HEAD

Gets information about the resource, but not its data.

GET

As its name implies, GET retrieves the resource’s data from the server. This is the standard

method used by your browser. Any time you see a URL with a question mark (?) followed by

http://www.python.org/%27
http://www.python.org/%27
http://www.python.org/%27)

a bunch of arguments, that’s a GET request. GET should not be used to create, change, or

delete data.

POST

This verb updates data on the server. It’s often used by HTML forms and web APIs.

PUT

This verb creates a new resource.

DELETE

This one speaks for itself: DELETE deletes. Truth in advertising!

A RESTful client can also request one or more content types from the server by using HTTP

request headers. For example, a complex service with a REST interface might prefer its input

and output to be JSON strings.

You could extract what you’re looking for manually by doing the following:

Type the URL into your browser.

Wait for the remote page to load.

Look through the displayed page for the information you want.

Write it down somewhere.

Possibly repeat the process for related URLs.

However, it’s much more satisfying to automate some or all of these steps. An automated

web fetcher is called a crawler or spider (unappealing terms to arachnophobes). After the

contents have been retrieved from the remote web servers, a scraper parses it to find the

needle in the haystack.

If you need an industrial-strength combined crawler and scraper, Scrapy is worth

downloading:

$ pip install scrapy

Scrapy is a framework, not a module such as BeautifulSoup. It does more, but it’s more

complex to set up. To learn more about Scrapy, read the documentation or the online

introduction.

Scrape HTML with BeautifulSoup

If you already have the HTML data from a website and just want to extract data from it,

BeautifulSoup is a good choice. HTML parsing is harder than it sounds. This is because

much of the HTML on public web pages is technically invalid: unclosed tags, incorrect

nesting, and other complications. If you try to write your own HTML parser by using regular

expressions

To install BeautifulSoup, type the following command (don’t forget the final 4, or pip will try

to install an older version and probably fail):

$ pip install beautifulsoup4

Now, let’s use it to get all the links from a web page. The HTML a element represents a link,

and href is its attribute representing the link destination. In the following example, we’ll

define the function get_links() to do the grunt work, and a main program to get one or more

URLs as command-line arguments:

def get_links(url):

import requests

from bs4 import BeautifulSoup as soup

result = requests.get(url)

page = result.text

doc = soup(page)

links = [element.get('href') for element in doc.find_all('a')]

return links

if name == ' main ':

import sys

for url in sys.argv[1:]:

print('Links in', url)

for num, link in enumerate(get_links(url), start=1):

print(num, link)

print()

I saved this program as links.py and then ran this command:

$ python links.py http://boingboing.net

Here are the first few lines that it printed:

Links in http://boingboing.net/

1 http://boingboing.net/suggest.html

2 http://boingboing.net/category/feature/

3 http://boingboing.net/category/review/

4 http://boingboing.net/category/podcasts

5 http://boingboing.net/category/video/

6 http://bbs.boingboing.net/

7 javascript:void(0)

8 http://shop.boingboing.net/

9 http://boingboing.net/about

10 http://boingboing.net/contact

Things to Do

9.1. If you haven’t installed flask yet, do so now. This will also install werkzeug, jinja2, and

possibly other packages.

9.2. Build a skeleton website, using Flask’s debug/reload development web server. Ensure

that the server starts up for hostname localhost on default port 5000. If your computer is

already using port 5000 for something else, use another port number.

http://boingboing.net/
http://boingboing.net/
http://boingboing.net/suggest.html
http://boingboing.net/category/feature/
http://boingboing.net/category/review/
http://boingboing.net/category/podcasts
http://boingboing.net/category/video/
http://bbs.boingboing.net/
http://shop.boingboing.net/
http://boingboing.net/about
http://boingboing.net/contact

9.3. Add a home() function to handle requests for the home page. Set it up to return the string

It's alive!.

9.4. Create a Jinja2 template file called home.html with the following contents:

<html>

<head>

<title>It's alive!</title>

<body>

I'm of course referring to {{thing}}, which is {{height}} feet tall and {{color}}.

</body>

</html>

9.5. Modify your server’s home() function to use the home.html template. Provide it with

three GET parameters: thing, height, and color.

Topic 4: Files

Possible Question: Explain about Files?

Possible Marks: 5 or 10 Marks

Outcomes:

File handling is an important part of any web application.

Python has several functions for creating, reading, updating, and deleting files.

File Handling

The key function for working with files in Python is the open() function.

The open() function takes two parameters; filename, and mode.

There are four different methods (modes) for opening a file:

In addition you can specify if the file should be handled as binary or text mode

Syntax

To open a file for reading it is enough to specify the name of the file:

f = open("demofile.txt")

The code above is the same as:

f = open("demofile.txt", "rt")

Because "r" for read, and "t" for text are the default values, you do not need to specify them.

"r" - Read - Default value. Opens a file for reading, error if the file does not exist

"a" - Append - Opens a file for appending, creates the file if it does not exist

"w" - Write - Opens a file for writing, creates the file if it does not exist

"x" - Create - Creates the specified file, returns an error if the file exists

"t" - Text - Default value. Text mode

"b" - Binary - Binary mode (e.g. images)

Topic 5: Directories

Possible Question: Discuss about Directories?

Possible Marks: 5 or 10 Marks

Outcomes:

If there are a large number of files to handle in our Python program, we can arrange our code

within different directories to make things more manageable.

A directory or folder is a collection of files and subdirectories. Python has the os module that

provides us with many useful methods to work with directories (and files as well).

Get Current Directory

We can get the present working directory using the getcwd() method of the os module.

This method returns the current working directory in the form of a string. We can also use

the getcwdb() method to get it as bytes object.

>>> import os

>>> os.getcwd()

'C:\\Program Files\\PyScripter'

>>> os.getcwdb()

b'C:\\Program Files\\PyScripter'

The extra backslash implies an escape sequence. The print() function will render this properly.

>>> print(os.getcwd())

C:\Program Files\PyScripter

Changing Directory

We can change the current working directory by using the chdir() method.

The new path that we want to change into must be supplied as a string to this method. We can

use both the forward-slash / or the backward-slash \ to separate the path elements.

It is safer to use an escape sequence when using the backward slash.

>>> os.chdir('C:\\Python33')

>>> print(os.getcwd())

C:\Python33

List Directories and Files

All files and sub-directories inside a directory can be retrieved using the listdir() method.

This method takes in a path and returns a list of subdirectories and files in that path. If no path

is specified, it returns the list of subdirectories and files from the current working directory.

>>> print(os.getcwd())

C:\Python33

>>> os.listdir()

['DLLs',

'Doc',

https://www.programiz.com/python-programming/file-operation
https://www.programiz.com/python-programming/modules

'include',

'Lib',

'libs',

'LICENSE.txt',

'NEWS.txt',

'python.exe',

'pythonw.exe',

'README.txt',

'Scripts',

'tcl', 'Tools']

>>> os.listdir('G:\\')

['$RECYCLE.BIN',

'Movies',

'Music',

'Photos',

'Series',

'System Volume Information']

Making a New Directory

We can make a new directory using the mkdir() method.

This method takes in the path of the new directory. If the full path is not specified, the new

directory is created in the current working directory.

>>> os.mkdir('test')

>>> os.listdir()

['test']

Renaming a Directory or a File

The rename() method can rename a directory or a file.

For renaming any directory or file, the rename() method takes in two basic arguments: the old

name as the first argument and the new name as the second argument.

>>> os.listdir()

['test']

>>> os.rename('test','new_one')

>>> os.listdir()

['new_one']

Removing Directory or File

A file can be removed (deleted) using the remove() method.

Similarly, the rmdir() method removes an empty directory.

>>> os.listdir()

['new_one', 'old.txt']

>>> os.remove('old.txt')

>>> os.listdir()

['new_one']

>>> os.rmdir('new_one')

>>> os.listdir()

Note: The rmdir() method can only remove empty directories.

In order to remove a non-empty directory, we can use the rmtree() method inside

the shutil module.

>>> os.listdir()

['test']

>>> os.rmdir('test')

Traceback (most recent call last):

OSError: [WinError 145] The directory is not empty: 'test'

>>> import shutil

>>> shutil.rmtree('test')

>>> os.listdir()

Topic 6: Programs and Processes

Possible Question: Explain about Programs and Processes?

Possible Marks: 5 or 10 Marks

Outcomes:

When you run an individual program, your operating system creates a single process. It uses

system resources (CPU, memory, disk space) and data structures in the operating system’s

kernel (file and network connections, usage statistics, and so on). A process is isolated from

other processes—it can’t see what other processes are doing or interfere with them.

The operating system keeps track of all the running processes, giving each a little time to run

and then switching to another, with the twin goals of spreading the work around fairly and

being responsive to the user. You can see the state of your processes with graphical interfaces

such as the Mac’s Activity Monitor (OS X), or Task Manager on Windows-based computers.

You can also access process data from your own programs. The standard library’s os module

provides a common way of accessing some system information. For instance, the following

functions get the process ID and the current working directory of the running Python

interpreter:

>>> import os

>>> os.getpid()

76051

>>> os.getcwd()

'/Users/williamlubanovic'

And these get my user ID and group ID:

>>> os.getuid()

501

>>> os.getgid()

20

Create a Process with subprocess

All of the programs that you’ve seen here so far have been individual processes. You can

start and stop other existing programs from Python by using the standard library’s subprocess

module. If you just want to run another program in a shell and grab whatever output it created

(both standard output and standard error output), use the getoutput() function. Here, we’ll get

the output of the Unix date program:

>>> import subprocess

>>> ret = subprocess.getoutput('date')

>>> ret

'Sun Mar 30 22:54:37 CDT 2014'

You won’t get anything back until the process ends. If you need to call something that might

take a lot of time, see the discussion on concurrency in “Concurrency”. Because the argument

to getoutput() is a string representing a complete shell command, you can include arguments,

pipes, < and > I/O redirection, and so on:

>>> ret = subprocess.getoutput('date -u')

>>> ret

'Mon Mar 31 03:55:01 UTC 2014'

Piping that output string to the wc command counts one line, six “words,” and 29 characters:

>>> ret = subprocess.getoutput('date -u | wc')

>>> ret

' 1 6 29'

A variant method called check_output() takes a list of the command and arguments. By

default it only returns standard output as type bytes rather than a string and does not use the

shell:

>>> ret = subprocess.check_output(['date', '-u'])

>>> ret

b'Mon Mar 31 04:01:50 UTC 2014\n'

To show the exit status of the other program, getstatusoutput() returns a tuple with the status

code and output:

>>> ret = subprocess.getstatusoutput('date')

>>> ret

(0, 'Sat Jan 18 21:36:23 CST 2014')

If you don’t want to capture the output but might want to know its exit status, use call():

>>> ret = subprocess.call('date')

Sat Jan 18 21:33:11 CST 2014

>>> ret

0

(In Unix-like systems, 0 is usually the exit status for success.)

That date and time was printed to output but not captured within our program. So, we saved

the return code as ret.

You can run programs with arguments in two ways. The first is to specify them in a single

string. Our sample command is date -u, which prints the current date and time in UTC (you’ll

read more about UTC in a few pages):

>>> ret = subprocess.call('date -u', shell=True)

Tue Jan 21 04:40:04 UTC 2014

You need that shell=True to recognize the command line date -u, splitting it into separate

strings and possibly expanding any wildcard characters such as * (we didn’t use any in this

example).

The second method makes a list of the arguments, so it doesn’t need to call the shell:

>>> ret = subprocess.call(['date', '-u'])

Tue Jan 21 04:41:59 UTC 2014

Create a Process with multiprocessing

You can run a Python function as a separate process or even run multiple independent

processes in a single program with the multiprocessing module. Here’s a short example that

does nothing useful; save it as mp.py and then run it by typing python mp.py:

import multiprocessing

import os

def do_this(what):

whoami(what)

def whoami(what):

print("Process %s says: %s" % (os.getpid(), what))

if name == " main ":

whoami("I'm the main program")

for n in range(4):

p = multiprocessing.Process(target=do_this,

args=("I'm function %s" % n,))

p.start()

When I run this, my output looks like this:

Process 6224 says: I'm the main program

Process 6225 says: I'm function 0

Process 6226 says: I'm function 1

Process 6227 says: I'm function 2

Process 6228 says: I'm function 3

The Process() function spawned a new process and ran the do_this() function in it. Because

we did this in a loop that had four passes, we generated four new processes that executed

do_this() and then exited.

The multiprocessing module has more bells and whistles than a clown on a calliope. It’s

really intended for those times when you need to farm out some task to multiple processes to

save overall time; for example, downloading web pages for scraping, resizing images, and so

on. It includes ways to queue tasks, enable intercommunication among processes, and wait

for all the processes to finish. “Concurrency” delves into some of these details.

Kill a Process with terminate()

If you created one or more processes and want to terminate one for some reason (perhaps it’s

stuck in a loop, or maybe you’re bored, or you want to be an evil overlord), use terminate().

In the example that follows, our process would count to a million, sleeping at each step for a

second, and printing an irritating message. However, our main program runs out of patience

in five seconds and nukes it from orbit:

import multiprocessing

import time

import os

def whoami(name):

print("I'm %s, in process %s" % (name, os.getpid()))

def loopy(name):

whoami(name)

start = 1

stop = 1000000

for num in range(start, stop):

print("\tNumber %s of %s. Honk!" % (num, stop))

time.sleep(1)

if name == " main ":

whoami("main")

p = multiprocessing.Process(target=loopy, args=("loopy",))

p.start()

time.sleep(5)

p.terminate()

When I run this program, I get the following:

I'm main, in process 97080

I'm loopy, in process 97081

Number 1 of 1000000. Honk!

Number 2 of 1000000. Honk!

Number 3 of 1000000. Honk!

Number 4 of 1000000. Honk!

Number 5 of 1000000. Honk!

Topic 7: Calendars and Clocks

Possible Question: Explain about Calendars and Clocks?

Possible Marks: 5 or 10 Marks

Outcomes:

Programmers devote a surprising amount of effort to dates and times. Let’s talk about some

of the problems they encounter, and then get to some best practices and tricks to make the

situation a little less messy.

Dates can be represented in many ways—too many ways, actually. Even in English with the

Roman calendar, you’ll see many variants of a simple date:

July 29 1984

29 Jul 1984

29/7/1984

7/29/1984

Among other problems, date representations can be ambiguous. In the previous examples, it’s

easy to determine that 7 stands for the month and 29 is the day of the month, largely because

months don’t go to 29. But how about 1/6/2012? Is that referring to January 6 or June 1?

The month name varies by language within the Roman calendar. Even the year and month

can have a different definition in other cultures.

Leap years are another wrinkle. You probably know that every four years is a leap year (and

the summer Olympics and the American presidential election). Did you also know that every

100 years is not a leap year, but that every 400 years is? Here’s code to test various years for

leapiness:

>>> import calendar

>>> calendar.isleap(1900)

False

>>> calendar.isleap(1996)

True

>>> calendar.isleap(1999)

False

>>> calendar.isleap(2000)

True

>>> calendar.isleap(2002)

False

>>> calendar.isleap(2004)

True

Times have their own sources of grief, especially because of time zones and daylight savings

time. If you look at a time zone map, the zones follow political and historic boundaries rather

than every 15 degrees (360 degrees / 24) of longitude. And countries start and end daylight

saving times on different days of the year. In fact, countries in the southern hemisphere

advance their clocks when the northern hemisphere is winding them back, and vice versa. (If

you think about it a bit, you will see why.)

Python’s standard library has many date and time modules: datetime, time, calendar, dateutil,

and others. There’s some overlap, and it’s a bit confusing.

The datetime Module

Let’s begin by investigating the standard datetime module. It defines four main objects, each

with many methods:

date for years, months, and days

time for hours, minutes, seconds, and fractions

datetime for dates and times together

timedelta for date and/or time intervals

You can make a date object by specifying a year, month, and day. Those values are then

available as attributes:

>>> from datetime import date

>>> halloween = date(2014, 10, 31)

>>> halloween

datetime.date(2014, 10, 31)

>>> halloween.day

31

>>> halloween.month

10

>>> halloween.year

2014

You can print a date with its isoformat() method:

>>> halloween.isoformat()

'2014-10-31'

The iso refers to ISO 8601, an international standard for representing dates and times. It goes

from most general (year) to most specific (day). It also sorts correctly: by year, then month,

then day. I usually pick this format for date representation in programs, and for filenames that

save data by date. The next section describes the more complex strptime() and strftime()

methods for parsing and formatting dates.

This example uses the today() method to generate today’s date:

>>> from datetime import date

>>> now = date.today()

>>> now

datetime.date(2014, 2, 2)

This one makes use of a timedelta object to add some time interval to a date:

>>> from datetime import timedelta

>>> one_day = timedelta(days=1)

>>> tomorrow = now + one_day

>>> tomorrow

datetime.date(2014, 2, 3)

>>> now + 17*one_day

datetime.date(2014, 2, 19)

>>> yesterday = now - one_day

>>> yesterday

datetime.date(2014, 2, 1)

The range of date is from date.min (year=1, month=1, day=1) to date.max (year=9999,

month=12, day=31). As a result, you can’t use it for historic or astronomical calculations.

The datetime module’s time object is used to represent a time of day:

>>> from datetime import time

>>> noon = time(12, 0, 0)

>>> noon

datetime.time(12, 0)

>>> noon.hour

12

>>> noon.minute

0

>>> noon.second

0

>>> noon.microsecond

0

The arguments go from the largest time unit (hours) to the smallest (microseconds). If you

don’t provide all the arguments, time assumes all the rest are zero. By the way, just because

you can store and retrieve microseconds doesn’t mean you can retrieve time from your

computer to the exact microsecond. The accuracy of subsecond measurements depends on

many factors in the hardware and operating system.

The datetime object includes both the date and time of day. You can create one directly, such

as the one that follows, which is for January 2, 2014, at 3:04 A.M., plus 5 seconds and 6

microseconds:

>>> from datetime import datetime

>>> some_day = datetime(2014, 1, 2, 3, 4, 5, 6)

>>> some_day

datetime.datetime(2014, 1, 2, 3, 4, 5, 6)

The datetime object also has an isoformat() method:

>>> some_day.isoformat()

'2014-01-02T03:04:05.000006'

That middle T separates the date and time parts.

datetime has a now() method with which you can get the current date and time:

>>> from datetime import datetime

>>> now = datetime.now()

>>> now

datetime.datetime(2014, 2, 2, 23, 15, 34, 694988)

14

>>> now.month

2

>>> now.day

2

>>> now.hour

23

>>> now.minute

15

>>> now.second

34

>>> now.microsecond

694988

You can merge a date object and a time object into a datetime object by using combine():

>>> from datetime import datetime, time, date

>>> noon = time(12)

>>> this_day = date.today()

>>> noon_today = datetime.combine(this_day, noon)

>>> noon_today

datetime.datetime(2014, 2, 2, 12, 0)

You can yank the date and time from a datetime by using the date() and time() methods:

>>> noon_today.date()

datetime.date(2014, 2, 2)

>>> noon_today.time()

datetime.time(12, 0)

Using the time Module

It is confusing that Python has a datetime module with a time object, and a separate time

module. Furthermore, the time module has a function called—wait for it—time().

One way to represent an absolute time is to count the number of seconds since some starting

point. Unix time uses the number of seconds since midnight on January 1, 1970.1 This value

is often called the epoch, and it is often the simplest way to exchange dates and times among

systems.

The time module’s time() function returns the current time as an epoch value:

>>> import time

>>> now = time.time()

>>> now

1391488263.664645

If you do the math, you’ll see that it has been over one billion seconds since New Year’s,

1970. Where did the time go?

You can convert an epoch value to a string by using ctime():

>>> time.ctime(now)

'Mon Feb 3 22:31:03 2014'

In the next section, you’ll see how to produce more attractive formats for dates and times.

Epoch values are a useful least-common denominator for date and time exchange with

different systems, such as JavaScript. Sometimes, though, you need actual days, hours, and so

forth, which time provides as struct_time objects. localtime() provides the time in your

system’s time zone, and gmtime() provides it in UTC:

>>> time.localtime(now)

time.struct_time(tm_year=2014, tm_mon=2, tm_mday=3, tm_hour=22, tm_min=31,

tm_sec=3, tm_wday=0, tm_yday=34, tm_isdst=0)

>>> time.gmtime(now)

time.struct_time(tm_year=2014, tm_mon=2, tm_mday=4, tm_hour=4, tm_min=31,

tm_sec=3, tm_wday=1, tm_yday=35, tm_isdst=0)

In my (Central) time zone, 22:31 was 04:31 of the next day in UTC (formerly called

Greenwich time or Zulu time). If you omit the argument to localtime() or gmtime(), they

assume the current time.

The opposite of these is mktime(), which converts a struct_time object to epoch seconds:

>>> tm = time.localtime(now)

>>> time.mktime(tm)

1391488263.0

This doesn’t exactly match our earlier epoch value of now() because the struct_time object

preserves time only to the second.

Some advice: wherever possible, use UTC instead of time zones. UTC is an absolute time,

independent of time zones. If you have a server, set its time to UTC; do not use local time.

Here’s some more advice (free of charge, no less): never use daylight savings time if you can

avoid it. If you use daylight savings time, an hour disappears at one time of year (“spring

ahead”) and occurs twice at another time (“fall back”). For some reason, many organizations

use daylight savings in their computer systems, but are mystified every year by data

duplicates and dropouts. It all ends in tears.

Model Questions

Objective

1. What will be the output of the following Python code snippet?

a) 4 3 2 1 b) error c) 1 2 3 4 d) none of the mentioned

Answer: a

Explanation: [::-1] reverses the list.

2. What will be the output of the following Python statement?

1. >>>"a"+"bc"

a) bc b) abc c) a d) bca

Answer: b

3. Which function is called when the following Python program is executed?

a) str() b) format() c) str () d) format ()

Answer: c

4. Which one of the following is not a keyword in Python language?

a) pass b) eval c) assert d) nonlocal

Answer: b

5. What will be the output of the following Python code?

a) 12 b) 224 c) None d) Error

Answer: a

6. What will be the output of the following Python program?

def foo(x):

x[0] = ['def']

x[1] = ['abc']

return id(x)

q = ['abc', 'def']

print(id(q) == foo(q))

a) Error b) None c) False d) True

Answer: d

7. Which module in the python standard library parses options received from the command

line?

a) getarg b) getopt c) main d) os

Answer: b

8. What will be the output of the following Python program?

a) {‘a’, ‘c’, ‘c’, ‘p’, ‘q’, ‘s’, ‘a’, ‘n’} b) {‘abc’, ‘p’, ‘q’, ‘san’}
c) {‘a’, ‘b’, ‘c’, ‘p’, ‘q’, ‘san’} d) {‘a’, ‘b’, ‘c’, [‘p’, ‘q’], ‘san}

Answer: c

z=set('abc')

z.add('san')

z.update(set(['p', 'q']))

z

f = foo()

format(f)

for i in [1, 2, 3, 4][::-1]:

print (i)

1. class tester:

2. def init (self, id):

3. self.id = str(id)

4. id="224"

5.

6. >>>temp = tester(12)

7. >>>print(temp.id)

9. What arithmetic operators cannot be used with strings in Python?

a) * b) – c) + d) All of the mentioned

Answer: b

10. What will be the output of the following Python code?

 print("abc. DEF".capitalize())

a) Abc. Def b) abc. Def c) Abc. Def d) ABC. DEF

Answer: a

Subjective

1. Explain in detail about Web?

2. Discuss about Web Clients?

3. Discuss about Web Servers?

4. Explain Web Services and Automation?

5. Describe about Systems?

6. Explain in detail about Files?

7. Explain in detail about Directories?

8. Discuss about Programs and Processes?

9. Explain about Calendars and Clocks?

Unit – IV – END

Signature of the staff

with date

Sri Ganesh College of Arts & Science – Salem- 14.
Department of Computer Science & Applications

Study Material – 2022(Odd Semester)

Sub: Open source computing Paper Code: 21PCS Class: II M.Sc CS

Staff I/c: K. Aravindhan M.Sc., Date: Head:

UNIT – V

Concurrency: Queues – Processes – Threads – Green Threads and gevent – twisted – Redis.

Networks: Patterns – The Publish-Subscribe Model – TCP/IP – Sockets – Zero MQ –Internet

Services – Web Services and APIs – Remote Processing – Big Fat Data and Map Reduce –

Working in the Clouds.

Topic 1: Concurrency Queues

Possible Question: Discuss about Concurrency in queues?

Possible Marks: 5 or 10 Marks

Outcomes:

The official Python site discusses concurrency in general and in the standard library. Those

pages have many links to various packages and techniques;

In computers, if you’re waiting for something, it’s usually for one of two reasons:

I/O bound

This is by far more common. Computer CPUs are ridiculously fast—hundreds of times faster

than computer memory and many thousands of times faster than disks or networks.

CPU bound

This happens with number crunching tasks such as scientific or graphic calculations.

Two more terms are related to concurrency:

synchronous

One thing follows the other, like a funeral procession.

asynchronous

Tasks are independent, like party-goers dropping in and tearing off in separate cars.

As you progress from simple systems and tasks to real-life problems, you’ll need at some point

to deal with concurrency. Consider a website, for example. You can usually provide static and

dynamic pages to web clients fairly quickly. A fraction of a second is considered interactive,

but if the display or interaction takes longer, people become impatient. Tests by companies

such as Google and Amazon showed that traffic drops off quickly if the page loads even a little

slower.

But what if you can’t help it when something takes a long time, such as uploading a file,

resizing an image, or querying a database? You can’t do it within your synchronous web server

code anymore, because someone’s waiting.

On a single machine, if you want to perform multiple tasks as fast as possible, you want to

make them independent. Slow tasks shouldn’t block all the others.

“Programs and Processes” demonstrates how multiprocessing can be used to overlap work on

a single machine. If you needed to resize an image, your web server code could call a separate,

dedicated image resizing process to run asynchronously and concurrently. It could scale your

application horizontally by invoking multiple resizing processes.

The trick is getting them all to work with one another. Any shared control or state means that

there will be bottlenecks. An even bigger trick is dealing with failures, because concurrent

computing is harder than regular computing. Many more things can go wrong, and your odds

of end-to-end success are lower.

A queue is like a list: things are added at one end and taken away from the other. The most

common is referred to as FIFO (first in, first out).

Suppose that you’re washing dishes. If you’re stuck with the entire job, you need to wash each

dish, dry it, and put it away. You can do this in a number of ways. You might wash the first

dish, dry it, and then put it away. You then repeat with the second dish, and so on. Or, you

might batch operations and wash all the dishes, dry them all, and then put them away; this

assumes you have space in your sink and drainer for all the dishes that accumulate at each step.

These are all synchronous approaches—one worker, one thing at a time.

As an alternative, you could get a helper or two. If you’re the washer, you can hand each

cleaned dish to the dryer, who hands each dried dish to the put-away-er (look it up; it’s

absolutely a real word!). As long as each of you works at the same pace, you should finish

much faster than by yourself.

However, what if you wash faster than the dryer dries? Wet dishes either fall on the floor, or

you pile them up between you and the dryer, or you just whistle off-key until the dryer is ready.

And if the last person is slower than the dryer, dry dishes can end up falling on the floor, or

piling up, or the dryer does the whistling. You have multiple workers, but the overall task is

still synchronous and can proceed only as fast as the slowest worker.

Many hands make light work, goes the old saying (I always thought it was Amish, because it

makes me think of barn building). Adding workers can build a barn, or do the dishes, faster.

This involves queues.

In general, queues transport messages, which can be any kind of information. In this case,

we’re interested in queues for distributed task management, also known as work queues, job

queues, or task queues. Each dish in the sink is given to an available washer, who washes and

hands it off to the first available dryer, who dries and hands it to a put-away-er. This can be

synchronous (workers wait for a dish to handle and another worker to whom to give it), or

asynchronous (dishes are stacked between workers with different paces). As long as you have

enough workers, and they keep up with the dishes, things move a lot faster.

Topic 2: Processes

Possible Question: Discuss about Processes?

Possible Marks: 5 or 10 Marks

Outcomes:

You can implement queues in many ways. For a single machine, the standard library’s

multiprocessing module (which you can see in “Programs and Processes”) contains a Queue

function. Let’s simulate just a single washer and multiple dryer processes (someone can put

the dishes away later) and an intermediate dish_queue. Call this program dishes.py:

import multiprocessing as mp

def washer(dishes, output):

for dish in dishes:

print('Washing', dish, 'dish')

output.put(dish)

def dryer(input):

while True:

dish = input.get()

print('Drying', dish, 'dish')

input.task_done()

dish_queue = mp.JoinableQueue()

dryer_proc = mp.Process(target=dryer, args=(dish_queue,))

dryer_proc.daemon = True

dryer_proc.start()

dishes = ['salad', 'bread', 'entree', 'dessert']

washer(dishes, dish_queue)

dish_queue.join()

Run your new program thusly:

$ python dishes.py

Washing salad dish

Washing bread dish

Washing entree dish

Washing dessert dish

Drying salad dish

Drying bread dish

Drying entree dish

Drying dessert dish

This queue looked a lot like a simple Python iterator, producing a series of dishes. It actually

started up separate processes along with the communication between the washer and dryer. I

used a JoinableQueue and the final join() method to let the washer know that all the dishes

have been dried. There are other queue types in the multiprocessing module, and you can

read the documentation for more examples.

Topic 3: Threads

Possible Question: Discuss about Threads?

Possible Marks: 5 or 10 Marks

Outcomes:

A thread runs within a process with access to everything in the process, similar to a multiple

personality. The multiprocessing module has a cousin called threading that uses threads

instead of processes (actually, multiprocessing was designed later as its process-based

counterpart). Let’s redo our process example with threads:

import threading

def do_this(what):

whoami(what)

def whoami(what):

print("Thread %s says: %s" % (threading.current_thread(), what))

if name == " main ":

whoami("I'm the main program")

for n in range(4):

p = threading.Thread(target=do_this,

args=("I'm function %s" % n,))

p.start()

Here’s what prints for me:

We can reproduce our process-based dish example by using threads:

import threading, queue

import time

def washer(dishes, dish_queue):

for dish in dishes:

print ("Washing", dish)

time.sleep(5)

dish_queue.put(dish)

def dryer(dish_queue):

while True:

dish = dish_queue.get()

print ("Drying", dish)

time.sleep(10)

dish_queue.task_done()

dish_queue = queue.Queue()

for n in range(2):

dryer_thread = threading.Thread(target=dryer, args=(dish_queue,))

dryer_thread.start()

dishes = ['salad', 'bread', 'entree', 'dessert']

washer(dishes, dish_queue)

dish_queue.join()

One difference between multiprocessing and threading is that threading does not have

a terminate() function. There’s no easy way to terminate a running thread, because it can cause

all sorts of problems in your code, and possibly in the space-time continuum itself.

Threads can be dangerous. Like manual memory management in languages such as C and C++,

they can cause bugs that are extremely hard to find, let alone fix. To use threads, all the code

in the program—and in external libraries that it uses—must be thread-safe. In the preceding

example code, the threads didn’t share any global variables, so they could run independently

without breaking anything.

Imagine that you’re a paranormal investigator in a haunted house. Ghosts roam the halls, but

none are aware of the others, and at any time, any of them can view, add, remove, or move any

of the house’s contents.

Thread <_MainThread(MainThread, started 140735207346960)> says: I'm the main

program

Thread <Thread(Thread-1, started 4326629376)> says: I'm function 0

Thread <Thread(Thread-2, started 4342157312)> says: I'm function 1

Thread <Thread(Thread-3, started 4347412480)> says: I'm function 2

Thread <Thread(Thread-4, started 4342157312)> says: I'm function 3

You’re walking apprehensively through the house, taking readings with your impressive

instruments. Suddenly you notice that the candlestick you passed seconds ago is now missing.

The contents of the house are like the variables in a program. The ghosts are threads in a process

(the house). If the ghosts only looked at the house’s contents, there would be no problem. It’s

like a thread reading the value of a constant or variable without trying to change it.

Yet, some unseen entity could grab your flashlight, blow cold air down your neck, put marbles

on the stairs, or make the fireplace come ablaze. The really subtle ghosts would change things

in other rooms that you might never notice.

Despite your fancy instruments, you’d have a very hard time figuring out who did it, and how,

and when.

If you used multiple processes instead of threads, it would be like having a number of houses

but with only one (living) person in each. If you put your brandy in front of the fireplace, it

would still be there an hour later. Some lost to evaporation, perhaps, but in the same place.

Threads can be useful and safe when global data is not involved. In particular, threads are useful

for saving time while waiting for some I/O operation to complete. In these cases, they don’t

have to fight over data, because each has completely separate variables.

But threads do sometimes have good reasons to change global data. In fact, one common reason

to launch multiple threads is to let them divide up the work on some data, so a certain degree

of change to the data is expected.

The usual way to share data safely is to apply a software lock before modifying a variable in a

thread. This keeps the other threads out while the change is made. It’s like having a Ghostbuster

guard the room you want to remain unhaunted. The trick, though, is that you need to remember

to unlock it. Plus, locks can be nested—what if another Ghostbuster is also watching the same

room, or the house itself? The use of locks is traditional but notoriously hard to get right.

Topic 4: Green Threads and gevent

Possible Question: Explain about Green Threads and gevent?

Possible Marks: 5 or 10 Marks

Outcomes:

As you’ve seen, developers traditionally avoid slow spots in programs by running them in

separate threads or processes. The Apache web server is an example of this design.

One alternative is event-based programming. An event-based program runs a central event

loop, doles out any tasks, and repeats the loop. The nginx web server follows this design, and

is generally faster than Apache.

The gevent library is event-based and accomplishes a cool trick: you write normal imperative

code, and it magically converts pieces to coroutines. These are like generators that can

communicate with one another and keep track of where they are. gevent modifies many of

Python’s standard objects such as socket to use its mechanism instead of blocking. This does

not work with Python add-in code that was written in C, as some database drivers are.

NOTE

As of this writing, gevent was not completely ported to Python 3, so these code examples use

the Python 2 tools pip2 and python2.

You install gevent by using the Python 2 version of pip:

$ pip2 install gevent

Here’s a variation of sample code at the gevent website. You’ll see the socket module’s

gethostbyname() function in the upcoming DNS section. This function is synchronous, so you

wait (possibly many seconds) while it chases name servers around the world to look up that

address. But you could use the gevent version to look up multiple sites independently. Save

this as gevent_test.py:

import gevent

from gevent import socket

hosts = ['www.crappytaxidermy.com', 'www.walterpottertaxidermy.com',

'www.antique-taxidermy.com']

jobs = [gevent.spawn(gevent.socket.gethostbyname, host) for host in hosts]

gevent.joinall(jobs, timeout=5)

for job in jobs:

print(job.value)

There’s a one-line for-loop in the preceding example. Each hostname is submitted in turn to a

gethostbyname() call, but they can run asynchronously because it’s the gevent version of

gethostbyname().

Run gevent_test.py with Python 2 by typing the following (in bold):

$ python2 gevent_test.py

66.6.44.4

74.125.142.121

78.136.12.50

gevent.spawn() creates a greenlet (also known sometimes as a green thread or a microthread)

to execute each gevent.socket.gethostbyname(url).

The difference from a normal thread is that it doesn’t block. If something occurred that would

have blocked a normal thread, gevent switches control to one of the other greenlets.

The gevent.joinall() method waits for all the spawned jobs to finish. Finally, we dump the IP

addresses that we got for these hostnames.

Instead of the gevent version of socket, you can use its evocatively named monkey-patching

functions. These modify standard modules such as socket to use greenlets rather than calling

the gevent version of the module. This is useful when you want gevent to be applied all the

way down, even into code that you might not be able to access.

At the top of your program, add the following call:

from gevent import monkey

monkey.patch_socket()

This inserts the gevent socket everywhere the normal socket is called, anywhere in your

program, even in the standard library. Again, this works only for Python code, not libraries

written in C.

Another function monkey-patches even more standard library modules:

from gevent import monkey

monkey.patch_all()

Use this at the top of your program to get as many gevent speedups as possible.

Save this program as gevent_monkey.py:

import gevent

from gevent import monkey; monkey.patch_all()

import socket

hosts = ['www.crappytaxidermy.com', 'www.walterpottertaxidermy.com',

'www.antique-taxidermy.com']

jobs = [gevent.spawn(socket.gethostbyname, host) for host in hosts]

gevent.joinall(jobs, timeout=5)

for job in jobs:

print(job.value)

Again, using Python 2, run the program:

$ python2 gevent_monkey.py

66.6.44.4

74.125.192.121

78.136.12.50

There are potential dangers when using gevent. As with any event-based system, each chunk

of code that you execute should be relatively quick. Although it’s nonblocking, code that does

a lot of work is still slow.

The very idea of monkey-patching makes some people nervous. Yet, many large sites such as

Pinterest use gevent to speed up their sites significantly. Like the fine print on a bottle of pills,

use gevent as directed.

Topic 5: Twisted

Possible Question: Explain about twisted?

Possible Marks: 5 or 10 Marks

Outcomes:

Twisted is an asynchronous, event-driven networking framework. You connect

functions to events such as data received or connection closed, and those functions are called

when those events occur. This is a callback design, and if you’ve written anything in JavaScript,

it might seem familiar. If it’s new to you, it can seem backwards. For some developers,

callback-based code becomes harder to manage as the application grows.

Like gevent, twisted has not yet been ported to Python 3. We’ll use the Python 2 installer and

interpreter for this section. Type the following to install it:

$ pip2 install twisted

twisted is a large package, with support for many Internet protocols on top of TCP and UDP.

To be short and simple, we’ll show a little knock-knock server and client, adapted from twisted

examples. First, let’s look at the server, knock_server.py (notice the Python 2 syntax for

print()):

from twisted.internet import protocol, reactor

class Knock(protocol.Protocol):

def dataReceived(self, data):

print 'Client:', data

if data.startswith("Knock knock"):

response = "Who's there?"

else:

response = data + " who?"

print 'Server:', response

self.transport.write(response)

class KnockFactory(protocol.Factory):

def buildProtocol(self, addr):

return Knock()

reactor.listenTCP(8000, KnockFactory())

reactor.run()

Now, let’s take a glance at its trusty companion, knock_client.py:

from twisted.internet import reactor, protocol

class KnockClient(protocol.Protocol):

def connectionMade(self):

self.transport.write("Knock knock")

def dataReceived(self, data):

if data.startswith("Who's there?"):

response = "Disappearing client"

self.transport.write(response)

else:

self.transport.loseConnection()

reactor.stop()

class KnockFactory(protocol.ClientFactory):

protocol = KnockClient

def main():

f = KnockFactory()

reactor.connectTCP("localhost", 8000, f)

reactor.run()

if name == ' main ':

main()

Start the server first:

$ python2 knock_server.py

Then start the client:

$ python2 knock_client.py

The server and client exchange messages, and the server prints the conversation:

Client: Knock knock

Server: Who's there?

Client: Disappearing client

Server: Disappearing client who?

Our trickster client then ends, keeping the server waiting for the punch line.

If you’d like to enter the twisted passages, try some of the other examples from its

documentation.

Topic 6: Redis

Possible Question: Describe about Redis?

Possible Marks: 5 or 10 Marks

Outcomes:

Our earlier dishwashing code examples, using processes or threads, were run on a single

machine. Let’s take another approach to queues that can run on a single machine or across a

network. Even with multiple singing processes and dancing threads, sometimes one machine

isn’t enough, You can treat this section as a bridge between single-box (one machine) and

multiple-box concurrency.

To try the examples in this section, you’ll need a Redis server and its Python module. You can

see where to get them in “Redis”.

A quick way to make a queue is with a Redis list. A Redis server runs on one machine; this can

be the same one as its clients, or another that the clients can access through a network. In either

case, clients talk to the server via TCP, so they’re networking. One or more provider clients

pushes messages onto one end of the list. One or more client workers watches this list with a

blocking pop operation. If the list is empty, they all just sit around playing cards. As soon as a

message arrives, the first eager worker gets it.

Like our earlier process- and thread-based examples, redis_washer.py generates a sequence of

dishes:

import redis

conn = redis.Redis()

print('Washer is starting')

dishes = ['salad', 'bread', 'entree', 'dessert']

for dish in dishes:

msg = dish.encode('utf-8')

conn.rpush('dishes', msg)

print('Washed', dish)

conn.rpush('dishes', 'quit')

print('Washer is done')

The loop generates four messages containing a dish name, followed by a final message that

says “quit.” It appends each message to a list called dishes in the Redis server, similar to

appending to a Python list.

And as soon as the first dish is ready, redis_dryer.py does its work:

import redis

conn = redis.Redis()

print('Dryer is starting')

while True:

msg = conn.blpop('dishes')

if not msg:

break

val = msg[1].decode('utf-8')

if val == 'quit':

break

print('Dried', val)

print('Dishes are dried')

This code waits for messages whose first token is “dishes” and prints that each one is dried. It

obeys the quit message by ending the loop.

Start the dryer, and then the washer. Using the & at the end puts the first program in the

background; it keeps running, but doesn’t listen to the keyboard anymore. This works on Linux,

OS X, and Windows, although you might see different output on the next line. In this case (OS

X), it’s some information about the background dryer process. Then, we start the washer

process normally (in the foreground). You’ll see the mingled output of the two processes:

$ python redis_dryer.py &

[2] 81691

Dryer is starting

$ python redis_washer.py

Washer is starting

Washed salad

Dried salad

Washed bread

Dried bread

Washed entree

Dried entree

Washed dessert

Washer is done

Dried dessert

Dishes are dried

[2] + Done python redis_dryer.py

As soon as dish IDs started arriving at Redis from the washer process, our hard-working dryer

process started pulling them back out. Each dish ID was a number, except the final sentinel

value, the string 'quit'. When the dryer process read that quit dish ID, it quit, and some more

background process information printed to the terminal (also system-dependent). You can use

a sentinel (an otherwise invalid value) to indicate something special from the data stream

itself—in this case, that we’re done. Otherwise, we’d need to add a lot more program logic,

such as the following:

Agreeing ahead of time on some maximum dish number, which would kind of be a sentinel

anyway.

Doing some special out-of-band (not in the data stream) interprocess communication.

Timing out after some interval with no new data.

Let’s make a few last changes:

Create multiple dryer processes.

Add a timeout to each dryer rather than looking for a sentinel.

The new redis_dryer2.py:

def dryer():

import redis

import os

import time

conn = redis.Redis()

pid = os.getpid()

timeout = 20

print('Dryer process %s is starting' % pid)

while True:

msg = conn.blpop('dishes', timeout)

if not msg:

break

val = msg[1].decode('utf-8')

if val == 'quit':

break

print('%s: dried %s' % (pid, val))

time.sleep(0.1)

print('Dryer process %s is done' % pid)

import multiprocessing

DRYERS=3

for num in range(DRYERS):

p = multiprocessing.Process(target=dryer)

p.start()

Start the dryer processes in the background, and then the washer process in the foreground:

$ python redis_dryer2.py &

Dryer process 44447 is starting

Dryer process 44448 is starting

Dryer process 44446 is starting

$ python redis_washer.py

Washer is starting

Washed salad

44447: dried salad

Washed bread

44448: dried bread

Washed entree

44446: dried entree

Washed dessert

Washer is done

44447: dried dessert

One dryer process reads the quit ID and quits:

Dryer process 44448 is done

After 20 seconds, the other dryer processes get a return value of None from their blpop calls,

indicating that they’ve timed out. They say their last words and exit:

Dryer process 44447 is done

Dryer process 44446 is done

After the last dryer subprocess quits, the main dryer program ends:

[1]+ Done python redis_dryer2.py

Topic 7: Networks

Possible Question: Discuss about Networks in patterns?

Possible Marks: 5 or 10 Marks

Outcomes:

You can build networking applications from some basic patterns.

The most common pattern is request-reply, also known as client-server. This pattern is

synchronous: the client waits until the server responds. You’ve seen many examples of request-

reply in this book. Your web browser is also a client, making an HTTP request to a web server,

which returns a reply.

Another common pattern is push, or fanout: you send data to any available worker in a pool of

processes. An example is a web server behind a load balancer.

The opposite of push is pull, or fanin: you accept data from one or more sources. An example

would be a logger that takes text messages from multiple processes and writes them to a single

log file.

One pattern is similar to radio or television broadcasting: publish-subscribe, or pub-sub. With

this pattern, a publisher sends out data. In a simple pub-sub system, all subscribers would

receive a copy. More often, subscribers can indicate that they’re interested only in certain types

of data (often called a topic), and the publisher will send just those. So, unlike the push pattern,

more than one subscriber might receive a given piece of data. If there’s no subscriber for a

topic, the data is ignored.

Topic 8: The Publish

Possible Question: Explain detail about The Publish?

Possible Marks: 5 or 10 Marks

Outcomes:

Publish-subscribe is not a queue but a broadcast. One or more processes publish messages.

Each subscriber process indicates what type of messages it would like to receive. A copy of

each message is sent to each subscriber that matched its type. Thus, a given message might be

processed once, more than once, or not at all. Each publisher is just broadcasting and doesn’t

know who—if anyone—is listening.

Redis

You can build a quick pub-sub system by using Redis. The publisher emits messages with a

topic and a value, and subscribers say which topics they want to receive.

Here’s the publisher, redis_pub.py:

import redis

import random

conn = redis.Redis()

cats = ['siamese', 'persian', 'maine coon', 'norwegian forest']

hats = ['stovepipe', 'bowler', 'tam-o-shanter', 'fedora']

for msg in range(10):

cat = random.choice(cats)

hat = random.choice(hats)

print('Publish: %s wears a %s' % (cat, hat))

conn.publish(cat, hat)

Each topic is a breed of cat, and the accompanying message is a type of hat.

Here’s a single subscriber, redis_sub.py:

import redis

conn = redis.Redis()

topics = ['maine coon', 'persian']

sub = conn.pubsub()

sub.subscribe(topics)

for msg in sub.listen():

if msg['type'] == 'message':

cat = msg['channel']

hat = msg['data']

print('Subscribe: %s wears a %s' % (cat, hat))

The subscriber just shown wants all messages for cat types 'maine coon' and 'persian', and no

others. The listen() method returns a dictionary. If its type is 'message', it was sent by the

publisher and matches our criteria. The 'channel' key is the topic (cat), and the 'data' key

contains the message (hat).

If you start the publisher first and no one is listening, it’s like a mime falling in the forest (does

he make a sound?), so start the subscriber first:

$ python redis_sub.py

Next, start the publisher. It will send 10 messages, and then quit:

$ python redis_pub.py

Publish: maine coon wears a stovepipe

Publish: norwegian forest wears a stovepipe

Publish: norwegian forest wears a tam-o-shanter

Publish: maine coon wears a bowler

Publish: siamese wears a stovepipe

Publish: norwegian forest wears a tam-o-shanter

Publish: maine coon wears a bowler

Publish: persian wears a bowler

Publish: norwegian forest wears a bowler

Publish: maine coon wears a stovepipe

The subscriber cares about only two types of cat:

$ python redis_sub.py

Subscribe: maine coon wears a stovepipe

Subscribe: maine coon wears a bowler

Subscribe: maine coon wears a bowler

Subscribe: persian wears a bowler

Subscribe: maine coon wears a stovepipe

We didn’t tell the subscriber to quit, so it’s still waiting for messages. If you restart the

publisher, the subscriber will grab a few more messages and print them.

You can have as many subscribers (and publishers) as you want. If there’s no subscriber for a

message, it disappears from the Redis server. However, if there are subscribers, the messages

stay in the server until all subscribers have retrieved them.

ZeroMQ has no central server, so each publisher writes to all subscribers. The publisher,

zmq_pub.py, looks like this:

import zmq

import random

import time

host = '*'

port = 6789

ctx = zmq.Context()

pub = ctx.socket(zmq.PUB)

pub.bind('tcp://%s:%s' % (host, port))

cats = ['siamese', 'persian', 'maine coon', 'norwegian forest']

hats = ['stovepipe', 'bowler', 'tam-o-shanter', 'fedora']

time.sleep(1)

for msg in range(10):

cat = random.choice(cats)

cat_bytes = cat.encode('utf-8')

hat = random.choice(hats)

hat_bytes = hat.encode('utf-8')

print('Publish: %s wears a %s' % (cat, hat))

pub.send_multipart([cat_bytes, hat_bytes])

Notice how this code uses UTF-8 encoding for the topic and value strings.

The file for the subscriber is zmq_sub.py:

import zmq

host = '127.0.0.1'

port = 6789

ctx = zmq.Context()

sub = ctx.socket(zmq.SUB)

sub.connect('tcp://%s:%s' % (host, port))

topics = ['maine coon', 'persian']

for topic in topics:

sub.setsockopt(zmq.SUBSCRIBE, topic.encode('utf-8'))

while True:

cat_bytes, hat_bytes = sub.recv_multipart()

cat = cat_bytes.decode('utf-8')

hat = hat_bytes.decode('utf-8')

print('Subscribe: %s wears a %s' % (cat, hat))

In this code, we subscribe to two different byte values: the two strings in topics, encoded as

UTF-8.

NOTE

It seems a little backward, but if you want all topics, you need to subscribe to the empty

bytestring b''; if you don’t, you’ll get nothing.

Notice that we call send_multipart() in the publisher and recv_multipart() in the subscriber.

This makes it possible for us to send multipart messages, and use the first part as the topic. We

could also send the topic and message as a single string or bytestring, but it seems cleaner to

keep cats and hats separate.

Start the subscriber:

$ python zmq_sub.py

Start the publisher. It immediately sends 10 messages, and then quits:

$ python zmq_pub.py

Publish: norwegian forest wears a stovepipe

Publish: siamese wears a bowler

Publish: persian wears a stovepipe

Publish: norwegian forest wears a fedora

Publish: maine coon wears a tam-o-shanter

Publish: maine coon wears a stovepipe

Publish: persian wears a stovepipe

Publish: norwegian forest wears a fedora

Publish: norwegian forest wears a bowler

Publish: maine coon wears a bowler

The subscriber prints what it requested and received:

Subscribe: persian wears a stovepipe

Subscribe: maine coon wears a tam-o-shanter

Subscribe: maine coon wears a stovepipe

Subscribe: persian wears a stovepipe

Subscribe: maine coon wears a bowler

Other Pub-sub Tools

You might like to explore some of these other Python pub-sub links:

RabbitMQ

This is a well-known messaging broker, and pika is a Python API for it. See the pika

documentation and a pub-sub tutorial.

pypi.python.org

Go to the upper-right corner of the search window and type pubsub to find Python packages

like pypubsub.

pubsubhubbub

This mellifluous protocol enables subscribers to register callbacks with publishers.

Topic 9: TCP/IP

Possible Question: Discuss about TCP/IP?

Possible Marks: 5 or 10 Marks

Outcomes:

We’ve been walking through the networking house, taking for granted that whatever’s in the

basement works correctly. Now, let’s actually visit the basement and look at the wires and

pipes that keep everything running above ground.

The Internet is based on rules about how to make connections, exchange data, terminate

connections, handle timeouts, and so on. These are called protocols, and they are arranged in

layers. The purpose of layers is to allow innovation and alternative ways of doing things; you

can do anything you want on one layer as long as you follow the conventions in dealing with

the layers above and below you.

The very lowest layer governs aspects such as electrical signals; each higher layer builds on

those below. In the middle, more or less, is the IP (Internet Protocol) layer, which specifies

how network locations are addressed and how packets (chunks) of data flow. In the layer above

that, two protocols describe how to move bytes between locations:

UDP (User Datagram Protocol)

This is used for short exchanges. A datagram is a tiny message sent in a single burst, like a note

on a postcard.

TCP (Transmission Control Protocol)

This protocol is used for longer-lived connections. It sends streams of bytes and ensures that

they arrive in order without duplication.

UDP messages are not acknowledged, so you’re never sure if they arrive at their destination.

If you wanted to tell a joke over UDP:

Here's a UDP joke. Get it?

TCP sets up a secret handshake between sender and receiver to ensure a good connection. A

TCP joke would start like this:

Do you want to hear a TCP joke?

Yes, I want to hear a TCP joke.

Okay, I'll tell you a TCP joke.

Okay, I'll hear a TCP joke.

Okay, I'll send you a TCP joke now.

Okay, I'll receive the TCP joke now.

... (and so on)

Your local machine always has the IP address 127.0.0.1 and the name localhost. You might see

this called the loopback interface. If it’s connected to the Internet, your machine will also have

a public IP. If you’re just using a home computer, it’s behind equipment such as a cable modem

or router. You can run Internet protocols even between processes on the same machine.

Most of the Internet with which we interact—the Web, database servers, and so on—is based

on the TCP protocol running atop the IP protocol; for brevity, TCP/IP. Let’s first look at some

basic Internet services. After that, we’ll explore general networking patterns.

Topic 10: Sockets

Possible Question: Discuss about Sockets?

Possible Marks: 5 or 10 Marks

Outcomes:

We’ve saved this topic until now because you don’t need to know all the low-level

details to use the higher levels of the Internet. But if you like to know how things work, this is

for you.

The lowest level of network programming uses a socket, borrowed from the C language and

the Unix operating system. Socket-level coding is tedious. You’ll have more fun using

something like ZeroMQ, but it’s useful to see what lies beneath. For instance, messages about

sockets often turn up when networking errors take place.

Let’s write a very simple client-server exchange. The client sends a string in a UDP datagram

to a server, and the server returns a packet of data containing a string. The server needs to listen

at a particular address and port—like a post office and a post office box. The client needs to

know these two values to deliver its message, and receive any reply.

In the following client and server code, address is a tuple of (address, port). The address is a

string, which can be a name or an IP address. When your programs are just talking to one

another on the same machine, you can use the name 'localhost' or the equivalent

address '127.0.0.1'.

First, let’s send a little data from one process to another and return a little data back to the

originator. The first program is the client and the second is the server. In each program, we’ll

print the time and open a socket. The server will listen for connections to its socket, and the

client will write to its socket, which transmits a message to the server.

Here’s the first program, udp_server.py:

from datetime import datetime

import socket

server_address = ('localhost', 6789)

max_size = 4096

print('Starting the server at', datetime.now())

print('Waiting for a client to call.')

server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

server.bind(server_address)

data, client = server.recvfrom(max_size)

print('At', datetime.now(), client, 'said', data)

server.sendto(b'Are you talking to me?', client)

server.close()

The server has to set up networking through two methods imported from the socket package.

The first method, socket.socket, creates a socket, and the second, bind, binds to it (listens to

any data arriving at that IP address and port). AF_INET means we’ll create an Internet (IP)

socket. (There’s another type for Unix domain sockets, but those work only on the local

machine.) SOCK_DGRAM means we’ll send and receive datagrams—in other words, we’ll

use UDP.

At this point, the server sits and waits for a datagram to come in (recvfrom). When one arrives,

the server wakes up and gets both the data and information about the client. The client variable

contains the address and port combination needed to reach the client. The server ends by

sending a reply and closing its connection.

Let’s take a look at udp_client.py:

import socket

from datetime import datetime

server_address = ('localhost', 6789)

max_size = 4096

print('Starting the client at', datetime.now())

client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

client.sendto(b'Hey!', server_address)

data, server = client.recvfrom(max_size)

print('At', datetime.now(), server, 'said', data)

client.close()

The client has most of the same methods as the server (with the exception of bind()). The client

sends and then receives, whereas the server receives first.

Start the server first, in its own window. It will print its greeting and then wait with an eerie

calm until a client sends it some data:

$ python udp_server.py

Starting the server at 2014-02-05 21:17:41.945649

Waiting for a client to call.

Next, start the client in another window. It will print its greeting, send data to the server, print

the reply, and then exit:

$ python udp_client.py

Starting the client at 2014-02-05 21:24:56.509682

At 2014-02-05 21:24:56.518670 ('127.0.0.1', 6789) said b'Are you talking to me?'

Finally, the server will print something like this, and then exit:

At 2014-02-05 21:24:56.518473 ('127.0.0.1', 56267) said b'Hey!'

The client needed to know the server’s address and port number but didn’t need to specify a

port number for itself. That was automatically assigned by the system—in this case, it

was 56267.

NOTE

UDP sends data in single chunks. It does not guarantee delivery. If you send multiple messages

via UDP, they can arrive out of order, or not at all. It’s fast, light, connectionless, and unreliable.

Which brings us to TCP (Transmission Control Protocol). TCP is used for longer-lived

connections, such as the Web. TCP delivers data in the order in which you send it. If there were

any problems, it tries to send it again. Let’s shoot a few packets from client to server and back

with TCP.

tcp_client.py acts like the previous UDP client, sending only one string to the server, but there

are small differences in the socket calls, illustrated here:

import socket

from datetime import datetime

address = ('localhost', 6789)

max_size = 1000

print('Starting the client at', datetime.now())

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

client.connect(address)

client.sendall(b'Hey!')

data = client.recv(max_size)

print('At', datetime.now(), 'someone replied', data)

client.close()

We’ve replaced SOCK_DGRAM with SOCK_STREAM to get the streaming protocol, TCP.

We also added a connect() call to set up the stream. We didn’t need that for UDP because each

datagram was on its own in the wild, wooly Internet.

tcp_server.py also differs from its UDP cousin:

from datetime import datetime

import socket

address = ('localhost', 6789)

max_size = 1000

print('Starting the server at', datetime.now())

print('Waiting for a client to call.')

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server.bind(address)

server.listen(5)

client, addr = server.accept()

data = client.recv(max_size)

print('At', datetime.now(), client, 'said', data)

client.sendall(b'Are you talking to me?')

client.close()

server.close()

server.listen(5) is configured to queue up to five client connections before refusing new

ones. server.accept() gets the first available message as it arrives. The client.recv(1000) sets a

maximum acceptable message length of 1,000 bytes.

As you did earlier, start the server and then the client, and watch the fun. First, the server:

$ python tcp_server.py

Starting the server at 2014-02-06 22:45:13.306971

Waiting for a client to call.

At 2014-02-06 22:45:16.048865 <socket.socket object, fd=6, family=2, type=1,

proto=0> said b'Hey!'

Now, start the client. It will send its message to the server, receive a response, and then exit:

$ python tcp_client.py

Starting the client at 2014-02-06 22:45:16.038642

At 2014-02-06 22:45:16.049078 someone replied b'Are you talking to me?'

The server collects the message, prints it, responds, and then quits:

At 2014-02-06 22:45:16.048865 <socket.socket object, fd=6, family=2, type=1,

proto=0> said b'Hey!'

Notice that the TCP server called client.sendall() to respond, and the earlier UDP server

called client.sendto(). TCP maintains the client-server connection across multiple socket calls

and remembers the client’s IP address.

This didn’t look so bad, but if you try to write anything more complex, you’ll see how low-

level sockets really are. Here are some of the complications with which you need to cope:

 UDP sends messages, but their size is limited, and they’re not guaranteed to reach their

destination.

 TCP sends streams of bytes, not messages. You don’t know how many bytes the system

will send or receive with each call.

 To exchange entire messages with TCP, you need some extra information to reassemble

the full message from its segments: a fixed message size (bytes), or the size of the full

message, or some delimiting character.

 Because messages are bytes, not Unicode text strings, you need to use the

Python bytes type.

Topic 11: Zero MQ

Possible Question: Discuss about Zero MQ?

Possible Marks: 5 or 10 Marks

Outcomes:

Sometimes described as sockets on steroids, ZeroMQ sockets do the things that you sort of

expected plain sockets to do:

 Exchange entire messages

 Retry connections

 Buffer data to preserve it when the timing between senders and receivers doesn’t line

up

The online guide is well written and witty, and it presents the best description of networking

patterns that I’ve seen. The printed version (ZeroMQ: Messaging for Many Applications, by

Pieter Hintjens, from that animal house, O’Reilly) has that good code smell and a big fish on

the cover, rather than the other way around. All the examples in the printed guide are in the C

language, but the online version lets you pick from multiple languages for each code example.

The Python examples are also viewable

ZeroMQ is like a Lego set, and we all know that you can build an amazing variety of things

from a few Lego shapes. In this case, you construct networks from a few socket types and

patterns. The basic “Lego pieces” presented in the following list are the ZeroMQ socket types,

which by some twist of fate look like the network patterns we’ve already discussed:

 REQ (synchronous request)

 REP (synchronous reply)

 DEALER (asynchronous request)

 ROUTER (asynchronous reply)

 PUB (publish)

 SUB (subscribe)

 PUSH (fanout)

 PULL (fanin)

To try these yourself, you’ll need to install the Python ZeroMQ library by typing this command:

$ pip install pyzmq

The simplest pattern is a single request-reply pair. This is synchronous: one socket makes a

request and then the other replies. First, the code for the reply (server), zmq_server.py:

import zmq

host = '127.0.0.1'

port = 6789

context = zmq.Context()

server = context.socket(zmq.REP)

server.bind("tcp://%s:%s" % (host, port))

while True:

Wait for next request from client

request_bytes = server.recv()

request_str = request_bytes.decode('utf-8')

print("That voice in my head says: %s" % request_str)

reply_str = "Stop saying: %s" % request_str

reply_bytes = bytes(reply_str, 'utf-8')

server.send(reply_bytes)

We create a Context object: this is a ZeroMQ object that maintains state. Then, we make a

ZeroMQ socket of type REP (for REPly). We call bind() to make it listen on a particular IP

address and port. Notice that they’re specified in a string such as 'tcp://localhost:6789' rather

than a tuple, as in the plain socket examples.

This example keeps receiving requests from a sender and sending a response. The messages

can be very long—ZeroMQ takes care of the details.

Following is the code for the corresponding request (client), zmq_client.py. Its type is REQ

(for REQuest), and it calls connect() rather than bind().

import zmq

host = '127.0.0.1'

port = 6789

context = zmq.Context()

client = context.socket(zmq.REQ)

client.connect("tcp://%s:%s" % (host, port))

for num in range(1, 6):

request_str = "message #%s" % num

request_bytes = request_str.encode('utf-8')

client.send(request_bytes)

reply_bytes = client.recv()

reply_str = reply_bytes.decode('utf-8')

print("Sent %s, received %s" % (request_str, reply_str))

Now it’s time to start them. One interesting difference from the plain socket examples is that

you can start the server and client in either order. Go ahead and start the server in one window

in the background:

$ python zmq_server.py &

Start the client in the same window:

$ python zmq_client.py

You’ll see these alternating output lines from the client and server:

That voice in my head says 'message #1'

Sent 'message #1', received 'Stop saying message #1'

That voice in my head says 'message #2'

Sent 'message #2', received 'Stop saying message #2'

That voice in my head says 'message #3'

Sent 'message #3', received 'Stop saying message #3'

That voice in my head says 'message #4'

Sent 'message #4', received 'Stop saying message #4'

That voice in my head says 'message #5'

Sent 'message #5', received 'Stop saying message #5'

Our client ends after sending its fifth message, but we didn’t tell the server to quit, so it sits by

the phone, waiting for another message. If you run the client again, it will print the same five

lines, and the server will print its five also. If you don’t kill the zmq_server.py process and try

to run another one, Python will complain that the address is already is use:

$ python zmq_server.py

[2] 356

Traceback (most recent call last):

File "zmq_server.py", line 7, in <module>

server.bind("tcp://%s:%s" % (host, port))

File "socket.pyx", line 444, in zmq.backend.cython.socket.Socket.bind

(zmq/backend/cython/socket.c:4076)

File "checkrc.pxd", line 21, in zmq.backend.cython.checkrc._check_rc

(zmq/backend/cython/socket.c:6032)

zmq.error.ZMQError: Address already in use</pre>

The messages need to be sent as byte strings, so we encoded our example’s text strings in UTF-

8 format. You can send any kind of message you like, as long as you convert it to bytes. We

used simple text strings as the source of our messages, so encode() and decode() were enough

to convert to and from byte strings. If your messages have other data types, you can use a

library such as MessagePack.

Even this basic REQ-REP pattern allows for some fancy communication patterns, because any

number of REQ clients can connect() to a single REP server. The server handles requests one

at a time, synchronously, but doesn’t drop other requests that are arriving in the meantime.

ZeroMQ buffers messages, up to some specified limit, until they can get through; that’s where

it earns the Q in its name. The Q stands for Queue, the M stands for Message, and the Zero

means there doesn’t need to be any broker.

Although ZeroMQ doesn’t impose any central brokers (intermediaries), you can build them

where needed. For example, use DEALER and ROUTER sockets to connect multiple sources

and/or destinations asynchronously.

Multiple REQ sockets connect to a single ROUTER, which passes each request to a DEALER,

which then contacts any REP sockets that have connected to it (Figure 11-1). This is similar to

a bunch of browsers contacting a proxy server in front of a web server farm. It lets you add

multiple clients and servers as needed.

The REQ sockets connect only to the ROUTER socket; the DEALER connects to the multiple

REP sockets behind it. ZeroMQ takes care of the nasty details, ensuring that the requests are

load balanced and that the replies go back to the right place.

Another networking pattern called the ventilator uses PUSH sockets to farm out asynchronous

tasks, and PULL sockets to gather the results.

The last notable feature of ZeroMQ is that it scales up and down, just by changing the

connection type of the socket when it’s created:

 tcp between processes, on one or more machines

 ipc between processes on one machine

 inproc between threads in a single process

That last one, inproc, is a way to pass data between threads without locks, and an alternative to

the threading example in “Threads”.

Figure. Using a broker to connect multiple clients and services

After using ZeroMQ, you might never want to write raw socket code again.

Topic 12: Internet Services

Possible Question: Explain about Internet Services?

Possible Marks: 5 or 10 Marks

Outcomes:

Python has an extensive networking toolset. In the following sections, we’ll look at ways to

automate some of the most popular Internet services. The official, comprehensive

documentation is available online.

Domain Name System

Computers have numeric IP addresses such as 85.2.101.94, but we remember names better than

numbers. The Domain Name System (DNS) is a critical Internet service that converts IP

addresses to and from names via a distributed database. Whenever you’re using a web browser

and suddenly see a message like “looking up host,” you’ve probably lost your Internet

connection, and your first clue is a DNS failure.

Some DNS functions are found in the low-level socket module. gethostbyname() returns the IP

address for a domain name, and the extended edition gethostbyname_ex() returns the name, a

list of alternative names, and a list of addresses:

>>> import socket

>>> socket.gethostbyname('www.crappytaxidermy.com')

'66.6.44.4'

>>> socket.gethostbyname_ex('www.crappytaxidermy.com')

('crappytaxidermy.com', ['www.crappytaxidermy.com'], ['66.6.44.4'])

The getaddrinfo() method looks up the IP address, but it also returns enough information to

create a socket to connect to it:

>>> socket.getaddrinfo('www.crappytaxidermy.com', 80)

[(2, 2, 17, '', ('66.6.44.4', 80)), (2, 1, 6, '', ('66.6.44.4', 80))]

The preceding call returned two tuples, the first for UDP, and the second for TCP (the 6 in the

2, 1, 6 is the value for TCP).

You can ask for TCP or UDP information only:

>>> socket.getaddrinfo('www.crappytaxidermy.com', 80, socket.AF_INET,

socket.SOCK_STREAM)

[(2, 1, 6, '', ('66.6.44.4', 80))]

Some TCP and UDP port numbers are reserved for certain services by IANA, and are

associated with service names. For example, HTTP is named http and is assigned TCP port 80.

These functions convert between service names and port numbers:

>>> import socket

>>> socket.getservbyname('http')

80

>>> socket.getservbyport(80)

'http'

Python Email Modules

The standard library contains these email modules:

 smtplib for sending email messages via Simple Mail Transfer Protocol (SMTP)

 email for creating and parsing email messages

 poplib for reading email via Post Office Protocol 3 (POP3)

 imaplib for reading email via Internet Message Access Protocol (IMAP)

The official documentation contains sample code for all of these libraries.

If you want to write your own Python SMTP server, try smtpd.

A pure-python SMTP server called Lamson allows you to store messages in databases, and you

can even block spam.

Other protocols

Using the standard ftplib module, you can push bytes around by using the File Transfer

Protocol (FTP). Although it’s an old protocol, FTP still performs very well.

You’ve seen many of these modules in various places in this book, but also try the

documentation for standard library support of Internet protocols.

Topic 13: Web Services and APIs

Possible Question: Explain about Web Services and APIs?

Possible Marks: 5 or 10 Marks

Outcomes:

Information providers always have a website, but those are targeted for human eyes, not

automation. If data is published only on a website, anyone who wants to access and structure

the data needs to write scrapers (as shown in “Crawl and Scrape”), and rewrite them each time

a page format changes. This is usually tedious. In contrast, if a website offers an API to its data,

the data becomes directly available to client programs. APIs change less often than web page

layouts, so client rewrites are less common. A fast, clean data pipeline also makes it easier to

build mashups—combinations that might not have been foreseen but can be useful and even

profitable.

In many ways, the easiest API is a web interface, but one that provides data in a structured

format such as JSON or XML rather than plain text or HTML. The API might be minimal or a

full-fledged RESTful API (defined in “Web APIs and Representational State Transfer”), but it

provides another outlet for those restless bytes.

At the very beginning of this book, you can see a web API: it picks up the most popular videos

from YouTube. This next example might make more sense now that you’ve read about web

requests, JSON, dictionaries, lists, and slices:

import requests

url = "https://gdata.youtube.com/feeds/api/standardfeeds/top_rated?alt=json"

response = requests.get(url)

data = response.json()

for video in data['feed']['entry'][0:6]:

print(video['title']['$t'])

APIs are especially useful for mining well-known social media sites such as Twitter, Facebook,

and LinkedIn. All these sites provide APIs that are free to use, but they require you to register

and get a key (a long-generated text string, sometimes also known as a token) to use when

connecting. The key lets a site determine who’s accessing its data. It can also serve as a way to

limit request traffic to servers. The YouTube example you just looked at did not require an API

key for searching, but it would if you made calls that updated data at YouTube.

Here are some interesting service APIs:

 New York Times

 YouTube

 Twitter

 Facebook

 Weather Underground

 Marvel Comics

Topic 14: Remote Processing

Possible Question: Describe about Remote Processing?

Possible Marks: 5 or 10 Marks

Outcomes:

Most of the examples in this book have demonstrated how to call Python code on the same

machine, and usually in the same process. Thanks to Python’s expressiveness, you can also call

code on other machines as though they were local. In advanced settings, if you run out of space

on your single machine, you can expand beyond it. A network of machines gives you access to

more processes and/or threads.

Remote Procedure Calls

Remote Procedure Calls (RPCs) look like normal functions but execute on remote machines

across a network. Instead of calling a RESTful API with arguments encoded in the URL or

request body, you call an RPC function on your own machine. Here’s what happens under the

hood of the RPC client:

1. It converts your function arguments into bytes (sometimes this is called marshalling, or

serializing, or just encoding).

2. It sends the encoded bytes to the remote machine.

And here’s what happens on the remote machine:

1. It receives the encoded request bytes.

2. After receiving the bytes, the RPC client decodes the bytes back to the original data

structures (or equivalent ones, if the hardware and software differ between the two

machines).

3. The client then finds and calls the local function with the decoded data.

4. Next, it encodes the function results.

5. Last, the client sends the encoded bytes back to the caller.

And finally, the machine that started it all decodes the bytes to return values.

RPC is a popular technique, and people have implemented it in many ways. On the server side,

you start a server program, connect it with some byte transport and encoding/decoding method,

define some service functions, and light up your RPC is open for business sign. The client

connects to the server and calls one of its functions via RPC.

The standard library includes one RPC implementation that uses XML as the exchange format:

xmlrpc. You define and register functions on the server, and the client calls them as though

they were imported. First, let’s explore the file xmlrpc_server.py:

from xmlrpc.server import SimpleXMLRPCServer

def double(num):

return num * 2

server = SimpleXMLRPCServer(("localhost", 6789))

server.register_function(double, "double")

server.serve_forever()

The function we’re providing on the server is called double(). It expects a number as an

argument and returns the value of that number times two. The server starts up on an address

and port. We need to register the function to make it available to clients via RPC. Finally, start

serving and carry on.

Now, you guessed it, xmlrpc_client.py:

import xmlrpc.client

proxy = xmlrpc.client.ServerProxy("http://localhost:6789/")

num = 7

result = proxy.double(num)

print("Double %s is %s" % (num, result))

The client connects to the server by using ServerProxy(). Then, it calls the function

proxy.double(). Where did that come from? It was created dynamically by the server. The RPC

machinery magically hooks this function name into a call to the remote server.

Give it a try—start the server and then run the client:

$ python xmlrpc_server.py

Next, run the client:

$ python xmlrpc_client.py

Double 7 is 14

The server then prints the following:

127.0.0.1 - - [13/Feb/2014 20:16:23] "POST / HTTP/1.1" 200 -

Popular transport methods are HTTP and ZeroMQ. Common encodings besides XML include

JSON, Protocol Buffers, and MessagePack. There are many Python packages for JSON-based

RPC, but many of them either don’t support Python 3 or seem a bit tangled. Let’s look at

something different: MessagePack’s own Python RPC implementation. Here’s how to install

it:

$ pip install msgpack-rpc-python

This will also install tornado, a Python event-based web server that this library uses as a

transport. As usual, the server comes first (msgpack_server.py):

from msgpackrpc import Server, Address

class Services():

def double(self, num):

return num * 2

server = Server(Services())

server.listen(Address("localhost", 6789))

server.start()

The Services class exposes its methods as RPC services. Go ahead and start the client,

msgpack_client.py:

from msgpackrpc import Client, Address

client = Client(Address("localhost", 6789))

num = 8

result = client.call('double', num)

print("Double %s is %s" % (num, result))

To run these, follow the usual drill: start the server, start the client, see the results:

$ python msgpack_server.py

$ python msgpack_client.py

Double 8 is 16

Topic 15: Big Fat Data and Map Reduce

Possible Question: Discuss about Big Fat Data and Map Reduce?

Possible Marks: 5 or 10 Marks

Outcomes:

As Google and other Internet companies grew, they found that traditional computing solutions

didn’t scale. Software that worked for single machines, or even a few dozen, could not keep up

with thousands.

Disk storage for databases and files involved too much seeking, which requires mechanical

movement of disk heads. (Think of a vinyl record, and the time it takes to move the needle

from one track to another manually. And think of the screeching sound it makes when you drop

it too hard, not to mention the sounds made by the record’s owner.) But you could stream

consecutive segments of the disk more quickly.

Developers found that it was faster to distribute and analyze data on many networked machines

than on individual ones. They could use algorithms that sounded simplistic, but actually worked

better overall with massively distributed data. One of these is MapReduce, which spreads a

calculation across many machines and then gathers the results. It’s similar to working with

queues.

After Google published its results in a paper, Yahoo followed with an open source Java-based

package named Hadoop (named after the toy stuffed elephant of the lead programmer’s son).

The phrase big data applies here. Often it just means “data too big to fit on my machine”: data

that exceeds the disk, memory, CPU time, or all of the above. To some organizations, if big

data is mentioned somewhere in a question, the answer is always Hadoop. Hadoop copies data

among machines, running them through map and reduce programs, and saving the results on

disk at each step.

This batch process can be slow. A quicker method called Hadoop streaming works like Unix

pipes, streaming the data through programs without requiring disk writes at each step. You can

write Hadoop streaming programs in any language, including Python.

Many Python modules have been written for Hadoop, and some are discussed in the blog post

“A Guide to Python Frameworks for Hadoop”. The Spotify company, known for streaming

music, open sourced its Python component for Hadoop streaming, Luigi. The Python 3 port is

still incomplete.

A rival named Spark was designed to run ten to a hundred times faster than Hadoop. It can read

and process any Hadoop data source and format. Spark includes APIs for Python and other

languages. You can find the installation documents online.

Another alternative to Hadoop is Disco, which uses Python for MapReduce processing and

Erlang for communication. Alas, you can’t install it with pip; see the documentation.

See Appendix C for related examples of parallel programming, in which a large structured

calculation is distributed among many machines.

Topic 16: Working in the Clouds

Possible Question: Explain detail about Working in the Clouds?

Possible Marks: 5 or 10 Marks

Outcomes:

Not so long ago, you would buy your own servers, bolt them into racks in data centers, and

install layers of software on them: operating systems, device drivers, file systems, databases,

web servers, email servers, name servers, load balancers, monitors, and more. Any initial

novelty wore off as you tried to keep multiple systems alive and responsive. And you worried

constantly about security.

Many hosting services offered to take care of your servers for a fee, but you still leased the

physical devices and had to pay for your peak load configuration at all times.

With more individual machines, failures are no longer infrequent: they’re very common. You

need to scale services horizontally and store data redundantly. You can’t assume that the

network operates like a single machine. The eight fallacies of distributed computing,

according to Peter Deutsch, are as follows:

 The network is reliable.

 Latency is zero.

 Bandwidth is infinite.

 The network is secure.

 Topology doesn’t change.

 There is one administrator.

 Transport cost is zero.

 The network is homogeneous.

You can try to build these complex distributed systems, but it’s a lot of work, and a different

toolset is needed. To borrow an analogy, when you have a handful of servers, you treat them

like pets—you give them names, know their personalities, and nurse them back to health

when needed. But at scale, you treat servers more like livestock: they look alike, have

numbers, and are just replaced if they have any problems.

Instead of building, you can rent servers in the cloud. By adopting this model, maintenance is

someone else’s problem, and you can concentrate on your service, or blog, or whatever you

want to show the world. Using web dashboards and APIs, you can spin up servers with

whatever configuration you need, quickly and easily—they’re elastic. You can monitor their

status, and be alerted if some metric exceeds a given threshold. Clouds are currently a pretty

hot topic, and corporate spending on cloud components has spiked.

Model Questions

Objective

1. Which Python library runs a function as thread?

A. None B. _threading C. threading D. thread

Answer: D

2. How does run() method is invoked?

A. By Thread.run() B. By Thread.start() C. By Thread.create() D. None

Answer: B

3. How to terminate a blocking thread?

A. thread.stop() & thread.wait() B. thread.stop() C. thread.terminate() D. None

Answer: A

4. Which method is used to identify a thread?

A. getThread() B. None C. getName() D. get_ident()

Answer: C

5. What are the libraries in Python that support threads?

A. _threading B. th C. None D. thread

Answer: D

6. How does global value mutation used for thread-safety?

A. via GIL (Global Interpreter Lock) B. via Locking C. via Mutex D. None

Answer: A

7. What is the method to retrieve the list of all active threads?

A. getList() B. getThreads() C. enumerate() D. threads()

Answer: C

8. Which thread method is used to wait until it terminates?

A. wait for thread() B. join() C. None D. wait()

Answer: B

9. Multithreading is also called as

A. Concurrency B. Simultaneity C. Crosscurrent D. Recurrent

Answer: A

10. A single sequential flow of control within a program is

A. Process B. Task C. Thread D. Structure

Answer: C

Subjective

1. Describe about Concurrency?

2. Explain about Queues?

3. Explain about Processes &Threads?

4. Describe about Green Threads and gevent?

5. Discuss about twisted & Redis?

6. Describe about Networks Patterns?

7. Explain about The Publish-Subscribe Model?

8. Explain in detail about TCP/IP & Sockets?

9. Explain about Zero MQ?

10. Explain about Internet Services &Web Services and APIs?

11. Explain about Big Fat Data and Map Reduce?

12. Discuss about Working in the Clouds?

Unit – V – END

Signature of the staff

with date

	Department of Computer Science & Applications Study Material – 2022(Odd Semester)
	UNIT –I
	Topic 1: Introduction
	History of Python
	Python Features
	Topic 2:Numbers
	Number Type Conversion
	Mathematical Functions
	Random Number Functions
	Trigonometric Functions
	Mathematical Constants
	Topic 3:Strings
	Accessing Values in Strings
	Updating Strings
	Escape Characters
	String Special Operators
	String Formatting Operator
	Triple Quotes
	Unicode String
	Built-in String Methods
	Topic 4:Variables
	Assigning Values to Variables
	Multiple Assignment
	Standard Data Types
	Python Numbers
	Python Strings
	Python Lists
	Python Tuples
	Python Dictionary
	Data Type Conversion
	Topic 5:Lists
	Accessing Values in Lists
	Updating Lists
	Delete List Elements
	Basic List Operations
	Indexing, Slicing, and Matrixes
	Built-in List Functions & Methods
	Topic 6:Tuples
	Accessing Values in Tuples
	Updating Tuples
	Delete Tuple Elements
	Basic Tuples Operations
	Indexing, Slicing, and Matrixes (1)
	No Enclosing Delimiters
	Built-in Tuple Functions
	Topic7:Dictionaries
	Accessing Values in Dictionary
	Updating Dictionary
	Delete Dictionary Elements
	Properties of Dictionary Keys
	Built-in Dictionary Functions & Methods
	Topic 8:Sets
	Set Items
	Unordered
	Unchangeable
	Duplicates Not Allowed
	Get the Length of a Set
	Set Items - Data Types
	type()
	The set() Constructor
	Python Collections (Arrays)
	Topic 9:Comparison
	Model Questions
	Subjective
	Unit – I – END
	Sri Ganesh College of Arts & Science – Salem- 14.
	Department of Computer Science & Applications Study Material – 2022(Odd Semester)
	UNIT – II
	Topic 1: Code Structures
	Outcomes:
	Python if Statement Syntax
	Python if...else Statement
	Output
	Python if...elif...else Statement
	Python Nested if statements
	Python Nested if Example
	Topic 2: Repeat with while
	Outcomes: (1)
	Example: Python while Loop
	Topic 3: Iterate with for
	Outcomes: (2)
	Syntax of for Loop
	Example: Python for Loop
	Output (1)
	Output (2)
	Possible Question: Describe about Comprehensions? Possible Marks: 5 or 10 Marks
	List Comprehension
	Dictionary Comprehensions
	Set Comprehension
	Generator comprehension
	Topic 5: Functions
	Outcomes: (3)
	Defining a Function
	Syntax
	Calling a Function
	Pass by reference vs value
	Function Arguments
	Required arguments
	Keyword arguments
	Default arguments
	Variable-length arguments
	The Anonymous Functions
	Syntax (1)
	The return Statement
	Scope of Variables
	Global vs. Local variables
	Topic 6:Generators
	Outcomes: (4)
	Generally generators in Python:
	Generators with Iterators
	Generator using next
	Program to print square of numbers from 1 to n
	Topic 7: Decorators
	Outcomes: (5)
	Code1
	Code2
	Output (3)
	Topic 8:Namespaces and Scope
	Outcomes: (6)
	Topic 9:Handle Errors with try and except
	Outcomes: (7)
	Output (4)
	Output (5)
	 IOError
	 ImportError
	 ValueError
	 KeyboardInterrupt
	 EOFError
	Topic 10:User Exceptions
	Outcomes: (8)
	Handling an exception
	Syntax (2)
	The except Clause with Multiple Exceptions
	Argument of an Exception
	Raising an Exceptions
	Syntax (3)
	User-Defined Exceptions
	Topic 11:Modules, Packages, and Programs
	Outcomes: (9)
	The import Statement
	The from...import Statement
	The from...import * Statement
	Locating Modules
	The PYTHONPATH Variable
	Namespaces and Scoping
	The dir() Function
	The globals() and locals() Functions
	The reload() Function
	Packages in Python
	Topic 12:Standalone Programs
	Outcomes: (10)
	The easy way
	Doing it the hard way
	Directives
	Freezing with CodeWarrior
	Topic 13: Command-Line Arguments
	Outcomes: (11)
	Parsing Command-Line Arguments
	getopt.getopt method
	Exception getopt.GetoptError
	Topic 14: Modules and the import Statement
	Outcomes: (12)
	With import statement
	With From Module Import
	Investigating modules
	Output (6)
	Topic 15: The Python Standard Library
	Outcomes: (13)
	About JSON
	Topic 16: Objects and Classes
	Outcomes: (14)
	Class Definition Syntax:
	Object Definiation Syntax:
	Some points on Python class:
	Defining a class
	Class Objects
	Declaring Objects (Also called instantiating a class)
	Example:
	Output:
	The self
	__init__ method
	Output: (1)
	Class and Instance Variables
	Output: (2)
	Topic 17: Define a Class with class
	Outcomes: (15)
	Defining a Class
	Class Attributes
	Constructor
	Instance Attributes
	Class Properties
	Class Methods
	Topic 18: Inheritance
	Outcomes: (16)
	Topic 19: Override a Method
	Outcomes: (17)
	Topic 20: Add a Method
	Outcomes: (18)
	Topic 21:Get Help from Parent with super
	Outcomes: (19)
	Example 1: super() with Single Inheritance
	Topic 22: In self Defense
	Outcomes: (20)
	Topic 23: Get and Set Attribute Values with Properties
	Outcomes: (21)
	Accessing Private Attribute
	Using getters and setters
	Making the Attributes Private
	Reading Values from Private Methods
	Topic 24: Name Mangling for Privacy
	Outcomes: (22)
	Topic 25: Method Types
	Outcomes: (23)
	Instance Methods
	– Class_name.Method_name().
	Topic 26: Duck Typing
	Outcomes: (24)
	Output: (3)
	Example -
	Concept of Duck Typing
	Example - (1)
	Output: (4)
	Example - 2
	Output: (5)
	How duck typing supports EAFP
	Topic 27: Special Methods
	Outcomes: (25)
	Topic 28: Composition
	Outcomes: (26)
	Key Points
	CompositionExample.java
	Output: (6)
	Model Questions Objective
	Answer: b
	Answer: a
	Answer: d
	Answer: a (1)
	Answer: c
	Answer: b (1)
	Answer: a (2)
	Answer: b (2)
	Answer: c (1)
	Unit – II – END

	Sri Ganesh College of Arts & Science – Salem- 14. (1)
	Department of Computer Science & Applications Study Material – 2022(Odd Semester)
	UNIT – III
	Topic 1: Data Types
	Outcomes:
	Assign String to a Variable
	Multiline Strings
	Strings are Arrays
	Looping Through a String
	String Length
	Check String
	Check if NOT
	Topic 2: Binary Data
	Outcomes: (1)
	The Bytearray Type
	The BytesIO Class
	Writing Bytes to a File
	Read file line by line
	Getting the size of a file
	Seeking a specific position in a file
	Integer to Bytes
	Bytes to Integer
	Text Encoding
	Base 64 Encoding
	Hexadecimal
	Format Strings
	Struct Packing and Unpacking
	import struct
	System Byte Order
	Topic 3: File Input/Output
	Outcomes: (2)
	Opening a file
	Syntax:
	Output:
	The close() method
	Syntax
	4. finally:
	The with statement
	Output: (1)
	Snapshot of the file2.txt
	Output: (2)
	Snapshot of the file2.txt (1)
	Syntax: (1)
	Output: (3)
	Read file through for loop
	Output: (4)
	Output: (5)
	Output: (6)
	Creating a new file
	Output: (7)
	File Pointer positions
	Output: (8)
	Modifying file pointer position
	Syntax: (2)
	Output: (9)
	Renaming the file
	Syntax: (3)
	Example 1:
	Output: (10)
	Example 1
	Creating the new directory
	Syntax: (4)
	Example 1 (1)
	Syntax (1)
	Example
	Output: (11)
	Changing the current working directory
	Syntax (2)
	Output: (12)
	Deleting directory
	Syntax (3)
	Example 1 (2)
	Writing Python output to the files
	Example file.py
	5. else:
	7. return f
	Topic 4: Structured Text Files
	Outcomes: (3)
	Steps for writing to text files
	Writing text file examples
	Appending text files
	Writing to a UTF-8 text file
	Topic 5: Structured Binary Files
	Outcomes: (4)
	Pre-requisite:
	Binary1.py
	Example-1: Read the binary file of string data into the byte array
	Output: (13)
	Topic 6: Relational Databases
	Outcomes: (5)
	Installing SQLAlchemy
	Reading Relational Tables
	Inserting Data to Relational Tables
	Deleting Data from Relational Tables
	Topic 7: No SQL Data Stores
	Outcomes: (6)
	Inserting Data
	Updating Data
	Deleting Data
	Model Questions Objective
	Answer: b
	Answer: b (1)
	Answer: a
	Answer: d
	Answer: c
	Answer: d (1)
	Answer: b (2)
	Answer: c (1)
	Answer: d (2)
	Answer: c (2)
	Unit – III – END

	Sri Ganesh College of Arts & Science – Salem- 14. (2)
	Department of Computer Science & Applications Study Material – 2022(Odd Semester)
	UNIT – IV
	Topic 1: Web Clients
	Outcomes:
	Caching
	Sessions
	Test with telnet
	HEAD / HTTP/1.1
	HTTP/1.1 200 OK
	Topic 2: Web Servers
	Outcomes: (1)
	The Simplest Python Web Server
	Web Server Gateway Interface
	Frameworks
	Routes
	Templates
	Authentication and authorization
	Sessions (1)
	Topic 3: Web Services and Automation
	Outcomes: (2)
	Web APIs and Representational State Transfer
	GET
	POST
	PUT
	DELETE
	Things to Do
	Topic 4: Files
	File Handling
	Syntax
	Topic 5: Directories
	Outcomes: (3)
	Get Current Directory
	List Directories and Files
	Making a New Directory
	Renaming a Directory or a File
	Removing Directory or File
	Topic 6: Programs and Processes
	Outcomes: (4)
	Create a Process with subprocess
	Topic 7: Calendars and Clocks
	Outcomes: (5)
	The datetime Module
	Model Questions Objective
	Answer: a
	Answer: b
	Answer: c
	Answer: b (1)
	Answer: a (1)
	Answer: d
	Answer: b (2)
	Answer: c (1)
	Answer: b (3)
	Answer: a (2)
	Unit – IV – END

	Sri Ganesh College of Arts & Science – Salem- 14. (3)
	Department of Computer Science & Applications Study Material – 2022(Odd Semester)
	UNIT – V
	Topic 1: Concurrency Queues
	Outcomes:
	Topic 2: Processes
	Outcomes: (1)
	Topic 3: Threads
	Outcomes: (2)
	Topic 4: Green Threads and gevent
	Outcomes: (3)
	NOTE
	Topic 5: Twisted
	Topic 6: Redis
	Topic 7: Networks
	Outcomes: (4)
	Topic 8: The Publish
	Outcomes: (5)
	NOTE (1)
	Topic 9: TCP/IP
	Outcomes: (6)
	Topic 10: Sockets
	$ python udp_server.py
	$ python udp_client.py
	NOTE (2)
	$ python tcp_server.py
	$ python tcp_client.py
	Topic 11: Zero MQ
	Outcomes: (7)
	Topic 12: Internet Services
	Outcomes: (8)
	Domain Name System
	Topic 13: Web Services and APIs
	Outcomes: (9)
	Topic 14: Remote Processing
	Outcomes: (10)
	Remote Procedure Calls
	Topic 15: Big Fat Data and Map Reduce
	Outcomes: (11)
	Topic 16: Working in the Clouds
	Outcomes: (12)
	Model Questions Objective
	Answer: D
	Answer: B
	Answer: A
	Answer: C
	Answer: D (1)
	Answer: A (1)
	Answer: C (1)
	Answer: B (1)
	Answer: A (2)
	Answer: C (2)
	Unit – V – END

