ELECTIVE I
ADVANCED COMPUTER ARCHITECTURE

OBJECTIVES:
e To study parallel computer architecture, design and micro-operations

e To understand the interconnection networks and synchronization mechanism
UNIT-I

Evolution of Computer systems — Parallelism in Uniprocessor Systems: Architecture,
Mechanisms — Parallel Computer Structures: Pipeline , Array, Multiprocessor.

UNIT - 11

Linear Pipeline processors: Asynchronous and Synchronous Models — Non-linear
PipelineProcessors: Reservation and Latency Analysis —Collision-free scheduling —
Instruction Pipeline Design: Instruction Execution Phases — Mechanisms f or Instruction
Pipelining — Arithmetic Pipeline Design: Computer Arithmetic Principles — Static Arithmetic
Pipelines — Multifunctional Arithmetic Pipelines - Superscalar Pipeline Design.

UNIT- 111

SIMD Array Processor — SIMD Interconnection Network: Static vs Dynamic Network —
Mesh connection Iliac Network- Tube interconnection Network. Associative Array
Processing: Associative memory organization.

UNIT -1V

Multiprocessor System Interconnects: Hierarchical Bus System - Crossbar Switch and
Multiport Memory - Multistage and Combining Networks — Cache Coherence and
Synchronization Mechanisms: The Cache Coherence Problem — Snoopy Bus Protocols —
Directory-Based Protocols — Hardware Synchronization Mechanisms — Message-Passing
Mechanisms: Message-Routing Schemes — Deadlock and Virtual Channels — Flow Control
Strategies — Multicast Routing Algorithms.

UNIT -V

Multiprocessor Operating Systems- Interprocessor Communication Mechanisms -
Multiprocessor Scheduling Strategies.

41

TEXT BOOKS

1. Kai Hwang, Faye A.Briggs, “Computer Architecture and Parallel Processing,”
McGrawHill, 1985.

2. Kai Hwang, “Advanced Computer Architecture,” McGraw -Hill International
Editions, 2001.

REFERENCES

1. Grama, "An Introduction to Parallel Computing: Design and Analysis of
Algorithms," 2 nd Edition, Pearson, 2004.

2. Gita Alaghband, Harry Frederick Jordan, "Fundamentals of Parallel Processing,"
Prentice Hall, 2003.

3. Seyed H Roosta, "Parallel Processing and Parallel Algorithms: Theory and
Computation," Springer Science & Business Madia, 1999

OUTCOMES:

On completion of the course the student can understand
e Parallel computer architecture, design and micro-operations
e Interconnection of networks and synchronization mechanism
e Develop design skills of Instruction Sets

e Know how to design a pipelined data path

42

/ CHAPTER
ONE

—
INTRODUCTION TO PARALLEL PROCESSING

sic concepts of parallel p.roccs:fsing on high-performance computers are intro-
in this chapter. We will review the architectural evolution, examine various

forms of concurrent activities i_n modern computer systems, and assess advanced
P lications of paralle_l processing computers. Parallel computer structures will be
ch“acterizcd as pipelhned computers, array processors, and multiprocessor systems.
w computing concepts, including data flow and VLSI approaches, will

d. The material presented in this introductory chapter will provide an
overview of the field and pave the way to studying in subsequent chapters the
details of theories of parallel computing, machine architectures, system controls,

fast algorithms, and programming requirements.

Several ne
be introduce

(.1 EVOLUTION OF COMPUTER SYSTEMS

Over the past four decades the computer industry has experienced four generations
of development, physically marked by the rapid changing of building blocks from
relays and vacuum tubes (1940- 1950s) to discrete diodes and transistors (1950-
1960s), to small- and medium-scale integrated (SSI/MSI) circuits (1960-1970s),
and to large- and very-large-scale integrated (LSI/VLSI) devices (1970s and
beyond). Increases in device speed and reliability and reductions in hardware
cost and physical size have greatly enhanced computer performance. However,
better devices are not the sole factor contributing to high performance. Ever since
the stored-program concept of von Neumann, the computer has been recognized
asmore than just a hardware organization problem. A modern computer system is
really a composite of such items as processors, memories, functional units, inter-
connection networks, compilers, operating systems. peripheral devices,communica-
tion channels, and database banks.

: To design a powerful and cost-effective computer system and to devise efficient
Programs 10 solve a computational problem, one must understand the underlying

2 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING
s and the computing algorithms to be

hardware and software system structure ' ‘
implemented on the machine with some user-oriented programming languages.
These disciplines constitute the technical scope.of computer architecture. Col'l'_lputer
architecture is really a system concept integrating hardware, software,_algonthms'

tions. A good computer architect shoy] d

and languages to perform large computatior ute |
master all these disciplines. It is the revolutionary advances In integrated circuitg
he significant improvemen;

and system architecture that have contributed most to the: (
of computer performance during the past 40 years. In this section, wWe review the

generations of computer systems and indicate the general trends in the developmeny

of high performance computers.

1.1.1 Generations of Computer Systems
The division of computer systems into generations is determined by the device

technology, system architecture, processing mode, and languages used. We con-
sider each generation to have a time span of about 10 years. Adjacent generations

may overlap in several years as demonstrated in F igure 1.1. The long time span is
intended to cover both development and use of the machines in various parts of
the world. We are currently in the fourth generation, while the fifth generation is

not materialized yet.

The first generation (1938-1953) The introduction of the first electronic analog
computer in 1938 and the first electronic digital computer, ENIAC (Electronic
Numerical Integrator and Computer), in 1946 marked the beginning of the first
generation of computers. Electromechanical relays were used as switching devices

Computer
generation

Second —
First L

| | | |
1960 1970 1980 1990 Vear

1]
1940 1950
“igure 1.1 The evolution of computer syster .

INTRODUCTION TO PARALLEL PROCESSING 3

one bit of carry flag. " Which uses a single full adder and

Only binary-coded machine language was ysed ;
Automatic Computer)', was developed. This marked the beginning Z;thea“abl?
system soft}varc to re!leve the user’s burden in low-leve] programming Hb:r:: 0
it is not difficult to imagine that hardware costs predominated and softw -
janguage features were rather primitive in the carly computers. By 1952, IBM had

announced its 701 electronic calculator, The system used Williams’ tube memor
magnetic drums, and magnetic tape. Y,

The second generation (1952-1963) Transistors were invented in 1948, The first
iransistorized digital computer, TRADIC, was built by Bell Laboratories in 1954,
Discrete transistors and diodes were the building blocks: 800 transistors were
used in TRADIC. Printed circuits appeared. By this time, coincident current
magnetic core memory was developed and subsequently appeared in many
machines. Assembly languages were used until the development of high-level
languages, Fortran (formula translation) in 1956 and Algol (algorithmic language)
in 1960.

In 1959, Sperry Rand built the Larc system and IBM started the Stretch
projeet. These were the first two computers attributable to architectural improve-
ment. The Larc had an independent I/O processor which operated in parallel with
one or two processing units. Stretch featured instruction lookahead and error
correction, to be discussed in Section 1.2. The first IBM scientific, transistorized
computer, IBM 1620, became available in 1960. Cobol (common business oriented
language) was developed in 1959. Interchangeable disk packs were introduced
in 1963. Batch processing was popular, providing sequential execution of user
programs, one at a time until done.

The third generation (1962-1975) This generation was marked by the use of
small-scale integrated (SS1) and medium-scale integrated (MSI) circuits as the
basic building blocks. Multilayered printed circuits were used. Core memory was
*Ull used in CDC-6600 and other machines but, by 1968, many fast computers,
i CDC-7600, began to replace cores with solid-state memories. High-level
3nguage§ were greatly enhanced with intelligent compilers during this period.
man!:iumpmg"ammmg was well developed to allow the simultaneous execution of
comp Drogrgm segments interleaved with I/O operations. Many high-performance
Puters, like IBM 360/91, Illiac 1V, TI-ASC, Cyber-175, STAR-100,and C.mmp,
Dpe::\:eral vector processors were developed in the early seventies. Time-sharing
Velope iy systems Ibecame available in the late 1960s. Virtual memory was de-
¥ using hierarchically structured memory systems.

E AND PARALLEL PROCESSING
ent generation computerse ‘
g mPh&Slze

The fourth eneration (1972 : :
the use of l:rge-scale integrated (LS circuits for both logic and mf)mo:-y SeCtiong
High-density packaging has appeared. !-llgh-lcvel languages are being extendey
to handle both scalar and vector data, like the exter'lded Fprtral_l in many vecy,,
processors. Most operating systems are time-sharing, using virtual Memorieg
Vectorizing compilers have appeared in the second generation of vector machines

). High-speed mainframes apg

like the Cray-1 (1976) and the Cyber-205 (1982). b
y-1 (1976) Univac 1100/80 (1976), Fujits,

supers appear in multiprocessor systems, like the
370/168 MP. the 1BM 3081 (1980), the Burroughs B-7g(y

M 382 (1981), the IBM (1980) -
(1978), and the Cray X-MP (1983). A high degree of pipelining and mf’“‘P'OCessing
is greatly emphasized in commercial supercomputers. A massively paralle|

982. This MPP, consisting of 16,384

processor (MPP) was custom-designed in 1
bit-slice microprocessors, is under the control of one array controller for satellite

image processing.

4 COMPUTER ARCHITECTUR
—present) The pres

The future Computers to be used in the 1990s may be the next generation. Very-
large-scale integrated (VLSI) chips will be used along with high-density modular
design. Multiprocessors like the 16 processors in the S-1 project at Lawrence
Livermore National Laboratory and in the Denelcor’s HEP will be required.
Cray-2 is expected to have four processors, to be delivered in 1985. More than 1000
mega float-point operations per second (megaflops) are expected in these future
supercomputers. We will study major existing systems and discuss possible future
e keaanent chapters.

1 2 PARALLELISM IN UNIPROCESSOR SYSTEMS

sor systems have the same basic structure. In
he architecture of uniprocessor systems, The
Il then be introduced categorically,

Most general-purpose uniproces
this section, we will briefly review t

development of parallelism in uniprocessors wi . :
It is assumed that readers have had at least one basic course in the past on cop.

ventional computer orgarization. Therefore, we will provu:*le only concise specifi.
cations of the architectural features of two popular commercial computers. Parallel-
processing mechanisms and methods to balance subsystem bandwidths will then
be described for a typical uniprocessor system. Details of these structures, mechan-
isms, and methods can be found in references suggested in the bibliographic notes.

1.2.1 Basic Uniprocessor Architecture

A typical uniprocessor computer consists of three major components: the main
memory, the central processing unit (CPU), and the input-output (1/O) subsystem.
The architectures of two commercially available uniprocessor computers are given
below to show the possible interconnection of structures among the three sub-
systems. We will examine major components in the CPU and in the 1/O subsystem.

)

-
console
CPU N
<]
P]
1 i -
gisk | € = memory

£ 8 (2*2 words

g | Re isters g of 32 bits
-]

o || Local memory ||.5 each)

Al— E
i)
[*3

<;r//’§nchronous backplane interconnect (SBI) >

Unibus ‘m Massbus
adapter adapter Massbus >

1/0 devices 1/0 devices

SBI1/0
| device
Input-output subsysle}n

f the supermini VAX-11/780 uniprocessor system (Courtesy of

Figure 1.3 The system architecture o
Digital Equipment Corporation).

Figure 1.3 shows the architectural components of the super minicomputer
VAX-11/780, manufactured by Digital Equipment Company. The CPU contains
the master controller of the VAX system. There are sixteen 32-bit general-purpose
registers, one of which serves as the program counter (PC). There is also a special
CPU status register containing information about the current state of the processor
and of the program being executed. The CPU contains an arithmetic and logic unit
(ALU) with an optional floating-point accelerator, and some local cache memory
with an optional diagnostic memory. The CPU can be intervened by the operator

through the console connected to a floppy disk.
s}’sleT he CPU, the main memory (2** words
cmm:n :S ;re all connected to a common bus, the
with t;e(cm)' Throl:lgh this bus, all I/O devices can comm .
necteq i PU, or with the memory. Peripheral storage or 1/O devices can be con-

directly to the SBI through the unibus and ts controller (which can be

Conn .
lrollee,cted to PDP-11 series minicomputers), or through a massbus and its con-

[32 bits each), and the I/O sub-
ynchronous backplane inter-
unicate with each other,

mainframe computer IBM

An ‘
other representative commercial system is the |
1.4. The CPU contain$ the

YSItm 3 ,
70/Model 168 uniprocessor, shown in Figure

 PROCESSING

LEI
10 COMPUTER ARCHITECTURE AND PARAL

Main memory

Logical storage units

LSU(}] ‘ LSuUI Lsu2 LSU3

Storage controller

Central processing unit
(CPU)

1/0 channels

[/0 subsystem

Figure 1.4 The system architecture of the mainframe IBM System 370/ Model 168 uniprocessor computer
(Courtesy of International Business Machines Corp.).

instruction decoding and execution units as well as a cache. Main memory is
dividcd into four units. referred to as logical storage units (LSU). that are four-way
interleaved. The storage controller provides multiport connections between the
CPU and the four LSUs, Peripherals are connected 10 the system via high-speed
1'O channels which operate asynchronously with the CPU. [n Chapter 9, we will
show that this uniprocessor can be modified to assume some multiprocessor
conhgurations

Hardware and software means to pPromote parallelism in uniprocessor systems
are introduced in the next three subsections, We begin with hardware approaches
which emphasize resource multiplicity and time overlapping. It is necessary (0
balance the processing rates of various subsystems in order to avoid bottlenecks
and 1o ncrease total system throughpur, which s the number of instructions (of
basic computations) performed per unit time. Finally, we study operating system
software approaches to achieve parallel processing with better utilization of the

sYSIem resources

INTRODY
CTI
ON TO PARALLEL PROCESSING 11

122 paralle] Processing Mechanisms

per of parallel process;
A num ; ” ng mechanism
o puters. We identify them in the foilowirfgh:_‘fe been developed in unipro
iX categ cessor

5 Multiplicity of functional units ories:
, Parallelism and pipelining within
th
8 Overlappe_d CPU and I/O OPCratio:sCPU
, Use of a hierarchical memory system
, Balancing of subsystem bandwidths
, Multiprogramming and time sharing

we will describe below the first four techni
3PproaCh'~‘5 in the subsections to follow.

altiplicity of functional units The earl

?:gic unit in its CPU. Furthermore, the XLCSTESEI():?; m:llz . atithmeltic o
ime, @ rather slow process for executing a long sequiencerg;' pe funct_lon ik
instructions. In practice, many of the functions of the ALU can ;::lil'lme'uc .
multiple and slpecml.lzed functional units which can operate in i
(DC-6600 (‘_1“'3“':_‘1 in 1964) has 10 functional units built into its CPI???HGL 5
These 10 units are independent of each other and may operate sin'lultanlega:‘)1 7011.5)-
scoreboard is used to keep track of the availability of the functional unliltsy.}:;
registers being demanded. With 10 functional units and 24 registers availablse atllll
astruction issue rate can be significantly increased. .

Another good example of a multifunction uniprocessor is the IBM 360/51
(1968), which has two parallel execution units (E units): one for fixed-point

ue i
ques and discuss the remaining two

Peripheral 10 P
processors functional
units Multiply
PPO B Multiply
'————H —
Lf'}’l Divide
PP2 Fixed add
” f_PB 2 Increment
peripheral jug—ie PP4| 1, Central ‘T“ registers Inerement
L channels PP$ = “1 slorage Boolean
T PP6 Shift
PP? Branch |
PP8
- [.
PP9 pstruction Scoreboard
it stack
—

Central processor

170 subsysiem Memory
| Data Corp.)-

Figwre) ¢ 1,
= The system architecture of the CDC-6600 computer (Courtesy of Contro

| PROCESSING
12 COMPUTER ARCHITECTURE AND PARALLFL P

ating-point arithmetic. Within the Roatin,
arilhmelic_ o lhe, O:h: 5?12:20;:: %o?oﬂoaling-point add?sulb.tract and _the E?}:::
= i mo.rund“il? ly-divide. IBM 360,91 Isa hlghly. plpchmed’ m"l“fun%n
for ﬁo_“}'“E‘Pmm o rp\i’c will study 360/91 in dgtail in C apler' 3 Al - an!
scientific umproceﬁss(;& attached processors are equ1ppgd with “?Ulllple fun ional
mo_delr: c“&iﬁliﬂiel or simultaneous arithmetic logic (Lpe;a:uons' This i
:?}Sncti[:)ena! specialization and distribution can be extended to arra

y prOCBSSOrs
and multiprocessors, to be discussed in subsequent chapters.

. . arallel adders, using such techp;
e [i icamr oAb ALUS, Thigj,
225?:::1 I(;Oihc bit-serial adders used in the ﬁr§t-g8nef ation n?achmes. High.g
multiplier recoding and convergence division are technlque§ for €xplorip
parallelism and the sharing of hardware resources for the fl}nctlons qf Multip}
and divide (to be described in Section 3.2.2). The use of multiple functiona] Unitg
is a form of parallelism with the CPU. o . o
Various phases of instruction executions are now plpglmed, including instryc.
tion fetch, decode, operand fetch, arithmetic logic execution, and Store result, T,
facilitate overlapped instruction executions through the pipe, Instruction prefetch
and data buffering techniques have been developed. Instruction and arithmetjc
Pipeline designs will be covered in Chapters 3 and 4, Most commercial uniprocesso,
Systems are now pipelined in their CPU with a clock rate between 0 and 500 pg,
Overlapped CPU and |
taneously with the CpPy
or 1/0 processors. The
provide direct informatjo
The DMA s conducted

[O operations 1/0 operations ca
computations by using separate |/

direct-memory-access (DMA)
n transfer between the | /

On a cycle-stealing basis

n be performeq simul-
0 controllers, channels,
channel can pe used to
Odevices and the main memory,

compulers are given in C hapter 2. Var;

M Uniprocessor ang multiprocessor
ous inter| '
given i Section, 3.1.4. Paralle] men

. eaved Memory organizations are
ories for array processors are treated in

INTRODUCTION TO PARALLEL PROCESSING 13

.............................

B L L L L LT T T T T

Main memory
(RAMs or core)

|

Fixed-head disks, drum,
charge-coupled devices,
or magnetic bubble memory

Moving head disks

Magnetic lape units

Figure 1.6 The classical memory hierarchy.

Section 6.2.4, along with the description of the Burroughs Scieqtiﬁc Processor
(1978). Multiprocessor memory and cache coherence problems will be treated in
Section 7.3. All these techniques are intended to broaden the memory bandwidth
10 match that of the CPU.

1.23 Balancing of Subsystem Bandwidth

In general, the CPU is the fastest unit in a computer, with a processor cycle t,
of tens of nanoseconds; the main memory has a cyc‘e time Im of hundr‘ids of
"anoseconds; and the 1/0 devices are the slowest with an average access time /s
of a few milliseconds. It is thus observed that

By iy > 1, (1.0

PROCESSING
14 COMPUTER ARCHITECTURF AND PARALLEL

diSk]1 Iy = 320 ns, and .fp = BU
With xzmpleﬁé:j ;?:: ;;(xeen O o n:cfgi;?nmmh ther Processing
With these s . bottleneck p -
; ; a system .

bandwidths T f:ﬂf;;z z;::jm isydeﬁned as the numberhol' operatlogs Performg

The ban “;n the case of a main memory system, the mem(;ry . :ndw‘dlh I§
PET LIS time. mber of memory words that can be accessed (either feyq, g
Teas;] [r):? ::Till:l:mtuLet W be the number of words delivered per memory cycle L,
store J

Then the maximum memory bandwidth B,, is equal to

B.= ti/ (words/s or bytes/s) (1
"H‘l

M 3033 uniprocessor has a processor cycle i< 52 ns, Eighy
dou;(;r;!;arr;f 1(68‘ ”l;:tl:: each) canpbe requested from an eight-way interleayeg
memory system (with eight LSEs in F igl}re 1.7) per eagh memory cycle o
456 ns. Thus, the maximum memory bandwidth of the 3033is B, = 8 x § bytes/asg
ns = 140 megabytes/s. Memory access conflicts may cause delayt?d aCCEsIs, of some
of the processor requests. In practice the utilized memory bandwidth By is usually
lower than B, ; that is, B, < B,,. A rough measure of B has been suggested as

B
Rt

s (13)

where M is the number of interleaved memory modules in the memory system
(to be described in Section 3.1.4). For the IBM 3033 uniprocessor, we thus have an
approximate B = 140/\f = 49.5 megabytes/s.

For external memory and 1/O devices, the concept of bandwidth is more
involved because of the sequential-access nature of magnetic disks and tape units,
Considering the latencies and rotational delays, the data transfer rate may vary.
In general, we refer 1o the average data transfer rate B, as the bandwidth of a disk

unit. A typical modern disk may have a data rate of | megabyte/s. With multiple
disk drives, the data rate can increase to 10 megabytes/s, say for 10 drives per
channel controller. A modern magnetic tape unit has a data transfer rate around
1.5 megabytes/s. Other peripheral devices, like |ine printers, readers/punch, and
CRT terminals, are much slower due to mechanical motions.

ray-1 and
These are y)| peak v
and | /80 ns respectively. In practice,

utihzed CPU rate B, is based on me

12.5 million instructions per second
alues obtained by Ijt, = 1/12.5ns
the utilized CPU rate is B, < B,. The

asuring the number of output results (in words)
per second
" Rh
B, = = (words/s) (1.4)

P
. ' v of , : _ :
where R_ 1s the number of word results and 7, is the total CPU time required o
generate the R results. For a machine with

: Variable word length. the rate wil
vary. For example. the CDC Cyber-205 has 4 Peak CPU rape of 200 megaflops for

Fight
double
words
(64 bytes)
or

qxteen
12-bil
words

are |
accessed ’
pet

memory
cvele

“tWt 1?

Byte

Byte

Byte

Byte|

“\lk' |

l{\ T

8

56

63

INTRODUCTI
ON TO PARALLEL PROCESSING 1§

LSE 0

Logical
storage elements

I'be interle
2 .od memory st |
v structure in 1BM 3033 uni
3033 uniprocessor.

16 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

32-bit results and only 100 megaflops for 64-bit results (one vector processor is
d). , . .
assug:se)d on current technology (1983), the following relationships have beey,

observed between the bandwidths of the major subsystems in a high-performanc,
UNiprocessor;

B, > B.>B,>B:> B, (Ls)

This implies that the main memory has the hight?st bandw@h, since ltSmUSt be
updated by both the CPU and the I/0 devices, as illustrated in Figure 1.8. Due t
the unbalanced speeds (Eq. 1.1), we need to match the processing power of the
three subsystems. Two major approaches are described below.

Bandwidth balancing between CPU and memory The speed gap between the Cpy
and the main memory can be closed up by using fast cache memory betwan them,
The cache should have an access time fe = 1,. A block of memory words is moveg
from the main memory into the cache (such as 16 words/block for l}?e IBM 3033)
so that immediate instructions/data can be available most of the time from the

cache. The cache serves as a data/instruction buffer. Detailed descriptions of
cache memories will be given in Sections 2.4 and 7.3

Bandwidth balancing between memory and 1/O devices Input-output channels
with different speeds can be used between the slow 1/0 devices and the main

buffering and multiplexing functions to

» intelligent disk controllers or database machines can
be used to filter out the irrelevant data just off the tracks of the disk. This filtering

will alleviate the 1/O channel saturation problem. The combined buffering, multi-

plexing, and filtering operations thus can provide a faster, more effective data
transfer rate, matching that of the memory.

In the ideal case, we wish to achieve a totally balanced system, in which the
entire memory bandwidth matches the bandwidth sum of the processor and 1/0
devices; that is,

m (1.6)

€ and software supports beyond any of the existing
systems.

1.24 Multiprogramming and Time Sharing

Even when there is only one CPU in
high degree of resource sharing .a
review the concepts of multiprogram
are software approaches to achiey

a uniprocessor System, we can still achieve a
mong many user programs. We will briefly
ming and ime sharing in this subsection. These
€ concurrency in a uniprocessor system. Tfte .

17

“39indwo) 10ss330.dyun & uy waysksqns O] pue *Kiowaw "N 933M13q wwsjueyaw Jupunieg ppimpurg § | amd¥y g

“n

——

EE:E.::E
‘Fuisagyng)

spuueys)/
—

P

@ & a
®
. {
s — T
AJ y .u: (paaeapiaiug)
&
eep ®
pue
SuoOnNIISUIL e
o~ N T
sis18ay boEuh _
Yoe = ST ——
= >
Ndd Kowaw urepy
() =
Cag)

—
it YA

WasAs () g

—

]
_

(Ruizpg)
Juryoew
Heqeiep

10 SR0NuoS
INAIP
asyaug

-

[,)

.

— .

-

&)

8015
Lrepuosag

1]

201A2¢]

MAX)

33

| §

; G
D PARALLEL PROChSSlN

i ated by t .
illustr t the input, compute, and outpy,

; ing is
conventional batch processing o to represen

1.9a. We use the notation i, ¢, and

operations, respectively.)
erval, there mdy be multiple Procesge

1/0, and CPU resources. We are

Multiprogramming Within the same time It
s are CPU-bound (computatig,

i emory.
active in a computer, competing for memory

ram
B somcocgmp\:fle(fin%fligompm intensive). We can mix the
intensive), and some are [/O-boun

: uter to balance bandwiqy

execution of various types of proglram;_ }:n iii;?aﬁpinterleaving s :13
among the various funcu_olnallumts. ep A pingl/Oand CPU operation,
promote better resource uuhlz;;:on l:hrougrh:;:ocelzs P istied up with /0 OpEra‘

As illustrated in Figure 1.9b, whenev : !
tions, l]lle system schedguler can switch the CF:U to process P \i/-hThlSPallpws the
simultaneous execution of several programs In the system. & 5 B dong,
the CPU can be switched to P;. Note the overlapped 1/0 and CPU operations ang
thé CPU wait time are greatly reduced. This interleavm'g of CPU and 1/O opers.
tions among several programs 1 called multiprogramniing. The ‘pro_grams can be
mixed across the boundary of user tasks and system processes, in euhgr a mono.
programming or a multiprogramming environment. The total execution time js
reduced with multiprogramming. The processes P. | ST may belong to the
same or different programs.

Time sharing Multiprogramming on a uniprocessor is centered around the sharing
of the CPU by many programs. Sometimes a high-priority program may occupy
the CPU for too long to allow others to share. This problem can be overcome by
using a rime-sharing operating system. The concept extends from multiprogram-
ming by assigning fixed or variable rime slices to multiple programs. In other words,
equal opportunities are given to all programs competing for the use of the CPU.
This concept is illustrated in Figure 1.9¢. The execution time saved with time
sharing may be greater than with either batch or multiprogram processing modes.
The time-sharing use of the CPU by multiple programs in a uniprocessor
computer creates 1he concept of virtual processors. Time sharing is particularly
e USSR i Lo ey e
basis. Each user thinks that he or she is th]t S Pk cers
. k3 3 e sole user of
response is so fast (waiting time between time slices is not
Time _sharmg 1s indispensable to the development of rea
Time sharing.wgs fi.rst Qevelopgd for a uniprocessor

be cxtended. to designing interactive lime-sharing mu

-

the system. because the
recognizable by humans)
I-time computer systems.
system. The concept cab
ltiprocessor systems. Of
ore complicated. We wil
multiprocessor systems in
cessor or a multiprocessor
ating system. After all, the
the resource allocation and

discuss the operating system design considerations for
Chapters 7.8.and 9. The performance of either a unjpro
system depends heavily on the capability of the OpF::r
major functon ol an operating system is to oplimize

management. which often leads to high perfOrmancC

-19)ndwod 1ossadoidiun e ui Surssasord j3|jrsed aaaiyoe o) saydeoidde wass JunesadQ ¢ aandiy
Suissasoad paieys-aw] (2)

19

I T 4 1 1
aseyd O /1 o “r !
g 3T 2, & o VT
: “ : i
ndinozo " M T
a1ndwoos :2 : 1 o pa— 1
indur 1 : : : i i e i
“ S B, m— : —
i i : : L
e paAes awn | I_IF.O|HU |||||||||||| ﬂ.ﬁn|n||||l;n R
h sseyd 4D = —— T —
i) & 5 & b &
|
)
'
! 8uissasold pawwesFordniny (q)
i !
L]
L e s o
" [& 0 Iz, vee . W d ot | v] '
: aseyd O /1 ! : “ '
L] L} [}
e pames L\ 1 =) : : ‘o
“ aunyp 2 | 0 ! y)
: i R |.r|||..1L g, | H d
" “ LB m
m ‘ H _.l_..u_l : . 1 '
] i Ll
1 ' i . s ' !
: 3 ' 3 \
m ey NdD'] —— T
| £, i, ¥ . :
i ' i
[} . 1
| i
\ : i
: Buissasoud yneq (o) ¢ '
¥ = ——r—— | A awe e g 1
\ fo ta "G d__ ‘o iy “ __ ‘o s '
._ :
\—

ESSING
20 COMPUTER ARCHITECTURE AND PARALLEL PROC

CTURES
13 PARALLEL COMPUTER STRUCTU

i rallel processing. The bas;
Parallel computers are those systems that emphasminﬂ:o Aiiced Below: e divid:
architectural features of parallel 'compuiersnzl‘geumtions:
parallel computers into three architectural co

« Pipeline computers
e Array processors
 Multiprocessor systems

jons to exploit tempo,
A pipcline computer performs overlapl?ed comﬁu;iti;zd arithmetic logic i(:u?s,
parallelism. An array processor uses multiple synchr achieves asynchron,
to achieve spatial parallelism. A multiprocessor _sysl;m d resources (memor; "
parallelism through a set of interactive processors with share ctom design o €s,
database, etc.). These three parallel approaches to computer sy. v ga > € not
mutually exclusive. In fact, most existing computers are low plp’i‘h fund SOme
of them assume also an “array”ora“ multiprc;cessm'r structure. The undamentg|
difference between an array processor and a multiprocessor system is that the
Processing elements in an array processor operate synchronously but processors
in a multiprocessor system may operate asynchronc_)usly. o
New computing concepts to be introduced in this section include the data floy
computers and some VLSI algorithmic processors. All these new approaches

demand extensive hardware to achieve parallelism. The rapid progress in the VLS|
technology has made these new approaches possible.

1.3.1 Pipeline Computers

Normally, the process of executing an instruction in a di
four major steps: instruction fetch (
coding (ID), identifying the operati
needed in the execution; and then e

gital computer involves
IF) from the main MEemory, instruction de-

on to be performed: operand fetch (OF), if
xecution (EX) of the decoded arithmetic logic
uter, these four steps must be completed before

are executed in an overlapped fash;
stages, IF, ID, OF, and EX, are arranged into a linear casc
time diagrams show the difference bet
sequentially nonoverlapped execution,

An instruction cycle consists of multiple pipeline cycles. A pipeline cycle can be
set equal to the delay of the slowest Stage. The flow of daty (input operands,
intermediate results, and output results) f,

ade. The two space-
Ween overlapped instruction execution and

Itis produced from (he pipeline on each

IN
TRODUCTION TO PARALLEL PROCESSING 21

5 5, S
3 Se (Stages)

'DL'"OF——*EX__,.

(a) A pipelined processor

pipclinc
stages
)
/ o/pP
__‘.--"-'-—.-—.-._.__
EX e hlh bl eeoe
OF ll "2 !3 !4]5 o0 ®
1D 5 L 5 L |4 oo o
#l 4| AR K eee
A —
o2 3 4 5 6 7 8 9 Time
(pipeline
(b) Space-time diagram for a pipelined processor ek
Stages
}
o/p //p 0/p
5, h I eeeo
,_.—-—4__-—1_._.—-1
) h eee
!2 13 200
/ / 1 eeo
I Y O S B B 4 —
4 5 6 7 8 9 10 11 12 13 Time
(c) Space-time diagram for a nonpipelined processor
nstruction execution.

Figure 1.10 Basic concepts of pipelined processor and overlapped i
cycle. The instruction cycle has been effectively reduced to one-fourth of the

original cycle time by such overlapped execution.

Theoretically, a k-stage linear pipeline processor could be at most k times

faster. We will prove this in Chapter 3. However, due to memory conflicts, data

dependency, branch and interrupts, this ideal speedup may not be achieved for

out-of-sequence computations. What has been described so far is the instruction
can be further

Pipeline. For some CPU-bound instructions, the execution phase : fi
partitioned into a multiple-stage arithmetic Jogic pipeline, as for sophisticated

22 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

ﬂoating-point operations. Some main issues in dctﬂlgnlng a pipeline comPUler
include job sequencing, collision prevention, congestion control, branch hand“n&
reconfiguration, and hazard resolution. We will learn how to cope with each o
these problems later. _ T

Due to the overlapped instruction and arithmetic execution, It 15 Obvigyg
Pipeline machines are better tuned to perform the same operallons repealedh
through the pipeline. Whenever there is a change of operation, say from add 1,
multiply, the arithmetic pipeline must be drained and reconfigured, Which y,;
Cause extra time delays. Therefore, pipeline computers are more attractjye for
Vector processing, where component operations may be repeated many timeg,
Most existing pipeline computers emphasize vector processing. WF: will study basj,
Vector processing requirements in Chapter 3. Various vectorization ynlethods Wil
be presented in Chapter 4, after learning the structure and capability of com.
mercially available pipeline supercomputers and attached processors,

A typical pipeline computer is conceptually depicted in Figure 1,11, Thi
architecture s very similar to several commercial machines like Cray-1 and VP.zgg‘
10 be described in Chapter 4, Both scalar arithmetic pipelines and vector arithmetj,
pipelines are provided. The instruction preprocessing unit is itself pipelineg With
three stages shown. The OF stage consists of two independent stages, ope for
fetching scalar operands and the other for vector operand fetch. The scalar
registers are fewer in quantity than the vector registers because each vecyq,
register implies a whole set of component registers. For example, a vector register
in Cray-1 contains 64 component registers, each of which is 64 bits wide. Each
Vector register in Cray-1 requires 4096 flip-flops. Both scalar and vector
could appear in fixed-point or floating-point format. This means different pipe
can be dedicated to different arithmetic logic functions with different data for
The scalar arithmetic pipelines differ from the vector arithmetic pipelines in stryc.
ture and control strategies. Modern vector processors are usually augmented with 3
powerful scalar processor to handle a mixture of vector and scalar instructions,

Pipelined computers to be studied in Chapter 4 include the early vector
processors, Control Data’s Star-100 and Texas Instruments’ Advanced Scientific
Computer (ASC); the attached pipeline processors, AP-120B and FPS-164 by
Floating Point Systems, Datawest MATP, and IBM 3838; and recent vector
processors, Cray-1, Cyber-205, and Fujitsu VP-200, Vectorization methods to be
studied include resource reservation, pipeline chaining, vector segmentation,
vectorizing compiler design, and optimization of compilers for vector processing.
A performance evaluation model for pipeline processors will also be presented.

data
lines
mats,

1.3.2 Array Computers

An array processor is a synchronous paralle] computer with multiple arithmetic
logic units, called processing elements (PE), that can operate in parallel ip a lock-
step fashion. By replication of ALUs, one can achieve the spatial parallelism. The
PEs are synchronized to perform the same function at the same time. An appro-
priate data-routing mechanism must be established among the PEs. A typical

saurpadid 10109

-sani[iquded 10)334 pue JE[Eds Pia 13)ndwod auyjadid wiapow E jo 3umdnys [suondunyg 17| 2andyy

“dA e
L
® . s12151821
P 10193
(tda)
i aa e

10s553201d 10103

sreusis jonuod)
Y213 puesado : O
Wea11s uoldnIIsul (g

BIEP IOIDIA

saurjadid lefesg
L “ds

S19151821
iejedg

¥ Buissadoidaid uotdnnsug
Y2133
10193
I‘
X (an “n
——({d0)— 3pod3p 213}
uonINLIsuj uonaNIsuj
....................... 4939 g
Ty refeos |
|
X _

S1

lossadoid rejesg

elep Iejedg

Aowaw
uiepy

O/1

<

ING
24 COMPUTER ARCHITECTURE AND PARALLEL PROCESS

170
CP Control CPIE Processing g
uni ; contro| pmmm""h
(scalar . : contro| o
processing) P: Processor
M - Memory
I
Daia e e .
bus v
l» PE, I PE, l PE,
B 7]
[I]
’ Conirg)
i (Array
processing)
® 00
y/ * :
Inter-PE connection network
(data routing)
(ogure 112 Funcrional structure of an SIMD Array processor with concurren scalar processing in the
conirol wnit,

ar and control-type instructions are
PE consists of an ALU with registers
cted by a data-routing network. The
Pecific computation is under program
€ broadcast (o the PEs for distributed

array processor is depicted in Figure 1.12. Sca]
directly executed in the control uni (CU). Each
and a local memory. The PEs are interconne
interconnection pattern to be established for g
control from the CU. Vector instructions ar
execution over different component o

INTRODUCTION TO PARALLEL PROCESSING 25

Various lﬂlFICOﬂﬂOCllOI‘I structures for a set of PEs will be studied in Chapter 5.
Both recirculating networks and multistage networks will be covered. Associati
memory, which is content addressable, will also be treated there in lh.c contcu.:::w?

arallel processing. Array processors designed with associative memories ao
called associative processors. Parallel algorithms on array. processors will be iv::
for matrix multiplication, merge sort, and fast Fourier transform (FFT) Ag r-
formance cvglqntiqn of the array processor will be presented, with cmpl:lasi:’:m
resource optimization.

Modern array processors will be described in Chapter 6. Different array
processors may use different interconnection networks among the PEs. For
example, Ilhac-1V uses a mesh-structured network and Burroughs Scientific
Processor (BSP) uses a crossbar network. In addition to Illiac-1V and BSP, we will
sudy a bit-slice array processor called a massively parallel processor (MPP).
Array processors are much more difficult to program than pipeline machines. We
will study various performance enhancement methods for array processors,
including the use of skewed memory allocation, language extensions for vector-
array processing, and possible future architectural improvements.

1.3.3 Multiprocessor Systems
ment of multiprocessor systems are aimed at improving
nd availability. A basic multiprocessor
n Figure 1.13. The system contains two or

more processors of approximalely comparable capabilities. All processors share
access Lo common Sets of memory modules, /0 channels, and peripheral devices.
Most importantly, the enuire system must be controlled by a single integrated
operating system providing interactions between processors and their programs
at various levels. Besides the <hared memories and I/O devices, each processor
has its own local memory and private devices. Interprocessor communications
can be done through the shared memories or through an interrup! network.
Multiprocessor hardware system organization is determined primarily by
used between the memories and processors
Is_ if needed). Three different interconnec:

Research and develop
throughput, reliability, flexibility, a
organization 1s conceptually depicted |

the interconnection structure to be
(and between memories and 1'O channe
tions have been practiced in the past

o Time-shared common bus
o Crossbar swilch m'lmmrlx

. \11.15‘._{\{1]" memaories
ns for multiprocessor systems will

7 Techniques (or exploiting concurrency 1n

including the development of some parallel
lism 1n user programs.

These organizations and their possible extensio

be described 1n detail in Chapter

muliprocessors will be studied
ble detection of paralle

]""Fddl‘t lcatures and the poSsi
" Special memory organization for multiprocessors will be treated 1n Section 7.3
¢ will cover hierarchical virtual memory, cache structures, parallel memaories,

. s ©
4 M)

P ————— &

}JOMIZU UONIAULOD
K1owaw-10ss3d01d 131u]

/w1 o)=
_|.|'L
]
[]
[]
yicmiau
1dnaiaut
W1 Jossaroudiau]
I
W1
¢ o000
(uodnjnu 10 yiomjau
‘18Qss04) ‘sasnq) uol}23Uuu0d1ajul

indino-induj

jossadoud g
Klowauw [e20] (N
s|npow Alowsw AW

Alowaw
pa1eys

w

—— W

S[puuRYd O /|

26

INTRODUCTIO'N 10 PARALLEL PROCESSING 27

ing, and various memory management ISsucs. Multiprocess
paging, will also be studied in Chapter 8. Important topics incly
systems system deadlock resolution methods, interprocess ¢
schemes, mg' and various multiple processor scheduling stray
mech?nls) f;;)r multiprocessors will also be studied. B
algornhma[orithms will be specified and evaluated,
chrosvouii”i resent several exploratory and commercial m

€ 9. including the C.mmp system and Cm* system developed at Carnegie

Chapter 7, iversity, the S-1 multiprocessor system developed at the Lawrence
Mellon U“I‘\] tiona‘l Laboratory, the IBM System 370/Model 168 Mp system, the
Livermore ha Un.vac 1100/80 and 90 MP, the Tandem multiprocessor, Denelcor
IBM 3081, the < ;he Cray X-MP and Cray-2 systems. . o
HEP system, and the ssed so far are centralized computing systems, in which _all

What we have discu rces are housed in the same computing center with
hardware-software -rZi(i}:n delays among subsystems. The cpntinuing decl'me_ of
negligible Commumcnd communication costs has made possible the decentraliza-
computer hardware am:>ls and databases in a computer system. Claims made ffﬂfl
tion of hardware, €on s stems include fast response, high availability, %r:gtur
distributed P ecourcesharing, high adaptabilty o i oo Lsch " bankin
degradaﬁ?'}resol-lrfe;buted c;omputing is being wndely. pra-céltlczd l?rship antgi
expandabllltyi le i mpanies, government services, m-mo‘n " ; - ccssil'lé are
institutions, alrhnn; :tzrels) Computer networks and distributed pro
chain departme ;

beyond the scope of this book.

Or Operating
de protection
ommunication

egies. Paralle]
oth synchronous and asyn-

ultiprocessor systems in

1.3.4 Performance of Parallel Computers

chieved by a parallel computer W.lth n 1&211;?:\1: ;J;oace;;(;le
The speedup that can be a ingle problem is at most n times e idleata
working CO“C“rrcn.ﬂy Ohn i Seegup is much less, since some procrisjgication paths,
‘ ime » natura ; _
ig‘::;;]d;s: gt o es)::f :zﬁ ;:;Zussed n subseC|u'ent?r;argtzriﬁef:;:md
pmblem}; o m?::soézgrnrzfes of the actual speedup, ranging Ir ;
ws the var mercia
?:gz n to an upper-bound n/!n &owrl as the Minsky's Conjecwé“’- t?::gfyn:csearch
The lower-bound log, r; l;rom e i pr9cessog- I’:; and S-1 systems.
mu]tiprocessoiss ﬁzt::.l csh];"l]l‘t;n gedn =16 PfOCFSZS?rS; 2;: ebc g:pectcd from i‘iStL‘:E
multiprocesso : of 2to :histic, A m
gk ol o 7= e s o
HIDiEEDGEReRtE Wi timate is upper bounded by n/ln n a;ed by a uniprocessor In
St EpeseIp ESE oblem, which can be execu he same problem (0 ¢
Consider a Compum.lgb prthc pr(;bability of assigning ! r processor. Further-
et Tkiigléfgu.gllyewith an average load d; = 1/i pe
Processors wo

that is
ing i processors,
/ ing mode using | proce eolee
ility of each operating = et
more, assume equal probazg;?? O The averaget o 50
- m =12 I me req
Ji = 1/n, for n operating

LLEL PROCESSING

28 COMPUTER ARCHITECTURE AND PARA

S (speedup)
}

1024 -
512 -

256 |-

128 -

2+

16 -

. e
_a—"
- _..-.'-

87 o - log,n {Mmskyscomcclure)

| | | | | I t i
I 2 4 8 16 2 6 128 26 s12 qou "

Number of processors
Figure 1.14 Various estimates of the speedup of an n-processor system over a single processor,

the problem on an n-processor system is given below, where the summation repre-
sents n operating modes.

T;’ = i J; ¥ dl.l' =]—:_1___ (IJ]
i h
The average speedup § is obtained as the ratio of T, = 1to T,; that is,

Sadio 2o n (19
n nn

—

For a given multiprocessor system with 2,4, 8, or 16 processors, the respec:ll:c
average speedups (using Eq. 1.8) are 1.33, 1 92,3.08,and 6.93. The spcedupobtal

Pipelining and Superscalar
Techniques

. with pipelini e
This chapter deals _ PI'P_‘-"‘“‘“E .3HC! superscalar design in processor development. We begin with 2
discussion of conventional linear pipelines and anal

yze their performance. A generalized pipeline model
» include nonli -) .8 Pip
s introduced to : Ol‘ﬂlr.\ear Interstage connections. Collision-free scheduling techniques are
gescribed for performing dynamic functions,

ific techniques for building | i il ; B
sEeclﬁ q 5 ling lr.'lstru.cnon Pipelines, arithmetic pipelines,
pipelines are pres:ente - The discussion includes instruction prefetching, inter
software interlocking, hardware SCOFEbOarding. hazard avoidance

and memory-access
nal data forwarding,

, : R,) branch handling, and instruction-
issuing techniques. Both static and multifunctional arithmetic pipelines are designed. Superscalar design

techniques are studied along with performance analysis.

LINEAR PIPELINE PROCESSORS . 0 a7V

A linear pipeline processor is a cascade of processing stages which are linearly connected to
perform a fixed function over a stream of data flowing from one end to the other[in modemn

computers, linear pipelines are applied for instruction execution, arithmetic computation, and memory-access
operations. \— - e _

6.1.1 Asynchronaus and Synchronous Models

A linear pipeline processor is constructed with k processing stages. External inputs (operands) are fed into
the pipeline at the first stage S,. The processed results are passed from stage S to stage S w1, forall i =1,2,...,
k- 1. The final result emerges from the pipeline at the last stage Sj. - -
Depending on the control of data flow along the pipeline, we model linear pipelines in two categories:
asynchronous and syncnronous.
Asynchronous Model As shown in Fig. 6.1a, data flow between adjacent stages in an asynchronous
pipeline is controlled by a handshaking protocol. When stage S, is ready to transmit, it sends a ready signal to
stage §;.,. After stage S;,, receives the incoming data, it returns an acknowledge signal to S;.

Asynchronous pipelines are useful in designing communication channels in message-passing multicom-
Puters where pipelined wormhole routing is practiced (see Chapter 9). Asynchronous pipelines may have a
variable throughput rate. Different amounts of delay may be experienced in different stages.

228 — Advanceq .
Omp%r Arth

:> Oulpm

Input ——r\——[‘—">

[— oA Ready S
ppe—— | K
Ready ——» o1 M,. S; " Reat,
Ack N Ly - Ack Ack
(a) An asynchronous pipeline model
L L L L
e — [r—— —
Input j | :> I Outpyt
= == S = - Kk
-—-—V: ;._._ 31 _l 2
| |
T T b i 9
Clock [] ™ Il —
L J L ... -
b of—
(b) A synchronous pipeline model
— Time (clock cycles)
1 2 3 4
’ 1 | Captions:
St X ; i S, = stage /
o L = Latch
|
St 52| 3 ! = Clock period
e S, X ' T, = Maximum stage delay
AN NN B d = Latch delay
S.i | | X | Ack = Acknowledge signal

(c) Reservation table of a four-stage linear pipeline
Fig. 6.1 Two models of linear pipeline units and the corresponding reservation table

Synchronous Model Synchronous pipelines are illustrated n Fig. 6.1b. Clocked latches are used 1o
iterface between stages. The latches are made with master=slave flip-flops, which can 1solate inputs from
outputs. Upon the armival of a clock pulse. all latches transfer data to the next stage simultaneously.

The pipeline stages are combinational logic circuits. It 1s desired to have approximately equal delays
in all stages. These delays determine the clock penod and thus the speed of the plpelme Unless otherwise
specified. only synchronous pipelines are studied in this book.

The utilization pattern of successive stages in a synchronous pipeline is specified by a reservation table.
For a hnear pipeline. the utilization follows the diagonal streamline pattern shown in Fig. 6.1c. This table
15 essentially a space-time diagram depicting the precedence relationship in using the pipeline stages. Fora
k-stage hinear pipeline, & clock cycles are needed for data to flow through the pipeline.

Successive tasks or operations are initiated one per cycle to enter the pipeline. Once the pipeline is filled
up. one result emerges from the pipeline for each additional cycle. This throughput is sustained only if the
successive tasks are independent of each other.

rscalar Techniques

o — 229
clocking and Timing Control
Al je Tof @ pipeline is determined below | o :
 ~vele -~ N€C Delow. Let 7, be the time delay af (ke wioeciren i efaoe S
Thﬁ“racd:lay of a latch, as shown in Fig, 6,11, ¢ thetime delay of the circuitry in stage S, s {
L .Ic - e
e

.. cle andThrpl‘lgﬁ?‘Ut Denote the maximum stage delay

(lo¢ ; — -~ a8 T, and we can write Tas
T=max {t}'+ 4= ; — . =
ol i 1 1 (_ rﬂl{ d Lrﬂ N I {{]I)

e rising edge of the clock pulse, the data is latehed to (he

has 2 width equal to d. In general. . <~ aster flip-flops of cach latch register. The
ulse e v

d by one to two orders of magnitude, This implies that

clo¢ ximum stage delay 7, dominates the clockperit ~——————
¢ . s . '
(h Thcp‘l”ghne frequency is defined as the inverse of the clock period:
!-—-F-'-.-—-—— - — —

fe 2 T
T .

(6.2)

[fone result 1s_expected t? come out of lhf" pipeline per cycle, frepresents the mavinum throughput of the
ipeline. Depending on the “mlatlon. rate of successive tasks enicring the pipeline, the actual throughput of
the pipeline may be lower thar.x_ff This is because more than onc clock cycle has elapsed between successive
ntons.

Clock skewing Ideally, we expect the clock pulses to arrive at all stages (latches) at the same time.
gowevers due to a problem km“ﬁ as clock skewing, the same clock pulse may arrive at different stages with
ptime offset of s. Let 7,5, be the time delay of the longest logic path within a stage and 1
jogic path within a stage.

To avoid a race In two successive stages, we must choose T, 2 1,,,, + s and d <1, - s. Thesc constraints

ranslate into the following bounds on the clock period when clock skew takes effect:

i that of the shortest

d+ "m.ux tSET S Ty + Tmin — S {63)

In the ideal case s =0, 1,,,, = T,,, and 1,,,, = d. Thus, we have 7= 1, + d, consistent with the definition in
Eq. 6.1 without the effect of clock skewing.
413 Speedup, Efficiency, and Throughput

Ideally, a linear pipeline of & stages can process n tasks in & + (7 - 1) clock cycles, where k cycles are needed
to complete the execution of the very first task and the remaining n - 1 tasks require # - 1 cycles. Thus the
total time required is

Tiy=lk+(n-1)]t (6.4)

where 7is the clock period. Consider an equivalent-function nonpipelined processor which has a flow-through
delay of k7. The amount of time it takes to execute # tasks on this nonpipelined processor is 7y = nkt.

Speedup Factor The speedup factor of a k-stage pipeline over an equivalent non pipelined processor is
defined as

T, nkt nk

= — = = (6.5)
T, kt+(n-1t k+(n-1)

Advanced Cnmpurnr Arrhu
230 = :

e —— ——‘____\
I"_;;e 6.1 Pipelined versus norl-plpellned processors |

¢ defay of . then clearly . . o PIpeliyg
atency of k1. Now supposc we “.Im]1:1\& anon-pipelined I""’“C-\'Hnr
y. This non-pipelined processor need nog Pre

~

ineli I slag an instruction passing through
If each pipeline stage has a st

stages in a pProcessor sees a total 1
for the same instruction set, using the same technolog B s S far gt [esen
a latency of kT to every instruction, because it does not have k separale stagc: an nstructioy ¢,

pass through. Since the non-pipelined processor would hqvc a njlfalr.c L-‘n”illllulli:l ‘-I-]llll'll:rtlan f'cj:un. we ey
expect that the average latency seen by nstructions on this pROSESLE L = WRAT

In other words, the advantage of a pipelined processor I e ey il lermg
of instruction latency, the n0n~pipelincd version can ?n fact PC CKPL‘UlL(tnl 1.L1lu. ”.nw'f:wr‘ for the
comparative analysis here, we have assumed that the instruction Ilmcnt)’ “'.‘ ' ":‘ “ff"*P'DL‘lmcd Version
is also k7. This is a simplification which does not change substantially the conclusion reached.
______—___"“\

es in its instruction throughput: iy, le

%
@ Example 6.1 Pipeline speedup versus stream length

T —
The maximum speedup is S; — k as n = o, This maximum speedup is very difficult to achieve because of
data dependences between successive fasks (instructions), program branches, interrupts, and other factory ¢
be studied in subsequent sections.

Figure 6.2a plots the speedup factor as a function of n, the number of tasks (operations or inmn.cumm
performed by the pipeline. For small values of n, the speedup can be very poor. The smallest value of Siis |
whenn=1.

The larger the number 4 of subdivided pipeline stages, the higher the potential speedup perform
When 1 = 64, an eight-stage pipeline has a speedup value of 7.1 and a four-stage pipeline has a speedup of
3.7. However, the number of pipeline stages cannot increase indefinitely due to practical constraints on Cosls,
control complexity, circuit iniplementation, and packaging limitations. Furthermore, the stream length n
affects the speedup; the longer the better in using a pipeline.

anee,

also

Optimal Number of Stages In practice, most pipelining is staged at the functional level with 2 <k < 15,
Very few pipelines are designed to exceed 10 stages in real computers. The optimal choic

ery- ¢ of the number of
pipeline stages should be able to maximize the performance/cost ratio for the (

arget processing load.

Let 7 be the total time required for a nonpipelined sequential program ol
same program on a k-stage pipeline with an equal flow-through delay 1, one needs a clock period of p = t/k
+.d, where d s the latch delay. Thus, the pipeline has a maximum throughput of /- 1/p — 1/(t/k +). The total
pipeline cost is roughly estimated by ¢ + kk, where ¢ covers the cost of all logic st
cost of each latch. A pipeline performance/cost ratio (PCR) h

a given function, To exceute the

ages and / represents the
as been defined by Larson (1973):

PCR = I ‘—————-]————— -
(0.6)
ctkh (1k +d)c+ kh)

- superscalar Techniques
m_'::'”s

231

Speedup Factor
(=]
I

k = 6 stages

SR (T (SN, I I
1 2 4 8 ~

16 32 64 128
No. of operations g

(a) Speedup factor as a function of the number of operations (Eq. 6.5)

L

Peak

Performance Cost Ratio

> K
Ko No. of stages
(Optimal)

(b) Optimal number of pipeline stages (Eqs. 6.6 and 6.7)
Fig.6.2 Speedup factors and the optimal number of pipeline stages for a linear pipeline unit

Figure 6.2b plots the PCR as a function of k. The peak of the PCR curve corresponds to an optimal choice
for the number of desired pipeline stages:

il
ko= d.n (6.7)

where is the total flow-through delay of the pipeline. Thus the total stage cost ¢, the latch delay d, and the
latch cost /» must be considered to achieve the optimal value k.

Efficiency and Throughput The efficiency E; of a linear k-stage pipeline is defined as

n
k+(n-1)

Obviously, the efficiency approaches 1 when n — o, and a lower bound on E is 1/k when n = 1. The
pipeline throughput H, is defined as the number of tasks (operations) performed per unit time:

E= T‘ = (6.8)

n _ nf
[k+n-D]tr k+(n-1)

Hy= (6.9)

Advanced ¢,
Mputer 5
rth.

J'f!

232"
_y oo, This coincides with the Speedy
evant factors of instruction pipe{P de i
Ingg W]” Oy
\

The maximum throughput | 0cCurs when £

given in Chapter 3. Note that /; = Ei [=E/T=
discussed in Chapters 12 and 13.

S
NONLINEAR PIPELINE PROCESSOR
red to perform variable functions at differen, i
e they are used to perform fixeq funeS' ;

ddition to the streamline Conne
ot

can be reconfigy
¢ static pipelines becaus

k connections ina
alinear pipeline.

A dynamic pipeline
traditional linear pipelines ar

A dynamic pipeline allows feedforward and feedbac
For this reason, some authors call such a structurc no

i(]ns

6.2.1 Reservation and Latency Analysis

In a static pipeline, it is relatively easy to partition a giv ! N
subfunctions. However, function partitioning in dynamic pipeline becomes quite involved becayg, f
e

pipeline stages are interconnected with loops in addition to streamline connections.
6.3a. This pipeline has three stages. Beside i
¢

A multifunction dynamic pipeline is shown in Fig.
streamline connections from S; to S and from S, to Sy, there is a feed forward connection from S, to g, ang

two feedback connections from S3 to S, and from AYRAE

These feedforward and feedback connections make the scheduling of successive events into the Pipeline
ne is not necessarily from the last stage 1,

en function into a sequence of linear]y orde
Ied

a nontrivial task. With these connections, the output of the pipeli
fact, following different dataflow patterns, one can use the same pipeline to evaluate different functions

C)utpu_tr X
=] Output Y
Input —— S, s, g p

(a) A three-stage pipeline

— Time —> Time
12 3 456 7 8 12 3 4 5 86
s{x] T T T Ix] [x S| v v |
Stages S,]_[X 'X Stages S, Y[|
S| | x| [x] |x S3| |Y| |v | Y
(b) Reservation table for function X (c) Reservation tablelfor function Y

Fig.6.3 A dynamic pipeline with feed forward and feedback connections for two different functions

Reservation Tables The reservation tabl ic li
e for a static linear pipeline is trivial i
f i - . pipeline is trivial in the sense that dataflo¥
aorlllc?n\;rii :ﬂ?nj::‘ei;re.ar?h;lle. The rgservahgn tgbfe for a dynamic pipeline becomes more interesting becausé
2 pattern is followed. Given a pipeline configuration, multiple r i fed
or the evaluation of different functions. , Bieition Sables G b BECSE
Two reservation tables are given in Fi
gs. 6.3b and 6.3¢c, co i '

respectively. Each ' - : -3¢, corresponding to a function X and a function Y
sinple y ; tﬁg;ctlz:ndevaluz}tlm? is rc.pef:lﬁed by one reservation table. A static pipeline is specified Y

gle reservation table. A dynamic pipeline may be specified by more thaI.l Wi oF lbb?p

one reservation tabie.

1 Supersaler Techivues
I ’ —
rescl'\’aﬁon table displays the time-space f
fac *functions follow different paths through
Diﬂfcrcn mber of columns in a reservation tah
The e function X requires eight clock cycle

clempie(‘] 3b and 6.3¢, respectively.
5. 0.

OW of data throy

s gh the pipeline for one function evaluation.
€ pipeline.

eisc) o
" eval:ed the evaluation time of a given function. For
aluate, and function Y requires six cycles, as shown

€ rGSCI‘VHIIOIl : other hand, ad

ous checkmarks in s .
pycles: Col‘l_"fi": RN C:I TOW simply imply the extended usage of a stage over more than one
le. Multip umn mean that multiple stages need to be used in parallel during a

y
;;micular clock cycle.

i e . . :
Latency AnalY‘:;emT}Lagl::bcr Iof time units (clock cycles) between two initiations of a pipeline is the
Jatency bELWECH TR Y values must be nonnegative integers. A latency of k means that two initiations

are separated by k clack cycles. Any attempt by two or more initiations to use the same pipeline stage at the

me time will cause a collision:

Acollision implies resource conflicts between two initiations in the pipeline. Therefore, all collisions must
he avoided in scheduling a sequence of pipeline initiations. Some latencies will cause collisions, and some
yill not. Latencies that cause collisions are called forbidden latencies. In using the pipeline in Fig. 6.3 to
evaluate the function X, latencies 2 and § are forbidden, as illustrated in Fig. 6.4.

—> Time
1 2 3 4 5 6 7 8 9 10 N
Sy X4 R X3 X4 Xy (X0 X%y X1 Xg
Stages S, X X4, Xo X5, X3 X3, X4 X4 eese
S x| !x1,x2| X1 X Xs X, X X,
| (a) Collision with scheduling latency 2
— Time
1 2 3 4 5 6 7 8 9 10 1
S [X—1|J_'_“ YRR
Stages S; X X4 X, X5 eee
S; | X4 | X4 [Xy | Xy Xy

(b) Collision with scheduling latency 5

Fig.6.4 Collisions with forbidden latencies 2 and 5 in using the pipeline in Fig. 6.3 to evaluate the function X

The ith initiation is denoted as X; in Fig. 6.4. With latency 2, initiations X} and X, collide in stage 2 at time
4 Attime 7, these initiations collide in stage 3. Similarly, other collisions are shown at times 5, 6, §, ..., etc.

Advanced ComputerA,chh
eclu"e

234" Wi
re X; and X are scheduled 5 clog
Cye|

in Fi he
atency 5 are shown in Fig. 640,V

Y

ce between any two CheCkmarkS
the first mark and the second p,

The collision patterns for 1 '
apart. Their first collision occurs at time 6. heck the distan

g i toC
To detect a forbidden latency, one needs simply tance between

servation table. For example, t;: dlfatency
: idden ' :
gthat5182 forbi nspecting the same reservatjgp ta

bidden from i
d 7 are all seen to be forbid sies 2 and 4 for function bly
6.3c, we discover the forbidden Jaten Y A lgs eny

forbidden latencies between successive task initiations,
e non ' i |
hich repeats the same subsequence (cyclf:) indefinitely. Flgureﬁs
e in Fig. 6.3 10 evaluate the function X without causing a °°11is'10;1

+0:2 _ ence 1,8, 1,8, 1,8, This impp.
For example, the latency cycle (1, 8) represents the infinite latcr;cy sc;q:i POy This iy
that successive initiations of new tasks are separated by one cycle and €18 ‘

—

ark in

same row of the re
row S, in Fig. 6.3bis 5, implyin

Similarly, latencies 2, 4, 5, an
From the reservation table in Fig.
sequence is a sequence of permissibl

A latency cycle is a latency sequence w
illustrates latency cycles in using the pipelin

81,8138,

(a) Latency cycle (1, 8) = 1,

eats
| Cycleepod e
123456728389 10 11 12 13 14 15 16 17 18 19 20 21
S1|%4 Xo| | X1]Xa X1>§X4X2X3Y§7§X4Xsﬂxs X7|%s
S, X [XaXa| [X2/Xs XalXa| |Xa|Xs| [Xs[Xe| |X6|X7| ***
S; Xa X[Xa | XX Xa X | Xs| Xa | Xa|Xa| X5| X4 X5| X6 Xs|Xg

(b) Latency cycle (3)=3,3,3,3, ..., with an average latency of 3

Cycle repeats

= |
'|= ‘:l‘

it

12 3456 7 8 91011121314 1516 17 18 19 20 21

HEA X4[Xa| X4 X | X3| Xy X3|X4| X3
82 x1 x1 xz X2 | X3 X3 B X4 see

(c) Latency cycle (6) =6, 6, 6, 6, ..., with an average latency of 6

Fig.6.5 Three valid latency cycles for the evaluation of function X

. Thf: average latency of a latency cycle is obtained by dividing the sum of all latencies by the number of
elnc.les e;long the cycle. The latenc‘y cycle (1, 8) thus has an average latency of (1 + 8)/2=4.5. A constant
;yche is a latency cycle which contains only one latency value. Cycles (3) and (6) in Figs. 6 51; z-md 6.5¢ are
oth constant cycles. The average latency of a constant cycle is simply the latency itselfg. I.n t‘he next séction‘

we describe how to obtain these latency cycles systematically

in th |

Jining and Superscalar Techniques
A .- 235

6.2.2 Collision-Free Scheduling

When scll'lc.d}lhpg (.:vc'nls ina nop!incar .pi.pclinc. the main objective is to obtain the shortest average latency
etween {ﬂ}tlat‘onh without causing collisions. In what follows, we present a systematic method for achievin
such collision-free scheduling. T 6
We StﬁiLbeI;-): -cr}‘Htsl{mr l't’('.f(”’.\', state diagrams, single cycles, greedy cycles, and minimal average
atency (MAL). This pipeline design theory was originally developed by Davidson (1971) and his students;

Collisi;n Vfct:;'s bg(\; examining the reservation table, one can distinguish the set of permissible latencies
ﬁozn t clscT l:) or 1“ en latencies. For a reservation table with n columns, the maximum forbidden latency
ms= ’1' _ 1. The permissible latency p should be as small as possible. The choice is made in the range 1 <p <
m-— L.

&pem‘usmble _lalepc_v of p = 1 corresponds to the ideal case. In theory, a latency of 1 can always be
::(-:hle;?d in a static pipeline which follows a lincar (diagonal or streamlined) reservation table as shown in

ig. 6.1c.

The’comblnecii Sl?l of permissible and forbidden latencies can be easily displayed by a collision vector,
which is an m-bit binary vector C = (C,,C, ...C2C)). The value of C; = 1 if latency 7 causes a collision
and C; = 0 if latency i is permissible. Note that it is always true that C,, = 1, corresponding to the maximum
forbidden latency.

For the two reservation tables in Fig. 6.3, the collision vector Cy = (1011010 is obtained for function X,
and Cy = (1010) for function Y. From Cy, we can immediately tell that latencies 7,5, 4, and 2 are forbidden
and latencies 6, 3. and 1 are permissible. Similarly, 4 and 2 are forbidden latencies and 3 and 1 are permissible
latencies for function Y.

State Diagrams From the above collision vector, one can construct a state diagram specifying the
permissible state transitions among successive initiations. The collision vector, like Cy above, corresponds to
the initial state of the pipeline at time | and thus is called an initial collision vector. Let p be a permissible
latency within the range 1< p < m - I

The next state of the pipeline at time ¢ + p is obtained with the assistance of an m-bit right shift register as
in Fig. 6.6a. The initial collision vector ('is initially loaded into the register. The register is then shifted to the
right. Each 1-bit shift corresponds to an increase in the latency by 1. When a 0 bit emerges from the right end
after p shifts, it means p is a permissible latency. Likewise, a 1 bit being shifted out means a collision, and
thus the corresponding latency should be forbidden.

Logical 0 enters from the left end of the shift register. The next state after p shifts is thus obtained by
bitwise-ORing the initial collision vector with the shifted register contents. For example, from the initial
state Cy = (1011010), the next state (1 111111) is reached after one right shift of the register, and the next state

(1011011) is reached after three shifts or six shifts.

D
& Example 6.2 The state transition diagram for a pipeline unit

A state diagram is obtained in Fig. 6.6b for function X. From the initial state (1011010), only three outgoing
transitions are possible, corresponding to the three permissible latencies 6, 3, and 1 in the initial collision
vector. Similarly, from state (1011011), one reaches the same state after either three shifts or six shifts.

Advanced Computer Architectyre

23 6" T o
are redirected back to the initial state. For

sitions . .
¢ state must be the initial state, regardless of which

btained for the reservation table in Fig. 6 3¢
rresponding state diagram ig

When the number of shifts is m + 1 or greater, all tran
example, after eight or more (denoted as 8" shifts, the next s
state the transition starts from. In Fig. 6.6c, a state diagram_ 15 © ined, the co
using a 4-bit shift register. Once the initial collision vector is determin=s

uniquely determined.
Cq) = Initial collision vector

3

| »"0"safe
“1" collision

(a) State transition using an n-bit right shift register, where 1 is the maximum forbidden latency

[1011011] [1111111 |

) (s
(c) State diagram for function Y

(b) State diagram for function X

Fig.6.6 Two state diagrams obtained from the two reservation tables in Fig. 6.3, respectively

The 0’s and 1’s in the present state, say at time ¢, of a state diagram indicate the permissible and forbidden
latencies, respectively, at time . The bitwise ORing of the shifted versicn of the present state with the initial
collision vector is meant to prevent collisions from future initiations starting at time 7 + 1 and onward.

Thus the state diagram covers all permissible state transitions that avoid collisions. All latencies equal to
or greater than m are permissible. This implies that collisions can always be avoided if events are scheduled
far apart (with latencies of 72"). However, such long latencies are not tolerable from the viewpoint of pipeline

throughput.

Greedy C)lrdes. From the state diagram, we can determine optimal latency cycles which result in the MAL.
There are infinitely many latency cycles one can trace from the state diagram. For example, (1, 8), (1, 8,
6.8),3), (6), (3,8), (3, 6,3) ..., are legitimate cycles traced from the state diagram in F ig. 6.6b. Among these

cycles, only simple cycles are of interest,

pipelining and Superscalar Techniques
- 237

' Simplg cygle i? a latency cycle in which each state appears only once. In the state diagram in Fig. 6 6b
only (3), () {), (1, 8), 3, 8), and (6, 8) are simple cycles. The cycle (1, 8, 6, 8) is not simple beczlaus:e i;

travels through the state (1011010) twice. Simi :
he state (1011011) three times.) twice. Similarly, the cycle (3, 6,3, 8, 6) is not simple because it repeats

fthe si o .

SOI_?:S {i):ron: 311:1:1: cycle§ are gr efﬂly cycles. A greedy cycle is one whose edges are all made with minimum
latelﬂCl o ESPEC;Ve starting states. For example, in Fig. 6.6b the cycles (1, 8) and (3) are greedy
Tytcxfjiles mus?be);o\ii Htlh 1g. 6.6¢ are (1, §) and (3). Such cycles must first be simple, and their average
ate £(1+8)2= ; an t‘hos.e of other simple cycles. The greedy cycle (1, 8) in Fig. 6.6b has an average
late;lcy of (s =4.5, Whl.Ch is lower than that of the simple cycle (6, 8) = (6 + 8)/2 = 7. The greedy cycle
(3) TES ;,1 C:Es- an;‘ atency lWthh equals the MAL for evaluating function X without causing a collision.
e ks 6.6¢ is 3, corresponding to cither of the two greedy cycles. The minimum-latency edges
in the state diagrams are marked with asterisks.

_ At least one of the _greedy cycles will lead to the MAL. The collision-free scheduling of pipeline events
is thus reducgd to finding greedy cycles from the set of simple cycles. The greedy cycle yielding the MAL is
the final choice.

: =
6.2.3 Pipeline Schedule Optimization

An optimiz_aFion technique based on the MAL is given below. The idea is to insert noncompute delay stages
into the original pipeline. This will modify the reservation table, resulting in a2 new collision vector and an
improved state diagram. The purpose is to yield an optimal latency cycle, which is absolutely the shortest.

Bounds on the MAL In 1972, Shar determined the following bounds on the minimal average latency
(MAL) achievable by any control strategy on a statically reconfigured pipeline executing a given reservation

table:

(1) The MAL is lower-bounded by the maximum number of checkmarks in any row of the reservation
table.

(2) The MAL is lower than or equal to the average latency of any greedy cycle in the state diagram.

(3) The average latency of any greedy cycle is upper-bounded by the number of 1’ in the initial collision
vector plus 1. This is also an upper bound on the MAL. :

Interested readers may refer to Shar (1972) or find proofs of these bounds in Kogge (1981). These results
suggest that the optimal Jatency cycle must be selected from one of the lowest greedy cycles. However,
a greedy cycle is not sufficient to guarantee the optimality of the MAL. The lower bound guarantees the
optimality. For example, the MAL = 3 for both function X and function Y and has met the lower bound of
3 from their respective reservation tables.

From Fig, 6.6b, the upper bound on the MAL for function X is equal to 4 + 1= 5, a rather loose bound.
On the other hand, Fig. 6.6¢ shows a rather tight upper bound of 2 + 1 =3 on the MAL. Therefore, all greedy
cycles for function Y lead to the optimal latency value of 3, which cannot be lowered further.

To optimize the MAL, one needs to find the lower bound by modifying the reservation table. The approach
is to reduce the maximum number of checkmarks in any row. The modified reservation table must preserve
the original function being evaluated. Patel and Davidson (1976) have suggested the use of noncompute
delay stages to increase pipeline performance with a shorter MAL. Their technique 18 described below.

Advanced Compmel, Arch-
240" - ion of th .
is a function oI the reserya;
. . chin between the tWO measures 1 11 tab)
a contrary conclusion. The relationship be h
of the initiation cycle adopted. ly (100%) uilized at the steady state in g L
uld be fully fully explored. In such cases, :

At least one stage of the pipeline should b€ has not been
initiation cycle; otherwise, the pipeline capability hould be examined for improvement.

: e s
cycle may not be optimal and another initiation cycl®

“Play,
IlltiatiDn

INSTRUCTION PIPELINE DESIGN

ineline i lapped manner, W,
: ; by a pipeline in an overlapp: - We dege,
A stream of instructions can be executed '© descr,
belsowail:stm;tion pipelines for CISC and RISC scalar pmoesliors. TOIIM?S m;i Studied melyg,
.) i olvin
instruction prefetching, data forwarding, hazard avoidance, interlocking for resolving data dependemes
p g ’ for improving pipelined pmceSSo;

. iques
dynamic instruction scheduling, and branch handling tgchHIQ};] b P i CHEE 12
performance. Further discussion on instruction level parallelism Wi '

6.3.1 Instruction Execution Phases '
A typical instruction execution consists of a sequence of Operat’ionS, mcludm]g mszlr v 'fetCh’ de?ode‘

operand fetch, execute, and write-back phases. These phases are ideal for overlapped execution on g Jipe,,

pipeline.

Pipelined Instruction Processing A typical instruction pipeline is depicted in Fig. 6.9. The fetch stage (F)
fetches instructions from a cache memory, ideally one per cycle. The decocf’e stage (D) reveals the instructioy
function to be performed and identifies the resources needed. Resources include general-purpose registers
buses, and functional units. The issue stage (1) reserves resources. The operands are also read from registers

during the issue stage.
The instructions are executed in one or several execute stages (E). Three execute stages are shown ip

Fig. 6.9a. The last writeback stage (W) is used to write results into the registers. Memory load or store
operations are treated as part of execution. Figure 6.9 shows the flow of machine instructions through a

typical pipeline. These eight instructions are for pipelined execution of the high-level language statements
X =Y +Zand A =B x C. Here we have assumed that /oad and store instructions take four execution clock

cycles, while floating-point add and multiply operations take three cycles.

The above timing assumptions represent typical values found in an older CISC processor. In many RISC
processors, fewer clock cycles are needed. On the other hand, Cray 1 required 11 cycles for a load and a
floating-point addition took six. With in-order instruction issuing, if an instruction is blocked from issuing
due to a data or resource dependence, all instructions following it are blocked.

Figure 6.9b illustrates the issue of instructions following the original program order. The shaded boxes
correspond to idle cycles when instruction issues are blocked due to resource latency or conflicts or due 10
data dependences. The first two /oad instructions issue on consecutive cycles. The add is dependent on both
loads and must wait three cycles before the data (Y and Z) are loaded in.

Similarly, the store of the sum to memory location X must wait three cycles for the add to finish due ©03
flow dependepce. There are similar bl_ockages during the calculation of A. The total time required is 17 clo¢
cycles. This time is measured beginning at cycle 4 when the first instruction starts execution until cycle 0

4 Superscalar Techniques

it n
ﬁpgflﬂmg a F—
- 241
t instruction starts execution. This timj :
en the las i . T'his timing measure elimi G e
w:: g “draning” delays liminates the undue effects of the pipeline

: w ' imi . .
Figure 6.9° shows an improved timing after the instruction issuing order is changed to eliminate

necessary qelays due tg dependence. The idea is to issue all four load operations in the beginning. Both the
add and mm’h;;ly mslttmc;l;mi-are bloclfed f.ewer. cycles due to this data prefetchin g. The reordeﬁnggs.hould not
change the €n results. The time required is being reduced to 11 cycles, measured from cycle 4 to cycle 14

Felt:Ch 'De?de Issue _|Execute Execute Execute Write-
' E E E Back —

W

Y

(a) A seven-stage instruction pipeline
— Time

12345678 91011121314151617181920212223

R1 « Mem(Y)

R2 « Mem(2Z)

R3 « (R1) + (R2)
Mem(x) « (R3)

R4 « Mem(B)

R5 « Mem(C)

R6 « (R4)*(R5)
Mem(A) « (R6)

n|g|—|mjm

(b) In-order instruction issuing

—— > Time
12345678 91011121314151617
RicMem(Y) [FID[I[E[E[EW]
R2 Mem(Z) FID[1[E[E[EW
R4 « Mem(B) F[D[1
R5 « Mem(C) FD
[F

R3 « (R1)+(R2)

R6 « (R4)*(R5)
Mem(x) « (R3)
Mem(A) « (R6) FID

E

1 W

Dl 1 E[E[E[W

F 1EE
D[IE

W
E|w|
E[E[EW

(c) Reordered instruction issuing

Fig.6.9 Pipelined execution of X =Y + Z and A = B x C (Courtesy of James Smith; reprinted with permission
from IEEE Computer, July 1989)

L
@ Example 6.4 The MIPS R4000 instruction pipeline

The MIPS R4000 was a pipelined 64-bit processor using separate instruction and data caches and an_eight—
stage pipeline for executing register-based instructions. As illustrated in Fig. 6.10, the processor pipeline
design was targeted to achieve an execution rate approaching one instruction per cycle.

Advanced cumph’terg
rchy

I
I
I
I
I
|
I
I
I
I
I

|

D
I
I

Register
file

Register
file

h
242" T . DS | TC | WB |
EX . DF i | : |
RF | ' ‘ J :
COF IS i ' ' ction second| !
! | : i t |S: Instructio .
' : | : . Register file !
! Instruction E E ps: Data secon RF: ?egtshe{:k i
I , ’) £ a C
| mess |t poBect Iv(; ke |
! tag chec : g :
i Instruction : E | 1 r j i
| addl'eSS ! . 1 I ! | |
i translagion In;;r(;l:;:?" i ! i ! !
? | ! i ; | g | : E
! ! i Read ! | __.y(D'cac s : ; I
! f | register A;lijion, access) i Data tag ! Write to |
: ! file |op9 | check 1 register
| | Data : :
: | address Ir !
" : translation ! !
o .
I I I 1
| . I |
[}]
|
I
|
|

(a) R4000 pipeline stages

Master
clock cycle

| | Eight deep

‘ F 1S [RFIEX]DF[DS[TCIWB!
| [F[ISIRFIEX]DFIDS[TCIWBI

Fakes
[F 1S [RFIEXIDF[DS[TC[WE]
MF 1S [RFIEX]DFDS[TCIWB|
[E]IS [RF]EX|DF | DS[TC[WB]
[F [1S [RE[EX|DF | DS[TCIWB]

} Current CPU cycle
(b) R4000 instruction overlapping in pipeline

Fig. 6.10 The architecture of the MIPS R4000 instruction pipeline (Courtesy of MIPS Computer Systems)

The execution of each R4000 instruction consisted of eight major steps as summarized in Fig. 6.10a. Ea o
of these steps required approximately one clock cycle. The instruction and data m , mf -t ar;a split
across two stages. The single-cycle ALU stage took slightly more time than each Oeffltl}?ry reherenzzzs stagI::S

T’he overlapped e)‘(ecution of successive instructions is shown in Fie. 6.10b € _Cac .e af: ate&
efficiently because different CPU resources, such as address and bu g. 6.10b. This plpel.me oper -
accessef, and so c?n, were utilized simultaneously on a noninterfering baZ' access, ALU operations, 1eglS

The internal pipeline clock rate (100 MHz) of the R4000 was twice ltsl;e external input or master clock

o and superscafarTechniques
o _— 243

: 6.10b shows the optimal pipeli
Lency- Figure . p al pipeline movement, completing one i i i |
jock cycle. Load and branch instructions introduce extra delays. By e psengg (SRS

53.2 Mechanisms for Instruction Pipelining

we introduce instruction buffers and describe the use of cacheing, collision avoidance, multiple functional

units roguiEe taEEHE e lntemafl forwarding to smooth pipeline flow and to remove bottlenecks and
llrmeg;essar};’ memory access operations.

p,efetch Buffers Three types of buffers can be used to match the instruction fetch rate to the pipeline
Consumption rate. In .one _memory-access time, a block of consecutive instructions are fetched into a prefetch
puffer s illustrated in Fig. 6.11. The block access can be achieved using interleaved memory modules or
using 2 cache to shorten the effective memory-access time as demonstrated in the MIPS R4000.

Sequential instructions indicated by program counter

Seq. Buffer 1
Seq. Buffer 2

Memory|—»

a0 |

T !
aigut Bakert Instruction Pipeline
/ Target Buffer 2

Instructions from branched locations

Fig. 6.11 The use of sequential and target buffers

Sequential instructions are loaded into a pair of sequential buffers for in-sequence pipelining. Instructions
from a branch target are loaded into a pair of farget buffers for out-of-sequence pipelining. Both buffers
operate in a first-in-first-out fashion. These buffers become part of the pipeline as additional étag.es. .

A conditional branch instruction causes both sequential buffers and target buffers to fill with instructions.
After the branch condition is checked, appropriate instructions are taken from one of the two 'c?uffers, 'and
instructions in the other buffer are discarded. Within each pair, one can use one buffer to load lmstructlon_s
feed instructions into the pipeline. The two buffers in each pair

from memory and use another buffer to ns 1 e tw
alternate to prevent a collision between instructions flowing into and out of the pipeline. |
tial instructions contained

i i _This buffer holds sequen
A third type of prefetch buffer 1s known as a loop buffer. This 564 : taine
in a small ;?:)p. The loop buffers are maintained by the fetch stage of the pipeline. Prefetched instructions 1n

the loop body will be executed repeatedly until all iterations complete e).cecutimll. The 1pop buﬁt“rt:lr f)p:;?:; ;ﬁ
two steps. First, it contains instructions sequentially ahead of the current instruction. T'hlS sa\lres tf: in utien
fetch time from memory. Second, 1t recognizes when the target of a bTanch fglls \lmthm the ‘oog_ 101.;1’1 ;Eyﬁer
this case, unnecessary memory accesses can be avoided if the target instruction is already in the 100p :

The CDC 6600 and Cray 1 made use of 1oop buffers.

e L Yo—
Multiple Functional Units Sometimes a certain pipeline stag.e becomes th-e botgfne;§:8121:lcsne§k
corresponds to the row with the maximum number of checkmarks in the reservation table. Tht

i i of
problem can be alleviated by using multiple copies of the same stage simultaneously. This leads to the use
multiple execution units in a pipelined processor design (Fig. 6.12).

244" Advanced ComputerArchitequ,e

Instruction from Memory

l Register
Instruction Fetch Unit—‘ i _FL"E o
| :
1| B T
Y i I
! I
g J?\% » Decode and Issue Units —-——Hl |
] A S :
T | I

Y P [
Reservation| Load
Stations l RS RS B3 Re| Registers

o I

FU FU [eee| FU

Functional FU

Units Memory

l Data

Y

Results Bus

Fig. 6.12 A pipelined processor with multiple functional units and distributed reservation stations supported

by tagging (Courtesy of G. Sohi; reprinted with permission from IEEE Transactions on Computers, March
1990)

Sohi (1990) used a model architecture for a pipelined scalar processor containin g multiple functional units
(Fig. 6.12). In order to resolve data or resource dependences among the successive instructions entering the
pipeline, the reservation stations (RS) are used with each functional unit. Operations wait in the RS until
their data dependences have been resolved. Each RS is uniquely identified by a tag, which is monitored by
a tag unit.

The tag unit keeps checking the tags from all currently used registers or RSs. This register tagging
technique allows the hardware to resolve conflicts between source and destination registers assigned for
multiple instructions. Besides resolving conflicts, the RSs also serve as buffers to mterface the pipelined
functional units with the decode and issue units. The multiple functional units operate in parallel, once the
dependences are resolved. This alleviates the bottleneck in the execution stages of the instruction pipeline.

Internal Data Forwarding The throughput of a pipelined processor can be further improved with internal
data forwarding among multiple functional units. In some cases, some memory-access operations can be
replaced by register transfer operations. The idea is described in Fig. 6.13.

A store-load forwarding is shown in Fig. 6.13a in which the load operation (LD R2, M) from memory
to register R2 can be replaced by the move operation (MOVE R2, R1) from register R1 to register R2.
Since register transfer is faster than memory access, this data forwarding will reduce memory traffic and
thus results in a shorter execution time. Similarly, load-load forwarding (Fig. 6.13b) eliminates the second

. and Superscalar Techniques
pipelinié e
o 245
ion (LD R2, M) and replaces it with th :
4 operation (LD RZ ! € move operation S
I{;J‘;ran% forwarding will be continued in Chapter 12, WEVERZ, R1). Further discussion on
0

u [Homor y
Access
Unit
Rl R2 R1 z:’ R2
EEERERE

sTOM, R1 LDR2,M STOM,R1 MOVE R2, R1 LDR1, M
(a) Store-load forwarding

LD R, M2 LDR1, M MOVE R2, R1
(b) Load-load forwarding

Fig. 6.13 Internal data forwarding by replacing memory-access operations with register transfer operations

)
\’?J Example 6.5 Implementing the dot-product operation with

internal data forwarding between a multiply
unit and an add unit

One can feed the output of a multiplier directly to the input of an adder (Fig. 6.14) for implementing the
following dot-product operation:

s= D axh (6.10)
i=1
Without internal data forwarding between the two functional units, the three instructions must be
sequentially executed in a looping structure (Fig. 6.14a). With data forwarding, the output of the multiplier is
fed directly into the input register R4 of the adder (Fig. 6.14b). At the same time, the output of the multiplier
is also routed to register R3. Internal data forwarding between the two functional units thus reduces the total
execution time through the pipelined processor.

Hazard Avoidance The read and write of shared variables by different instructions in a pipeline may lead
to different results if these instructions are executed out of order. As illustrated in Fig. 6.15, three types of
logic hazards are possible.

Consider two instructions I and J. Instruction J is assumed to logically follow instruction I according to
prOgrain order. If the actual execution order of these two instructions violates the program order, incorrect
results may be read or written, thereby producing hazards. o |

Hazards should be prevented before these instructions enter the pipeline, such as by holding ¥nstruct10n J
until the dependence on instruction I is resolved. We use the notation D(I) and R(I) for the domain and range
of an instruction I. '

The domain contains the input set (such as operands in re gisters or in memory) to be used bj instruc‘gon
L. The range corresponds to the output set of instruction L. Listed below are conditions under which possible
hazards can occur:

— Advanced Co t ;
246" mputer Architecy, g

R1

:R3 « (R1)* (R2)
: R4 « (R3)
:R5 « (R5) + (R4)

(-

—
(¥%]

iMuItip1y Unit 0
\
t

RIC
Y
R4 R5
S
Add Uni

(a) Without data forwarding
g b,
R1 R2
Multiply Unit
Y
R4

(b) With internal data forwarding

:R3 < (R1)* (R2)
Iy : R4 « (R1) * (R2)
I3 : RS « (R4) + (R5)

R3

I1 and 15 can be executed

simultaneously with internal
data forwarding.

Fig. 6.14

Internal data forwarding for implementing the dot-product operation

(Write)

(a) Read-after-Write (RAW) hazard (b) Write-after-Write (WAW) hazard

@ (Read) @
KD
w (Write)

(c) Write-after-Read (WAR) hazard

Fig. 6.15 Possible hazards between read and write o

perations in an instruction Pipeline (instruction | is ahead
of instruction | in program order)

jning and Superscalar Techniques
pipel

R(I) N D(J) # ¢ for RAW hazard
R(I) N R(J) # ¢ for WAW hazard
D(I) N R(J) # ¢ for WAR hazard

(6.11)

These conditions are necessary but not sufficient. This means the hazard may not appear even if one or more
of the conditions exist. The RAW hagard corresponds to the flow dependence, WAR to the antidependence,
and WAW t0 the output dependence introduced in Section 2.1. The occurrence of a logic hazard depends on

(he order in which the two instructions are executed. Chapter 12 discusses techniques to handle such hazards.
S —

6.3.3 Dynamic Instruction Scheduling

[n this section, We describe three methods for scheduling instructions through an instruction pipeline. The
static scheduling scheme is supported by an optimizing compiler. Dynamic scheduling is achieved using a
rechnique such as Tomasulo’s register-tagging scheme built in the IBM 360/91, or the scoreboarding scheme
puilt in the CDC 6600 processor.

static Scheduling Data dependences in a sequence of instructions create interlocked relationships among
them. Interlocking can be resolved through a compiler-based static scheduling approach. A compiler or a
pOStprocessor can be used to increase the separation between interlocked instructions.

Consider the execution of the following code fragment. The multiply instruction cannot be initiated until
the preceding load is complete. This data dependence will stall the pipeline for three clock cycles since the
two loads overlap by one cycle.

Stage delay: Instruction:
2 cycles Add RO, R1 /RO « (RO) + (R1)/
1 cycle Move R1, RS /R1 « (RS)/
2 cycles Load R2, M(0) /R2 < (Memory (&))/
2 cycles Load R3, M(f3) /R3 « (Memory (B))/
3 cycles Multiply R2,R3 | /R2« (R2) X (R3)/

The two loads, since they are independent of the add and move, can be moved ahead to increase the
spacing between them and the multiply instruction. The following program is obtained after this modification:

Load R2, M(0) " 2 to 3 cycles

Load R3,M (f) 2 cycles due to overlapping
Add RO, R1 2 cycles

Move RI1, R5 1 cycle

Multiply R2, R3 3 cycles

Through this code rearrangement, the data dependences and program semantics are preserved, and the
multiply can be initiated without delay. While the operands are being loaded from memory cells azand finto
registers R2 and R3, the two instructions add and move consume three cycles arid thus pipeline stalling is
avoided.

Pypelining and Seperscolar Techilgues

255

“ 6.4 \Kﬁmmnmc PIPELINE DESIGN)

o nneling ' :

Pipelining techniques can be applied to speed up numerical
with areview of avithmetic principles and stand
with tixed functions,

arithmetic computations. We start
ards. Then we consider arithmetic pipelines
| A tixed-point .mulnpl_v pipeline design and the MC68040 loating-point unit are used as examples to
tllustrate the design techniques

| _ S mvolved. A multifunction arithmetic pipeline is studied with the TI-ASC
artthmetic processor as an example,

6.4.1 Computer Arithmetic Principles
In a digital computer, l?l‘llhlllt.‘lit.‘ is performed with finite precision due to the use of fixed-size memory words
vy Fixe mTl or wteger arithmetic offers a fixed range of numbers that can be operated upon.
Floating-point arithmetic operates over a much increased dynamic range of numbers.

In modern processors, fixed-point and floating-point arithmetic operations are very often performed by
separate hardware on the same processor chip.

or registers, Fixed-pc

Finite precision implies that numbers exceeding the limit must be truncated or rounded to provide a
precision within the number of significant bits allowed. In the case of floating-point numbers, exceeding
the exponent range means error conditions, called overflow or underflow. The Institute of Electrical and
Electronics Engineers (IEEE) has developed standard formats for 32- and 64-bit floating numbers known as
the [EEE 754 Standard. This standard has been adopted for most of today’s computers.

Fixed-Point Operations Fixed-point numbers are represented internally in machines in sign-magnitude,
one s complement, or two s complement notation. Most computers use the two’s complement notation because
of its unique representation of all numbers (including zero). One’s complement notation introduces a second
zero representation called dirn: zero.

Add. subtract. multiply, and divide are the four primitive arithmetic operations. For fixed-point numbers,
the add or subtract of two n-bit integers (or fractions) produces an »-bit result with at most one carry-out.

The multiplication of two n-bit numbers produces a 2n-bit result which requires the use of two memory
words or two registers to hold the full-precision result.

The division of an n-bit number by another may create an arbitrarily long quotient and a remainder. Only
an approximate result is expected in fixed-point division with rounding or truncation. However, one can
expand the precision by using a 2n-bit dividend and an »-bit divisor to yield an n-bit quotient.

Floating-Point Numbers A floating-point number X is represented by a pair (m, e), where m is the mantissa
(or fraction) and e is the exponent with an implied base (or radix). The algebraic value is represented as X =
mx r°. The sign of Y can be embedded in the mantissa.

L
& Example 6.9 The IEEE 754 floating-point standard

A 32-bit floating-point number is specified in the IEEE 754 Standard as follows:

Advanced Computer Arch:
256 T puter Architecyype

0 1 2 8 9 21
Crrre=r1l = Ll
i

Sign Exponent e Mantissa m

A binary base is assumed with » = 2. The 8-bit exponent & ﬁel_d uses an exce;st;f’tZ 7 co;ie. T;:el ;Yﬂamic
range of e is (—127, 128), internally represented as (0, 255). The sign s.and the Zﬂ- 1f ;Eai:) issa field m fory,
a 25-bit sign-magnitude fraction, including an implicit or “hidden” 1 bit to the left of the biary point. Thyg
the complete mantissa actually represents the value 1.m in binary. .

This hidden bit is not stored with the number. If 0 < e < 255, then 2 nonzero normalized number represents
the following algebraic value:

X=(1)x2°" x(1.m) (6.15)

When e =255 and m # 0, a not-a-number (NaN) is represented. NaNs can be cagsed by dividing a zero by
a zero or taking the square root of a negative number, among many other nondeterminate cases. %en =255
and m = 0, an infinite number X = (—1)* oo is represented. Note that oo and —oo are represented differently.

When e = 0 and m # 0, the number represented is X = (-1)"2 126(0.m). When e = 0 and m =0, a zero is
represented as X = (—1)°0. Again, +0 and — 0 are possible. ‘

The 64-bit (double-precision) floating point can be defined similarly using an excess-1023 code in the
exponent field and a 52-bit mantissa field. A number which is nonzero, finite, non-NaN, and normalized, has
the following value:

X=(=1) %219 x (1.m) (6.16)
Special rules are given in the standard to handle overflow or underflow conditions. Interested readers may
check the published IEEE standards for details.

Floating-Point Operations The four primitive arithmetic operations are defined below for a pair of
floating-point numbers represented by X = (m,, e,) and Y = (m,, ¢,). For clarity, we assume e, < ¢, and base
r=2.

X+Y =(m X 2%+ my) X x¥ (6.17)
X-Y =(m X 2% —m)xx¥ (6.18)
XXY =(myxmy) X2 (6.19)
X+Y =(my+m)x2%% (6.20)

The above equations clearly identify the number of arithmetic operations involved in each floating-point
function. These operations can be divided into two halves: One half is for exponent operations such as
comparing their relative magnitudes or adding/subtracting them; the other half is for mantissa operations,
including four types of fixed-point operations.

Floating-point units are ideal for pipelined implementation. The two halves of the operations demand
almost twice as much hardware as that required in a fixed-point unit. Arithmetic shifting operations are
needed for equalizing the two exponents before their mantissas can be added or subtracted.

Shifting a binary fraction m to the right k places corresponds to the weighting m x 27¥, and shifting & places

to the left corresponds to m X 2¥ In addition, normalization of a floating-point number also requires left shifts
to be performed.

. Superscafar'."echniques
i gdnd
plpelmlﬂ
ment’Y Functions Elementary functions include trigonometric
“Scendemal functions. Truncated polynomials or power
trad

s, such as sin X, In x, ¢, cosh x, tan™! y, [y 3
(1979 far details of computer arithmetic functj

. 257

€Xponential, logarithmic, and other
-~
€ries can be used to evaluate the elementary

functio » etc. Interested readers may refer to the book by

(wang | ons and their hardware implementation.
[t should be noted that computer arithmetic can be implemented b

. y hardwired logic circuitry as well as b
(able lookup using fast memory. Frequently used constants ang special function vahgles can alg be generatefl
by table lookup.

6.4.2 static Arithmetic Pipelines

Most of today’s anthmetlfz pipelines are designed to perform fixed functions. These arithmetic/logic units
(ALUS) perform ﬁxed—‘pomt :.md floating-point operations separately. The fixed-point unit is also called the
integer unit. The floating-point unit can be built either as part of the central processor or on a separate
coproceSSOr.

These arithmetjc units perform scalar operations involving one pair of operands at a time. The pipelining
in scalar arithmetic pipelines is controlled by software loops. Vector arithmetic units can be designed with
pipeline hardware directly under firmware or hardwired control

Scalar and vector arithmetic pipelines differ mainly in the areas of register files and control mechanisms
involved. Vector hardware pipelines are often built as add-on options to a scalar processor or as an attached

processor driven by a control processor. Both scalar and vector processors are used in modern supercomputers.

Arithmetic Pipeline Stages Depending on the function to be implemented, different pipeline stages in
an arithmetic unit require different hardware logic. Since all arithmetic operations (such as add, subtract,

multiply, divide, squaring, square rooting, logarithm, etc.) can be implemented with the basic add and shifting
operations, the core arithmetic stages require some form of hardware to add and to shift.

For example, a typical three-stage floating-point adder includes a first stage for exponent comparison and
equalization which is implemented with an integer adder and some shifting logic; a second stage for fraction
addition using a high-speed carry lookahead adder; and a third stage for fraction normalization and exponent
readjustment using a shifter and another addition logic.

Arithmetic or logical shifts can be easily implemented with shiff registers. High-speed addition requires
either the use of a carry-propagation adder (CPA) which adds two numbers and produces an arithmetic sum
as shown in Fig. 6.22a, or the use of a carry-save adder (CSA) to “add” three input numbers and produce one
sum output and a carry output as exemplified in Fig. 6.22b.

Ina CPA, the carries generated in successive digits are allowed to propagate from the low end to the high
end, using either ripple carry propagation or some carry looka-head technique.

Ina CSA, the carries are not allowed to propagate but instead are saved in a carry vector. In general, an
n-bit CSA is specified as follows: Let X, Y, and Z be three n-bit input numbers, expressed as X = (x,_1, X2, .-,
%, X) and so on. The CSA performs bitwise operations simultaneously on all columns of digits to produce
tWo r-bit output numbers, denoted as S” = (0, Sy_1 Sz, -+ 1, o) and C=(Cp, Gty -, €1, 0).

Note that the leading bit of the birwise sum 5% is always a 0, and the tail bit of the carry vector C is always
a0. The input-output relationships are expressed below:

Si=x;®y; ®z
Cis1 = X; Vi V Y2V Zi 6ad)

Advanced Comp”temfthfgeq
u

258 mu—— A B
n
n
e.g. n=4
A= 1011 w
+) B= 0111
§=10010=A*+B n
Cout e
(Sum)

i lows either carry
An n-bit carry-propagate adder (CP#:; f:g;ght:éhnique
@ propagation or applies the carry-loo

X Y Z
e.g. n=4 n n n
X= 001011
Y= 010101 w
®Z= 111101
n+1
sP=0100011 n+1
) C=0111010 c (Bt?it')
=sbPic = z itwise
S=1011111=8+C=X+Y+ (Carry
vector) sum)

(b) An n-bit carry-save adder (CSA), where SPis the bitwise sum of)((j,i ‘i:t Sand Z, and
C is a carry vector generated without carry propagation between dig

Fig.6.22 Distinction between a carry-propagate adder (CPA) and a carry-save adder (CSA)

fori=0,1,2,....,n— 1, where @ is the exclusive OR and v is the logical OR operation. Note that the arithmetic
sum of three input numbers, e, S=X+ Y+ Z is obtained by adding the two output numbers, i.e., S= 5+
C, using a CPA. We use the CPA and CSAs to implement the pipeline stages of a fixed-point multiply unit

10110101=A

><)10010011:B
w

IOIIOIOIOZPI

0000000000=P

I 0 11 o = B

0 1 1 090 1 , 0 = p,

lllIO1111
= P

ing and Superscalar Techniques

ial product P; i i
Note :hh:tr:fﬂlt)ﬁ;s It)(l;othl;cleg ;.sztflge? Zy multiplying the multiplicand 4 by the jth bit of B and then
,on . i _')!,....,_ 1 ' z .
shift gﬁoﬂ of the eight partial products is done with : P;’:!l;l P oy e The
Wﬂ in Fig. 6-23.

ace tree of CSAs plus a CPA at the final stage, as
The first stage (5)) generates all eight parti
econd S1AgE (S) is made up of two levels ¢

its, simultaneously. The
ing from 13 to 15 bits. , ly merges eight numbers into four
nwh;rsinr:;lgyogl&bit numbers. ";'l:e r;ith::;EeSz;ge.(S 3) consists of two CSAs, and it merges four numbers
ign{;nazl product B 4)isa CPA, which adds up the last two numbers to produce

§

S1

S2

S3

S4

CSA = Carry save adder
CPA = Carry Propagate adder

Captions: i16

P=AxB

Fig.6.23 A pipeline unit for fixed-point multiplication of 8-bit integers (The number along each line indicates
the line width.)

For a maximum width of 16 bits, the CPA is estimated to need four gate levels of delay.'Each level of the
CSA can be implemented with a two-gate-level logic. The delay of the first stage (S)) also involves two gate
levels. Thus al] the pipeline stages have an approximately equal amount of delay.

A Compute,
Afch-
260" . N
rmination of the number of pipeline stages. g
be further reduced to match that of 5 Single Cl 2
clock rate twice as fast. The basic Concep, A
in the example below. Cap

The matching of stage delays is crucial to the det¢
the clock period (Egq. 6.1). If the delay of the CPA stag¢ Fan
level, then the pipeline can be divided into six stages With 2
be extended to operands with a larger number of bits, as We S¢¢

& e
Example 6.10 The floating-point unit in the Motorola

Fi - ; . it built as an on-chip feature in thm
igure 6.24 shows the design of a pipelined floating-point unit Otorg],
Mé68040 processor.
Mantissa Exponent
32
Multiplexer
):54 A
Register
L Incrementer
Stage 1 {04164 X
e Register \ _
> 3 117
J Register file(8) Ve, | Register |_
\ file I
> 64bitx &bt |
< Multiplier § 17
> Register |«
1674t
Stage 2 ;
N Register |«
< 67-bit barrel |<— F
> shifter =41
FILLLS »/r//_zl-.;/_/:j FECLLELELTELS LSS P IG AP ',/f/h///'_///;\/ :/I/ A)
——> . Register ﬁ !er
167767 | Incrementer w17 ¢ 418
Stage 3)64 3 W
/ N
Register \
:

Fig.6.24 Pipelined floating-point unit of the Motorola MC68040 processo
r

(Courtesy of Motorola, Inc,, 1992)

and Superscalar Techniques

pipe! i _ 2|
ipelines. The mantissa section can perf :
rate Plpe) L perform ﬂoatm -po . ; .
5'spaision (32 bits) or double-precision (64 bits). S-point add or multiply operations, either single-
16 the mantissa section, stage 1 receives i

o mantissas.

-bit adder performs the addit -
The 67-bit 2 : ltion/subtraction of twe ;
nonnalizaﬁ"“- Stage 3 contains registers for hold mantissas, the barrel

; ing results before ¢ g
age | for subsequent use by other Instructions, © they are loaded int
On the exponent side

a 16-bit bus is used betwee

: n stages. Stage 1 has

e relative magnitude of two & g an exponent adder for comparing
mantissa addition can be pe

shifter is used for
o the register file in

before
) : a shift count (from th t :
" e barrel shifter for mantissa alignmen, (e output of the exponent adder) is sent

After normalization of the final resy]t (getting rid of leadi

_ her add ng zeros), the exponent needs to be readjusted in
stage 3 using another adder. The final value of the resulting exponent is fed from the register in stage 3 to the
register file in stage 1, ready for subsequent usage,

w——

Convergence Division One technique for division involves

repeated multiplications. Mantissa division
is carried out by a convergence method. This convergence division obtains the quotient O = M/D of two
normalized fractions 0.5 S M < D < 1 in two’s complement notation by performing two sequences of chain
multiplications as follows:

:MxR,szx---ka 622)
DXRy X Ry X+ xR, ’

where the successive multipliers

R=1+8""=2-DD fori=1,2,.. k and D=1-§

The purpose is to choose R; such that the denominator D% = D x Ry x Ry x - x R — 1 for a sufficient

number of k iterations, and then the resulting numerator M X Ry X Ry X --- X R r— 0.
Note that the multiplier R; can be obtained by finding the two’s complement of the previous chain product
DY=DxRyx - xR,

i1=1-8"" because 2 - D? = R;. The reason why D® — 1 for large k is that
D=1 -1+ &1+ A1 +8Y - 1+
=(1-8)(1+&HA+8Y - (1+87

=(1-8) fori=1,2,.. .,k (6.23)

Singe 0<8=1-D<05, 8% - 0 as i becomes sufficiently large, say, i = k for some k; thus D® =
1-6% =1 for large k. The end result is

O=Mx(1+8)x(1+8)x - x(1+6% (6:24)

The above two sequences of chain multiplications are carried out alternately between-the numerator and
denominator through the pipeline stages. To summarize, in this technique division is carried out by repeated
Multiplications. Thus divide and multiply can share the same hardware pipeline.

Advanced ¢,
mp Uter A
fchj
ry

262" T,

Cgl’: Example 6.11 The IBM 360/Model 91 floating-point

unit design
60 Model 91 was certainly a milestom

M3 - i . Yo
tions were implemented in this machine. Therefore f.the

> 1t g

In the history of building scientific computers, IB
91. In particular, we¢ describe how ﬂoating-poim ",

pipeline design features introduced in previous sec
worth the effort to examine the architecture of Model ¢
and multiply/divide operations were implemented in this)

As shown in Fig. 6.25, the floating-point execution unit
pipelines: the add unit and the multiply/divide unit, which cou
stage pipeline, and the latter was a six-stage pipeline.

machine.
in Model 91 consisted of two separate ﬁ‘"ctign
al

Id be used concurrently. The former wag iy
0-

From From .
Store Instruction Captions:
Unit Unit CDB = Common Data BUS.
RS = Reservation station, each indenti-
Floating Floating fied by a unique tag number.
; ogrt point CSA = Carry-save adder.
U Operation =
4 pera = ropagate adder.
(FLB) 5 Stack CPA = Carry propag

Y

Floating
BB":SSY Tags |Pt. Reg.
(FLR)
FLB Bus
CDB
RS
(10)LX 1 Y Je19
To
Sforage muftlplyz‘Dlwde
Unit nit
(6 pipeline stages)

Fig. 6.2 . .
8. 5 The IBM 360 Model 91 ﬂoatlng—pomt unit (Courtesy of IBM Corporation, 1 967)

pipelining and Superscalar Techniques

. 23

The floating-point operation stack was a kind of prefetch buffer holding eight floating-point instructions

for subsequent execution through the two functional pipelines. The floating-point buffers were used to input
operands.

Operands may also come from the floating-point registers which were connected via the common data bus
to the output bus. Results from the two functional units could be sent back to the memory via the store data
buffers, or they could be routed back to the FLR or to the reservation stations at the input ends.

The add unit allowed three pairs of operands to be loaded into three reservation stations. Only one pair

could be used at a time. The other two pairs held operands for subsequent use. The use of these reservation
stations made the add unit behave like three virtual functional units,

Similarly, the two Pairs at the input end of the multiply/divide unit made it behave like two virtual units.
Internal dalta' forwarding in Model 91 was accomplished using source tags on all registers and reservation
stations. Divide was implemented in Model 91 based on the convergence method.

Every source of an input operand was uniquely identified with a 4-bit tag. Every destination of an input
operand had an associated tag register that held the tag naming the source of data if the destination was
busy. Through this register tagging technique, operands/results could be directly passed among the virtual
functional units. This forwarding significantly cut down the data flow time between them.

Dynamic scheduling logic was built into Model 91 using Tomasulo’s algorithm to resolve the data
dependence problem. Either the add unit or the multiply/divide unit could execute an operation using
operands from one of the reservation stations.

Under Tomasulo’s algorithm, data dependences are preserved by copying source tags when the sources are
busy. When data is generated by a source, it passes its identification and the data onto the common data bus.
Awaiting destinations continuously monitor the bus in a tag watch.

When the source tag matches, the destination takes in the data from the bus. Other variations of Tomasulo’s
algorithm can be made to store the source tags within the destinations, to use a special tag (such as 0000) to
indicate nonbusy register/buffers, or to use direct-mapped tags to avoid associative hardware.

Besides the IBM 360/370, the CDC 6600/7600 also implemented convergence division. It took two
pipeline cycles to perform the floating-point add, six cycles to multiply, and 18 cycles to divide in the IBM
System/360 Model 91 due to five iterations involved in the convergence division process.

6.4.3 Multifunctional Arithmetic Pipelines

Static arithmetic pipelines are designed to perform a fixed function and are thus called unifunctional. When
a pipeline can perform more than one function, it is called multifunctional. A multifunctional pipeline can
be either static or dynamic. Static pipelines perform one function at a time, but different functions can be
performed at different times. A dynamic pipeline allows several functions to be performed simultaneously
through the pipeline, as long as there are no conflicts in the shared usage of pipeline stages. In this section, we
study a static multifunctional pipeline which was designed into the TI Advanced Scientific Computer (ASC).

Advanced Computem
rch-

264" W

L
87’) Example 6.12 TheT

rocessor des'gn

shoninFig 626 Th g

_ASC system™ re a large number
[tinto the : ,Th ere W Ofw
There were four pipeline arithmetic umts;l:ecod ng of truotlfot';; memory puffer unit and of the amhr m
0
g

fetching an

jo
ich also controlled the operd

processing unit handled the

registers in the processor wh . 70 in each arithmetic unit. X’, x Ya
units. y, Z} an and {X ; that intermediate re “ndy

There were two sets of operand buffers, {X; ut re sults. Note Sults ¢
used cessor and memory buffers aCCeSSed the

d Z and Z were
ds, an o y.reg1stef5 Both pro

respectwe ly.
wn in Fig
Figure
data conversion

were used for input operan
be also routed from Z-registers 0 either A-
main memory for instructions and Operands/results,

Each pipeline arithmetic unit had eight stages 25 sho

pipeline which could perform only one function at a time:
ithmetic, logical, shifting,

6.27a. The PAU was a static mulhﬁlnctl
6.27a shows all the possible i mteTStag

functions.

connections for performing ari
Instruction Index Regs. |8
" Buffer Control
Instruction | Instruction . Vector —
7 —>| Processing 16|Base Registers Parameter | 8
Unit (IPU
HIPY) o[Arithm. Regs. Regs.
Main
Memory<
\ 8] [y [Z] X [Y][Z
Operandsl
slxX] Y] [z] [X][Y][z] IX]LY][Z
Memory
Buffer L
Unit (MBU)
Y v Y ¥ Y Y Y
Pipeline | | |Pipeline|| |Pipeline Pipeline
1 2 3 4 !
pay — Tt —rt— —1—|

Pipeline Arithmetic Units (PAU)

Fig. 6.26 The architecture of the Tl Advanced Scientific Computer (ASC

) (Courtesy of Texas Instruments, Inc.)

p,'peﬁnfng and SuperscalarTechniques
_— 245

Both gixed-point and floating-point arithmetic functions could be m -
; - . i perfo ine. Th

ported vector in addition to scalar arithmetic operations. It should bee:o:gi tth}'::t l;lil;;;r;elt fu - 5AU

nt functions

also sup. - :
required different pipeline stages and different interstage connection patterns

S
] 0 =
Exponent 3 YV
Subtract e > S,
A
Y
\ \
S3 S Y
A 3 53
4
; “__l r——u
) A

Fraction
{ | hga | S4 : Sy
A
i i)
Normalize |Ss Sk
‘ | >
Y
Fraction
Multiply | 6 Se S
.
) Yy ¥
”LL 3
| |Accumulate|S7 S;

Y l ; A
Output |Sg Sg j Sg

R=1f(A B R=AxB n
() R=2AIXB,
i=1

#

(a) Pipeline stages and (b) Fixed-point multiplication (c) Floating-point dot product

interconnections

o T| Advanced Scientific Computer and the interstage

Fig. 6.27 The multiplication arithmetic pipeline of th
Shaded stages are unutilized)

connections of two representative functions (
e use of only segments S, S¢, 57, and Sg as shown
tion, which performs the dot product

the complex connections shown in
ation of a

For example, fixed-point multiplication required th
in Fig. 6.27b. On the other hand, the floating-point dot product func
operation between two Vvectors, required the use of all segments with
Fig. 6.27c. This dot product was implemented by essentially the following accumulated summ

sequence of multiplications through the pipeline:

Advanced Computer 4 rchitecy
Ure

266 =
(6.25)

Z—A;xB;+Z
& s, and the accum :
where the successive operands (4;, B;) were fed through the X- and Y- buffer: ulated Stmg

through the Z-buffer recursively. . . ole flow through the pipel:
T (B J(+) in a single g pipeline, Ty,
The entire pipeline could perform the multiply (x) and the kil rands to or from the PAU, respectivel;

two levels of buffer registers isolated the loading and fetchin.g Offi'Pe_ 61l
as in the concept of using a pair in the prefetch buffers described in Flg. okl e Al

Even though the TI-ASC is no longer in production, the system PTOVIFICd_a ulr'u?:s ith dodicated Fo nction
arithmetic pipelines. Today, most supercomputers implement arithmetic pIpeiii Nctiong
for much simplified control circuitry and faster operations. —

SUPERSCALAR PIPELINE DESIGN

Pipeline Design Parameters Some parameters used in dcsi'gninlg the scalar base processor
and superscalar processor are summarized in Table 6.1 for the pipeline processors to be studied

below. All pipelines discussed are assumed to have k stages.
The pipeline cycle for the scalar base processor is assumed to be 1 time unit, called the base cycle. We

defined the instruction issue rate, issue latency, and simple operation latency in Section 4.1.1. The instruction-
level parallelism (ILP) is the maximum number of instructions that can be simultaneously executed in the

pipeline.
For the base processor, all of these parameters have a value of 1. All processor types are desi gned relative

to the base processor. The ILP is needed to fully utilize a given pipeline processor.

Table 6.1 Design Parameters for Pipeline Processors

Machine type [Scalar base machine of k pipeline stages Superscalar machine o f degree m
Machine pipeline cycle ‘ I (base cycle) _1 o |
Instruction issue rate } 1 ——-___—__T? o
Instruction issue latency , 1 _____-__'__'1_—]
Simple operation latency ’ 1 _._________________5__1_ -
ILP to fully utilize the pipeline] 1 S e

e ————

Note: All timing is relative to the base cycle for the scalar base machine. ILP: Instructiop level el
parallelism.

' We study below the structure of superscalar pipelines, the data dependence rob] .
pipeline stalling, and multi-instruction issuing mechanisms for achieving parallgl ; en?, Fhe factors causing
a superS‘falar machine of degree m, m instructions are issued per cycle and the ILI;PEImmg L ——
fully utilize the pipeline. As a matter of fact, the scalar base processor can be cong; should be n in order to
a superscalar processor of degree 1. Onsidered 5 degenerate case of

Superfcaiar Pipeline Structure In an m-issue superscalar processor, t
execution resour.ces are increased to form effectively m pipelines operating: c
stages, the functional units may be shared by multiple pipelines.

) Techniques
pipelining and Superscalar Techniq - 7

This resource-shared multiple-pipeline structure is illustrated by a design example in Fig. 6.28a. In
(his design, the processor can 1ssue two instructions per cycle if there is no resource conflict and no data

dependence problem. There are essentially two pipelines in the design. Both pipelines have four processing
stages Jabeled fetch, decode, execute, and store, respectively.

From
D-cache gyocite
: stage
\ : Multiplier : :
Fetch | Decode ; i ! Store !
stage ' stage ! | ™ m2 | m3) (writeback)
| I I
—T—r- f1 ——> df __{0 Adder :—“ :
; . >
Froml-cache| —— | —— ! > a1l | a2 i 51 E
o »]
S——— ! ! ! 1 [
2 \ d2 ¢ Logic : :
| — :‘,4__ » 1y !
—> 81 > ’
b Ml ; =2 s2
| 3 - d3 = " .‘
[} . | I
| Lookahead Window | —> &2 ! !
I . | I
| | I

(a) Adual-pipleline, superscalar processor with four functional units in the execution stage and a lookahead window
producing out-of-order issues

11. Load R1, A I R1 « Memory (A) / o ° °
12. Add R2, R1 /R2«(R2)+(R1)/

5]

2

; 13. Add R3, R4 /R3« (R3)+(R4)/ "

€| 14 Mu R3 R5 /R4 (R4)*(R5)/

2V 15 Comp R6 I R6 « (RB)/

16. Mul R6, R7 /R6« (R6)*(R7)/ Flow Anti- Output-dependence,
dependence dependence also flow
dependence

(b) A sample program and its dependence graph, where 12 and 13 share the adder and 14 and 16 share the
multiplier

Fig.6.28 A two-issue superscalar processor and a sample program for parallel execution

Each pipeline essentially has its own fetch unit, decode unit, and store unit. The two instruction streams
flowing through the two pipelines are retrieved from a single source stream (the I-cache): The .fan—out from
a single instruction stream is subject to resource constraints and a data dependence relationship among the
successive instructions. _

For simplicity, we assume that each pipeline stage requires one cycle, except the execute stage Whlcl.l may
require a variable number of cycles. Four functional units, multiplier, adder, logic unit, and load unit, are
available for use in the execute stage. These functional units are shared by the two pipelines on 2 dynamic
basis. The multiplier itself has three pipeline stages, the adder has two stages, and the others each have only

one stage.

Advanced C‘”’”Ptiter A’fhize
QUre

268 W
WO pipelines, depending on AWailgy,
h and decoding logic. This Windolhty
W .

desired to achieve bette, Dipe Is

ally used by the t
with its own fetc

The two store units (S1 and S2) can be dynamic
ction issue i

at a particular cycle. There is a lookahead window
used for instruction lookahead in case out-of-order instr
throughput. .
[t requires complex logic to schedule multiple pipellm'as sim sl
are retrieved from the same source. The aim is to avoid pipeline stallifg '
ependence graph is drawn tq i dicay

io 6.28b.Ad
Fig tent in R1 i loaded by Il and thep useq b;

ultaneously; cspecia.lly w'hen the i“StWCtiQ
minimize pipeline idle time ng

Data Dependences Consider the example program in
the relationship among the instructions. Because the register enll
12, we have flow dependence: 11— 2. : 4
Because the result in register R4 after executing 14 may affect the operzn; 6r Zilsnigs{ arlll Z;i?;?;‘ " have
antidependence: 13 +> I4. Since both I5 and 16 modify the register RO, & ; dep I; B Or 16,

have both flow and output dependence: IS — I6 and I5 &> 16 as shown 1n the dep s
nces must not be Violateq

. ; 53 ende
To schedule instructions through one or more pipelines, these data dep
Otherwise, erroneous results may be produced.
ine utilization. Proper Scheduling

Pipeline Stalling This is a problem which may seriously lower pipel s .
avoids pipeline stalling. The problem exists in both scalar and superscalar processors. ver, 1t 1S mop
y resource conflicts among

serious in a superscalar pipeline. Stalling can be caused by data dependences or b : m
instructions already in the pipeline or about to enter the pipeline. We use an example to illustrate the conditiop

causing pipeline stalling,

Consider the scheduling of two instruction pipelines in a two-issue superscalar processor. Figme 6.29
shows the case of no data dependence on the left and flow dependence (I1 — 12) on the right. Without dat,
dependence, all pipeline stages are utilized without idling.

With dependence, instruction I2 entering the second pipeline must wait for two cycles (shaded time slots)
before entering the execution stages. This delay may also pass to the next instruction 14 entering the pipeline,

In Fig. 6.29b, we show the effect of branching (instruction 12). A delay slot of four cycles results from a
branch taken by 12 at cycle 5. Therefore, both pipelines must be flushed before the target instructions I3 and
14 can enter the pipelines from cycle 6. Here, delayed branch or other amending actions are not taken.

In Fig. 6.29c, we show a combined problem involving both resource conflict and data dependence.
Instructions I1 and 12 need to use the same functional unit, and 12 — 14 exists.

The net effect is that 12 must be scheduled one cycle behind because the two pipeline stages (e; and e,) of
the same functional unit must be used by 11 and 12 in an overlapped fashion. For the same reason, 13 is also
delayed by one cycle. Instruction I4 is delayed by two cycles due to the flow dependence on 12. The shaded

boxes in all the timing charts correspond to idle stages.

Superscalar Pipeline Scheduling Instruction issue and completion policies are critical to superscalar
processor performance. Three scheduling policies are introduced below. When instructions are issued in

program order, we call it in-order issue. When program order is violated, out-of-order issue is being practiced.

Similarly, if the instructions must be completed in program order, it is called in-order completion.
Otherwise, out-of-order completion may result. In-order issue is easier to implement but may not yield the
optimal performance. In-order issue may result in either in-order or out-of-order completion.

[ning and Superscalar Techinguos
pipel

269

@ 2 1 2 3 4 5 6 7 8
% d 41 f] d[€1]®2] s
2 d Il f]d eq]e| s
2 f | I3l f|d|®€]|€2]s
f | 4l f [d e1[e2] s]
...
(No data dependence) (12 uses data generated by I1)

(a) Data dependence stalls the second pipeline in shaded cycles

1 2 3 4 5
L4l f|d|e|®e .
112 f i. d e1]I ei = Captions:
6 7 8 9 10 11 f = fetch
I3 | fldlei]ez]s d = decode
I4 l fld[€]© 2] s el = execute 1
Is| f|d|ei][e]s]| e2=execute2
lg| f|d|e|e]|s| s=store (writeback)

(b) Branch instruction 12 causes a delay slot of length 4 in both pipelines

1 2 3 4 5 6 1.2 3 4 5 6 7 8
Ll fld|e|e] s Ll fTd]es ezl S l
Ll f|d|[®]|®]s Iof f|d e1[el s 1
3] f[d[e]®]s | I3 f|d e1|€] s |
| f{d]e1]®] s | ly| f]d] e[| s |
... ...
(No resource conflicts) (11 and 12 conflict in using the same functional

unit, and 14 uses data generated by 12)

(c) Resource conflicts and data dependences cause the stalling of
pipeline operations for some cycles

Fig. 6.29 Dependences and resource conflicts may stall one or two pipelines in a two-issue superscalar
processor

Out-of-order issue usually ends up with out-of-order completion. The purpose of out-of-order issue
and completion is to improve performance. These three scheduling policies are illustrated in Fig. 6.30 by
execution of the example program in Fig. 6.28b on the dual-pipeline hardware in Fig. 6.28a.

It is demonstrated that performance can be improved from an in-order to an out-of-order schedule. The
performance is often indicated by the total execution time and the utilization rate of pipeline stages. Not all
programs can be scheduled out of order. Data dependence and resource conflicts do impose constraints.

In-Order Issue Figure 6.30a shows a schedule for the six instructions being issued in program order I1,
12, ..., 16. Pipeline 1 receives 11, 13, and 15, and pipeline 2 receives 12, 14, and 16 in three consecutive cycles.
Due to 11 — 12, 12 has to wait one cycle to use the data loaded in by 11.

13 is delayed one cycle for the same adder used by 12. 16 has to wait for the result of 15 before it can enter
the multiplier stages. In order to maintain in-order completion, 15 is forced to wait for two cycles to come out
of pipeline 1. In total, nine cycles are needed and five idle cycles (shaded boxes) are observed.

Advanced Compute, Archite
Cty

270 . rder issue 13 practiced. The only g, .
n-o is allowed to complete aheaq of I3 o

g not improve. However, the piDEline

if i
In Fig. 6.30b, out-of-order completion is allowed evf;g is that I5
between this out-of-order schedule and the in-order sche tion time do€
14, which are totally independent of 15. The total execd 1 |
utilization rate does. oo 6.29a and 6.29b, we did not use the lookahg,,
Only three idle cycles are observed. Note that in Figs- - d to reorder the instructioy iSSUes_

: use
B ndow can be
window. In order to shorten the total execution time, the Wi

Time (clock cycles)

9
1 2 3 4 5 6 7 8
Pipe 1,111, T dy | €2 | 51 i
Pipe 2,1, f, [d, a(@)%21 .
0 mal S
= m,|ms | So
‘r*g IG fz dz my 2 3

1 2 3 4 5 6 7 8 9

Pipe1,1,[f, [d,[e, [s
Pi§e2, 121 Lf21 d; : a: a,[s,; Completionordgr .
R a8,] 5 4 5 8 7
It [T [dy [my[my[ms[s, Pipe 1[1T, Ig | I3
5[, [dy [e 54 Pipe 2 Ip [14 ls
Ig| fo | do my m2]m2|82f

(b) In-order issue and out-of-order completion in nine cycles

1 2 8 4 .5 % 17 1.2 3
Pipe 1,137, d, [a1]a; [s Pipe 1| I3 | g Issue order
Pipe 2,14 f, [d, [mq[m,[m, S | Pipe2| Iy [14 | I,
Lookahead Window 15| f; [ds | €1 [S1[(Pipe 1) Lookahead| s |
Pipe 1,16 fy ['d; [my[my[ms]s; | 4 5 6 7
Pipe2, 14/ f, [dy[ey | s Pipe 1] 15 | I3 I Completion order
Pipe2,1,[f [di[213,] St] Pipe2 Ly _‘Lisj

(c) Out-of-order issue and out-of-order completion in seven cycles using an instruction
lookahead window in the recoding process

Fig.6.30 Instruction issue and completion

policies for a superscalar processor with and without instruction
lookahead support (Timing cha

r'ts correspond to parallel execution of the program in Fig. 6.28)

It is followed by issuing I6 and 11 at cycle 2, and 12 at cycle 3. Because
completion is also out of order as shown in Fig. 6.30c. Now,
seven cycles with no idle stages during the exe

the issue is out of order, the

the total execution time has been reduced to
cution of these six mstructions,

lning and superscafar Techniques
pipelin

Jltiprocessor environment, this policy is sti]]
;11 th scalar and superscalar processors.
0

Some long-latency operations, such as loads angd floati

COmp]etion to achieve a better performance. Output dependence and antidependence are the two

reventing OUf'Of'Ord‘?" c‘ompleti?n_ Out-of-order issue gives the processor more freedom to exploit
paralleI ism, and thus pipeline efficiency is enhanced.

The above example clearly demonstrates the advantages of instruction lookahead and of out-of-order

issue and completion as far as pipeline optimization is concerned. It should be noted that multiple-pipeline
scheduling is an NP-complete problem. Optimal scheduling is very expensive to obtain.

simple data dependence checking, a small lookahead window, and scoreboarding mechanisms are needed,
along with an optimizing compiler, to exploit instruction parallelism in a superscalar processor.

attractive. Allowing out-of-order completion can be found in

ng-point operations, can be hidden in out-of-order

relations

Motorola 88110 Architecture The Motorola 88] 10 was an early superscalar RISC processor. It combined
the three-chip set, one CPU (88100) chip and two cache (88200) chips, in a single-chip implementation,
with additional improvements. The 88110 employed advanced techniques for exploiting instruction-leve]
parallelism, including instruction issue, out-of-order instruction completion, speculative execution, dynamic

instruction rescheduling, and two on-chip caches. The unit also supported demanding graphics and digital
signal processing applications.

The 88110 employed a symmetrical superscalar instruction dispatch unit which dispatched two instructions
each clock cycle into an array of 10 concurrent units. It allowed out-of-order instruction completion and some
out-of-order instruction issue, and branch prediction with speculative execution past branches.

The instruction set of the 88110 extended that of the 88100 in integer and floating-point operations. It
added a new set of capabilities to support 3-D color graphics image rendering. The 88110 had separate,
independent instruction and data paths, along with split caches for instructions and data. The instruction
cache was 8K-byte, 2-way set-associative with 128 sets, two blocks for each set, and 32 bytes (8 instructions)

per block. The data cache resembled that of the instruction set.

The 88110 employed the MESI cache coherence protocol. A write-invalidate procedure guaranteed that
one processor on the bus had a modified copy of any cache block at any time. The 88110 was implemented

with 1.3 million transistors in a 299-pin package and driven by a 50-MHz clock. Interested readers may refer
to Diefendorff and Allen (1992) for details.

Superscalar Performance To compare the relative performance of a superscalar processor with that of a
scalar base machine, we estimate the ideal execution time of N independent instructions through the pipeline.

The time required by the scalar base machine is

I'(1,1)=k+ N—1 (base cycles) (6.26)
The ideal execution time required by an m-issue superscalar machine is
Tm,)=+ 2™ (base cycles) (6.27)

Where £ is the time required to execute the first 7 instructions through the m pipelines simultaneously, and

the second term corresponds to the time required to execute the remaining N — m instructions, m per cycle,
through 1 pipelines,

Advanced Computer 5
rchheq
Ure

272" .
The ideal speedup of the superscalar machine over the base machine 18
N+k-1 _m@N+k=D

(1) -
S(m, 1) = m‘ m N +m(k—=1)

AsN — o, the speedup limit S(m, 1) — m, as expected.

L
@ Example 6.13 DEC Alpha 21064 superscalar architectyre
o~

As illustrated in Fig. 6.31, this was a 64-bit superscalar processor. The design emphasized speed, multipje.
instruction issue, multiprocessor applications, software migration from the YAXNMS and MIPS/OS, ang ,
long list of usable features. The clock rate was 150 MHz with the first chip implementation.

ps
ICACHE (8 KBytes)
!Branch History TAG ! DATA j

Table

Address Bus

' T

Multiplier/
Adder

Divider

Resource
Conflict

Pipeline
Control

Data Bus
BIU e ™
(128 bits)

]

|
'

Write Address ' ; I
Buffer ! Generator] D18 Load Sllo
External Cache
EEEEEEE———
l Control
DCACHE (8 KBytes)
[TAG] DATA ’

EBOX = Integer unit BIU = Bus interface unit

FBOX = Floating-point unit IRF = Integer register file
ABOX = Address unit FRF = Floating-point register file

IBOX = Central control DTB = Data-stream translation buffer

Fig. 6.31 Architecture of the DEC Alpha 21064 processor (Courtesy of Digital Equipment Corporation)

oo and 5uperscalarTechniques
pipelining an -

Unlike others, the Alpha architecture had thirty-two 64-bit integer registers and thirty-two 64-bit floating-

L ol L m't eger pipeline had 7 stages, and the floating-point pipeline had 10 stages All Alpha
ctions Were 32 bits. |

jnstrd ; ;
The first .'Alpha 1‘mpl.cme_nta_t10n issued two instructions per cycle, with larger number of issues in later
implementatlons, Pipeline timing hazards, load delay slots, and branch delay slots were all minimized by
hardware suppor"t. The Alpha was designed to support fast multiprocessor interlocking and interrupts.

A privileged !1brary of SOf_tWaf e was developed to run full VMS and to run OSF/1 using different versions
Jfthe software library that mirrored many of the VAX/VMS and MIPS/OS features, respectively. This library

made Alpha an attractive architecture for multiple operating systems. The processor was designed to have a
300-MIPS peak and a 150-Mflops peak at 150 MHz.

’f#__
Note 6.2 Innovation versus commercial success

The relationship between innovative design ideas and the commercial success of a product is not
always simple, as an idealist may believe.

Most of the processors used as examples in this chapter are no longer in commercial production.
Rapid advances in technology and immense pressures from the market-place are usually the two main
reasons behind the introduction and the demise of newer processor models. However, the innovative
design ideas introduced in a new processor often have a life longer than the processor itself, since these
same ideas are often carried forward in subsequent designs of the same or other processor families.

For e?(ample, IBM 360/91, Motorola 68040, Motorola 88110 and DEC Alpha 21064 were all
recognized for their innovative designs when they were introduced, but they achieved different degrees
of commercial success. Our aim in this book is to study the innovative ideas embodied in processor and
system designs; but we must also appreciate that the commercial success of a product often depends on
many other crucial factors.

Summary

Instruction pipelines in processors usually have a linear structure—the execution of each instruction
progresses linearly, one stage at a time, from the first to the last pipeline stage. In theory, such a linear
pipeline can be designed with synchronous or asynchronous timing mode; in practice, processor pipelines
today operate in synchronous mode, i.e. with a common clock signal.We studied the timing and clocking
requirements of linear pipelines, and discussed the related speedup, efficiency and throughput issues. A
simple model was presented which can be used in determining the optimal number of pipeline stages,
based on a trade-off between cost and throughput.

Dynamic or nonlinear pipelines are designed to performa number of different functions, by appropriate
scheduling of operations on the pipeline stages. Reservation tables are used for different functions
collision free schedules and latency analysis are needed for efficient operation of nonlinear pipelines

We studied how concepts of collision vectors, state transition diagrams and greedy cycles are used to

determine bounds on minimum average latency (MAL), and thereby optimum schedules in terms of MAL

i | CHAPTER
FIVE

STRUCTURES AND ALGORITHMS
FOR ARRAY PROCESSORS

/

This chapter deals with the intercgm_iection structures and parallel algorithms for
SIMD array processors and associative processors. The various organizations and
control mechanisms of array processors are presented first. Interconnection
networks used in array processors will be characterized by their routing functions
and implementation methods. We then study the structure of associative memory
and parallel search in associative array processors. SIMD algorithms are presented
for matrix manipulation, parallel sorting, fast Fourier transform, and associative

search and retrieval operations.

51 SIMD ARRAY PROCESSORS

A synchronous array of parallel processors is called an array processor, which
consists of muitiple processing elements (PEs) under the supervision of one
control unit (CU). An array processor can handle single instruction and multiple
data (SIMD) streams. In this sense, array processors are also known as SIMD
computers. SIMD machines are especially designed to perform vector computations
over matrices or arrays of data. In this book, the terms array processors, parallel
processors, and SIMD computers are used interchangeably.

SIMD computers appear in two basic architectural organizations: array
processors, using random-access memory; and associative processors, using
content-addressable (or associative) memory. The first three sections of this
Fhapter deal primarily with array processors. We will study associative processors
In Section 5.4 as a special type of array processor whose PEs correspond to the
Words of an associative memory.

325

52 SIMD INTERCONNECTION NETWORKS

yarious inlerconnectioq networks have been suggested for SIMD computers. In
(his section, We distinguish between single-stage, recirculating networks and multi-
~ stage SIMD networkg. Important network classes to be presented include the
" Iliac network, the flip network, the n cube, the Omega network, the data
" manipulator, the barrel shifter, and the shuffle-exchange network. We shall
" concentrate on inter-PE communications as modeled by configuration 1 in

Figure 5.1. The Interprocessor-memory communication networks will be studied
in Chapter 7 for MIMD operations.

334 COMPUTER ARC HITECTURE AND PARALLEL PROCESSING

5.2.1 Static Versus Dynamic Networks

The topological structure of an SI.MD array processor is mau.'lly characte;izm ;
the data-routing network used in interconnecting the processing elements, :
ally, such an inter-PE communication network can be specrlﬁed by a set of daty,
routing functions. If we identify the addresses of all thg PE.S.’ in an SIMD Machj,
by the set § = {0,1.2,..., N — 1}, each routing functlonj is a bijection (a Oe.qq.
one and onto mapping) from § to S. When a routing function { is executed Via the
interconnection network, the PE; copies the contents of its R; register in, the
R register of PE ;. This data-routing operation occurs in all active PEs simu.
taneously. An inactive PE may receive data [rom another PE if a routing functiop
is executed, but it cannot transmit data. To pass data between PEs that are not
directly connected in the network, the data must be passed through intermediage
PEs by executing a sequence of routing functions through the interconnectjop
network.

The SIMD interconnection networks are classified into the following twg
categories based on network topologies: static networks and dynamic networks,

Static networks Topologies in the static networks can be classified according to
the dimensions required for layout. For illustration, one-dimensional, twpo.
dimensional, three-dimensional, and hypercube are shown in Figure 5.4, Examples
of one-dimensional topologies include the linear array used for some pipeline
architectures (Figure 5.4a). Two-dimensional topologies include the ring, star,
tree, mesh, and systolic array. Examples of these structures are shown in Figures
5.4b through 5.4/.

Three-dimensional topologies include the completely connected chordal ring,
3 cube. and 3-cube-connected-cycle networks depicted in Figures 5.4g through
54j. A D-dimensional, W-wide hypercube contains W nodes in each dimension,
and there s a connection to a node in each dimension. The mesh and the 3 cube
are actually two- and three-dimensional hypercubes. respectively. The cube-
connected-cycleisadeviationof the hypercube. For example, the 3-cube-connected-
cycle shown in Figure 5.4/ is obtained from the 3 cube.

Dynamic networks We consider two classes of dynamic networks: single-stage
versus multistage. as described below separately:

Single-stage metworks A single-stage network is a switching network with N
mput selectors (1S) and N output selectors (OS), as demonstrated in Figure 5.5.
Fach IS is essentially a 1-to-D demultiplexer and each OS is an M-to-1 multiplexer
where | < D < Nand | < M < N. Note that the crossbar-switching network is a
single-stage network with D = M = N. To establish a desired connecting path,
different path control signals will be applied to all IS anc.! OS selectors, '
The single-stage network is also called a recirculating network. Data items
may have 1o recirculate through the single stage several times before reaching
their final destinations. The number of recirculations needed depends on the

inear array (b) Ring
(g) Line& (S
(d) Tree (€) Near-neighbor mesh (/) Systoli array
(g) Completely connected (h) Chordal ring (/) 3 cube

h (/) 3-cube-connected cycle
” er, December
) 4 Stte interconsection metwork topologies. (Courtesy of Feng, IEEE Comput

HITECTURE AND PARALLEL SROCESSING

336 COMPUTER ARC
/
B 0
/ ——
0 IS . .
L :
A
N\,
< : : ;
N
L] . : :
. s : :
N
1 I I o N-)
"1 N-1] e [No1

connectivity in the single-stage network. In general, the higher is the
connectivity, the less is the number of recirculations. The crossbar network Yy
extreme case in which only one circulation is needed to establish any gop, s
path. However, the fully connected crossbar networks have a cost O(N?) y, "
may be prohibitive for large N. Most recirculating networks have cost O(N} I
or lower. which is definitely more cost-effective for large N, all
Multistage networks Many stages of interconnected switches form a multis,
SIMD network. Multistage networks are described by three characterizing fa
tures: the switch box, the network topology, and the control structure, My,
switch boxes are used in a multistage network. Each box is essentially an ingy,
change device with two inputs and two outputs, as depicted in Figure 5
lllustrated are four states of a switch box: straight, exchange, upper broadeast, g
lower broadcast. A two-function switch box can assume either the straight or the
exchange states. A four-function switch box can be in any one of the four legii
mate states.

A multistage network is capable of connecting an arbitrary input terminl
to an arbitrary output terminal. Multistage networks can be one-sided or two
sided. The one-sided networks, sometimes called full switches, have input-outpu
ports on the same side. The two-sided multistage networks, which usually havea
input side and an output side, can be divided into three classes: blocking
arrangeable, and nonblocking.

| In blocking networks, simultaneous connections of more than one termind
pair may result in conflicts in the use of network communication links. Examp®
of a blocking network are the dara manipulator, Omega, flip, n cube, and baselie

Sll'lighl

Exchange

Upper
broadcas;

- Lower
aa, -h..- b bfoadcas!

6 A two-by-two switching box and its four intercoanection states,
5
Figure

{ these networks will be introduced in subsequent sections. Figure 5.7
— terconnection pattern in the baseline n?m_fork. =
e k is called a rearrangeable network if it can pel-fqnn a]]lposs.j

: n'cmo;etween inputs and outputs by rearranging its existing oonnegucﬁ
R nection path for a new input-output pair can always be wtabhsl:his
e g;:d network, the Benes network, shown in Figure S.’Ib_, l:elonﬁil ifd for
i Benes rearrar;geable network topology has been exltenswely st o
ctszll;hy;chronous data permutation and in asynchronous interprocessor
U |
municatll::-ork which can handle all possible connectiops r::itl?outth:ll?;kr::‘g":
called :cnonblocking networ. Two cases havg been %onsuien c-tolflo teskionicri
In the first case, the Clos network, shown in Figure 5.7c, awnsmm s
s made between an input and an output. The other case ¢ s
“nnections. Here, a generalized connection network topo

438 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING \
>} 1
—
—>
—
=
—_I —

(a) 8 x 8 baseline network

- -

— =t

i Y —
— N >

—d ' i |

-

= =

-_— = LT

(b) 8 x 8 Benes network

nxm rxr mxn
| =5 _—'L - 1
AL 11 K
N ——p -
= .
e | 2 9 {18

i

s L]

. []

e L]
B —
. r 3| &

F 5.7 Sew
(c) Clos network igure eral malty

interconnection networks,

pass any of multiple mappin

gs of inputs onto outputs. The crossbar switch netvor
can connect every inp

ut port to a free output port without blocking,
Generally, a multistage network consists of 1 stages where N = 2" is the nur

ber of input and output lines. Therefore, each stage may use N/2 switch boxt

The interconnection patterns from stage to Stage deterntine the network topolog
Each stage is connected to the next stage by at least N paths. The network del
proportional to the number n of stages

: in a network. The cost of a size N mults#
network is proportional to N log,

N. The control structure of a network ¢
mines how the states of the switch boxes wij] be set. Two types of control strust”

STRUCTURES Anp ALGOR

. k construction. The i
in a networ : 3 e indipi
. 'ﬁd‘i alose el s s
. e a]

0 conto! s'gna:s tfu‘?;:: phth? states of al] sta::ast:fn?“’fore, o
o et OOt thestate ofeachr: Mividu witch bores,

girol ‘ altl;: connecting PathS,ob:Ch SWitch box, Thig :ﬂz?: trol. A separate
o g 0P e e complexity of w2 control g higher fiexbilty
oot increas . ecomp l"f y of the controy cimro_ signals, which will
f;fsisﬂ it uszpar;la\la:i%us ne:fv;l:;(vigg’;i *+ 1 contro] sil;:al,; a: cf’““?l)romise

jue) ogi eu

ifor 0 Sling and multistage inter-PE comm BI€s and contro| structures 2}%2%;

: Unication
gircV ions. Networks S
ffb seq“‘"l section are descﬂbed in

il

Mesh-COD"ected Illiac Network

. recirculating network has been i
Siﬂsl&sta.ge _ F mplemented in t ;
Aromssor W]th N = 64 PESI-TEaCh PE‘ 1S a“owed to send data - ::l;](l)la(:"lfv an‘ay
F’E:-l' (- aﬂd‘PEs—, where r = /N (for the case of the lliae.1y neof PE,, ,,
circulation step through the network. Formally, the lll,i;c; by
! network

in one . _
' characmized by the following four routing functions:

61

Ryy(i) = (i + 1) mod N
R_,(i)=(G-=1)mod N
R, (i)=(i+r)ymod N
R_(i)= (i = rymod N

(5.5)

dee0<i< N = 1In practice, N is commonly a perfect square, suchas N = 64
sdr = § in the Illiac-IV network.

4 reduced Illiac network is illustrated in Figure 5.8a for N = 16 and r = 4.
e real llliac network has a similar structure except larger in size. All the index
sihmetic in Eq. 5.5 is modulo N. Comparing with the formal model shown in
fgure 5.5, we observe that the outputs of IS, are connected to the inputs of 0§;
mj=i+1i-1,i+randi—r.On the other hand, OS; gets its inputs from
Klori=j—-1,j+1,j—r,andj+r, respectively.

Each PE, in Figure 5.8 is directly connected to its four nearest neighbors in
e mesh network. In terms of permutation cycles, we can express the apove
g functions as follows: Horizontally, all the PEs of all rows form 2 linear
wculer list as governed by the following WO permutations, each with a single

of order N. The perrautation cycles (a b ¢) (d e)stand for the permutthOI}
isbb=¢ coaand d—e e—d in acircular fashion within each pair ©

"rentheses
R, =012 N=D (5.6)

R lzmrl--z{O)

340 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

3 b ¢ ;

. s | fe—f 2 ft— 3 |t s
S/ 4 5 6 7 g
8 8 9 10 11 h

i
y
h 12 13 14 15 e
a b c d

(@) The mesh connections

(6) The mesh redrawn :igllre S8 An llliac network with
= 16 PEs,

STRUCTURES AND ALGORITHMS FOR ARRAY PROCESSORS 341

distance r shifting operations are characterized i
\fmically-‘;:: each with r cycles of order r each: s iolowing
ptato

ofF s sy s s
0 R,, = .]:!](1 i+r 42 Ny

r-1 (5.7
R_, = I_]o(l-f-N—r i 2r j4p i))

e network of N = 16.and r = /16 < 4, the shift by a distance of

amp 1 i -
af (he €* iied by the following two permutations, each with foyr cycles of order
s
[Ullr I aCh
jor©

R, = (04812159 13X2 610 14y3 7 17 15
R, = (128 40X139 5 1X14 10 6 2)15 11 7 3

oted that when either the R, , or R_, routing function is
[tShoutled as" described in Eq. 5.6 only if all PEs in'the cycle are acti::.c&llzﬁ
s 87 unction R, or R_, is executed, data are permuted as described in
e ;ounﬂlg {f PE, e Where 0 < k < r — 1areactive for each i. The shifting opera-
£ 5:70n ycle will be suspended if any PE required in the cycle is disabled. For
jon in @ fe the cycle (1 5 9 13)in the above permutation R, will not be executed

jpexam m:)re among PE,, PEs, PEs, and PE,; is disabled by masking.
i on;;,:lllia ¢ network is only a partially connected network. Figure 5.8b shows
connectivity of the example Illiac network with N = 16. This graph shows that
lf';ir pEs can be reached from any FfE in one step, seven PEs_ in two steps, and
Jeien PES in three steps. In general, it takes [steps (recirculations) to route data

om PE; to any other PE; in an Illiac network of size N where I is upper-bounded

by
I</N-1 (58)

Without a loss of generality, we illustrate the cases when PE, is a source node
inFigure 58. PE,, PEq, PE,,, or PE5 is reachable in one step from PE,. In two
sips,the network can route data from PE, to PE,, PE;, PEy, PE;, PE;y, PEa;
ot PE,,. In the worst case of three routing steps, the following eight routing

sequences take place in the network:
0Ry 1Ry 2Rye 0% e g7
0% 1285 1187 0% 28T
0% 2% gfyg ot IsBH B0

OR-'*IIR—_: 13 R_-’qg Oﬁ;.l 15 R_"1]4 E—;I 10

342 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

In the Illiac-IV computer, at most seven (/64 - 1) steps are needeq
data from any one PE to another PE. Of course, if we increase the cop

to oy,
. n ivi
in Figure 5.8, the upper bound given In Eq. 5.8 can be lowered. We shajj ;m Wity

strate this by other sietwork types in subsequent section_s. When the nem«f,?f.'
strongly connected (i.e., with 15 outgoing links per node in Figure 5.8), the), Is
bound on recirculation steps can be reduced to one at the expense of sigmf,%lpp“‘T
increased hardware in the crossbar network. tly

5.4 ASSOCIATIVE ARRAY PROCESSING

Two SIMD computers, the Goodyear Aerospace STARAN and the Parall|
Element Processing Ensemble (PEPE), have been built around an associatize
memory (AM) instead of using the conventional random-access memory (RAM)
The fundamental distinction between AM and RAM is that AM is content-

tive processors, a sp:zcnal class of SIMD array processors which update

(Snc,he associative TICIDrIcs.
with t this section, we describe the functional organization of an associative array
]nsor and various parallel plrocessing' functions that can be performed on an
roces tive processor. We classify associative Processors based op associative-
assocli organizations. Finally, we identify the major searching applications of
mem?a{ive memories and associative processors. Associative processors have
bﬁicbui" only as special-purpose computers for dedicated applications in the past.

5.4.1 Associative Memory Organizations

Data stored in an associative memory are addressed by their contents. In this
sense, associative memories ha_fe been known as content-addressable memory,
paralle] search memory, and multiaccess memory. The major advantage of associa.
tive memory over RAM is its capability of performmg_ paralle] search and parallel
comparison operations. These are frgquently nee_ded in many important applica-
tions, such as the storage and_ retrieval of rap}ci'ly changlng_da}abe}ses, radar-
signal tracking, image processing, computer v1§lop, and ar_txﬁma} intelligence.
The major shortcoming of associative memory 1s 1ts much increased hardware
cost. Presently, the cost of associative memory is much higher than that of RAM:s.

The structure of a basic AM is modeled in Figure 5.32. The associative
memory array consists of n words with m bits per word. Each bit cell in the n x m
array consists of a flip-flop associated with some comparison logic gates for pattern
match and read-write control. This logic-in-memory structure allows parallel
read or parallel write in the memory array. A bit slice is a vertical column of bit
cells of all the words at the same position. We denote the jth bit cell of the ith word
as Bijfor 1 <i<nand ! <j<m The ith word is denoted as:

W’;"-_'(‘BEIBI'Q!""BEM) rori=1129--"n
and the jth bit slice is denoted as:

sz(BlJBZJ.'BHJ) fOl‘j=1,2,...,m

Each bit cell B, j €an be written in, read out, or compared with an external
interrogating signal. The paralle] search operations involve both comparison and
masking and are executed according to the organization of the associative memory.
There are a number of registers and counters in the associative memory. The
comparand register C = (C,, C,, ++» Cyn) is used to hold the key operand being

ith. The masking register M = (M wMy,.... M)
ices to be involved in the parallel comparison
associative memory.

-+ 1,) and one or more temporary registers
to hold the current and previous match patterns,

The indicator register | = Iy, 1,,
T=(T, T,,..., T,) are used

376 M
COMPUTER &RCHITECTURE ‘w‘{u‘
AND PARALLEL PROCESSING
C.
i j
LN]
esese COﬂ‘lDerand Tegiste
r
M| -
see esssee Masking register
r B, (bit slice) !
[T
[
[
L""‘-«
® . .
eoe sseee . s
b4 ° L] []
[]
W (word
n wordsﬁ . e 1 HT
—
: : : [
see (YR RN . .
. & L] L]
. p- [] []
L]
L =
—
3 o / Indicator Temporary
m bits/word registet
l<isnand 1l sj=m
* The B,‘F cell

Figure 5.32 An associative memory array and working registers.

respectively. Each of these registers can be set, reset, or loaded from an externy|
source with any desired binary patterns. The counters are used to keep track of the
i and j index values. There are also some match detection circuits and priority logi,
which are peripheral to the memory array and are used to perform some vector
boolean operations among the bit slices and indicator patterns.

The search key in the C register is first masked by the bit pattern in the M
register. This masking operation selects the effective fields of bit slices to be in- |
volved. Parallel comparisons of the masked key word with all words in the associa- |
tive memory are performed by sending the proper interrogating signals to all the
bit slices involved. All the involved bit slices are compared in parallel or in &
sequential order, depending on the associative memory organization. It is possible
that multiple words in the associative memory will match the search patterm
Therefore, the associative memory may be required to tag all the matched worfis-
The indicator and temporary registers are mainly used for this purpose. The I*
terrogation mechanism, read and write drives, and matching logic within 2 tYP“?a'
bit cell are depicted in Figure 5.33. The interrogating signals are associated wilh
each bit slice, and the read-write drives are associated with\each word. There &¢

e
//’,u,
STRUCTURES AND ALGORITHMS FOR ARRAY PROCESSORS 377
—
— Information
nte _ . stored
information M
0 |
—
0 0 0 0
| 0 0 0
0 1 0 1
| 1 | 0
+Mask = 0 means that no comparison is
performed at that bit position for all words.
Interrogate | Interrogate 0
Write
input
N
—
/" =X -
Clear
wﬂ[e /_ =
dri\n‘f .j
drive
R \)
B
i
0 1
9
°
[]
ﬁ
' From E +
other —31/Word
bits of output
the word
Y \ Y '
Readout
associative memory.

Fiwre 33 The schematic logic design of » typical cell in &

378 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

two types of comparison readouts: the bit-cell reacout apd the worq rea
The two types of readout are needed in two different associative memory ol.gan?"t_
tions. &Q,
In practice, most associative memories
operations; that is, all words in the associati
parallel search operations. This differs drastica
encountered in RAMs. Based on how bit slices ar
we consider below two different associative memory ©

The bit parallel organization Ina bit parallel organization, the comparison py,

are not masked off by the masking patterna . 3
In this organization, word-match tags for gll words are :S;C:a(l: Lgrl::ug-;@)- Eag
cross point in the array is a bit cell. Essentially, the entire array is inyolyg

in a search operation.

have the capability of worg
ve memory array are involyeq inal'n'ej
lly from the word seria| Omragi;)
'l- . n
I:Imrcn[ved in the Operay.

rganizations: lon

Bit serial organization The memory organization jn [Fig;:'rtes 15103;4'2 ;[]?erates Wit
one bit slice at a time across all the words. The particu a};l tla o ected by o
extra logic and control unit. The bit-cell readouts will be used in lsljbseque“t

ssor STARAN has.the bit serial memg,

bit-slice operations. The associative proce s ; e
organizatiF:n and the PEPE has been installed with the bit parallel organizatio,

The associative memories are used mainl;lr for scal_'ch and i]etr::val of nop.
numeric information. The bit serial organization regmrcs Igsg ardware byt i
| organization requires additional word-matc

: _ The bit paralle :
slower in speed. The bit p: d. We present below an example to illustrate the

detection logic but is faster in spee 2Sel) ; el
search operation in a bit parallel associative memory. Bit .ser_lal associative
memory will be presented in Section 5.4.3 with various associative search and

retrieval algorithms.

Example 5.8 Consider a student-file search in a bit parallel associative mem.
ory, as illustrated in Figure 5.35. The query needs to _search‘all students‘whose
age is not younger than 21 but is younger than 31. This requires performing the
not-less-than search and the less-than search on the age field of the file. Two
matching patterns are used in the two subsequent searches. The masking
pattern selects the age field. The lower-bound 21 is loaded into the C register
as the first key word. Parallel comparisons are performed on all student records
(words) in the file. Initially, the indicator register is cleared to be zero.

After the first search, those students who are not younger than 21 are
marked with a ! in the indicator register, one bit per each student word. This
matching vector is then transferred to one of the Tregisters. Then the upper-
bound 31 is loaded into C as the second matching key. After the second search,
a new matching vector is sent to the I register. A bitwise ANDing operation
is then performed between the I and T registers with the resulting vector re-
siding in the I register as the final output of the search process. The whole
search process requires only two accesses of the associative memory. An output
circuit (shown in Figure 5.34) is used to control the reading out of the result.

lmcrrogating bit drives

STRUCTURES AND ALGORITHMS FOR ARRAY PROCESSORS 379

Word-match tag
network 1

Word-match tag
network 2

Word-match 1ag
network m

.

ALU

[[OULUICWCU“

(a) Bit-parallel organization

...——'—-_'__
: Control
it column select logic .
Bic g unit
a«a & @
Y Y
[see
Interrogating bit drives
A

1 12

In Word

1 logic 1

(b) Bit-seria] organization

Figure 5.34 Associative memory orgar
tions.

380 COMPUTER ARCHI

TECTURE AND PARALLEL PROCESSING

in th B
Query: Search for those students whose ages are in the range (21, 31)
21 0
0 0 0 '*——-.\ Fil‘sl m :
th
0 0 0 31 0 ~— Setond m“b
(8 a{ghingl
i 00...0 o| 00...0 1..1 | 00..0
I
3 ™ :
Ford 0 EE 25 1 j
Nixon 1 CE 19 . 0 l
Smith i ME 28 ‘ 1 1
Jones 0 Math 33 4 1 0
1 EE 21 2 1 \l\
L] L]
: : : : - : J
Brown 1 Physics 31 3 1 ||
Peterson 0 Chem. 20 2 0 ||
el
Name Sex Dept. Age Class

b

Result Result aflt
after the firstsed®
second
search

Figure 5.35 An associative memory used for the storage and retrieval of a student file.

Multiprocessors and
Multicomputers

n this chapter, wé study system architectures of multiprocessors and multicomputers. Various cache
coherence protocols, synchronization methods, crossbar switches, multiport memory, and multistage
networks are described for building multiprocessor systems. Then we discuss multicomputers with
Jistributed memories which are not globally shared. The Intel Paragon is used as a case study. Message-
passing mechanisms required with multicomputers are also reviewed.Single-address-space multicomputers

will be studied in Chapter 9.

MULTIPROCESSOR SYSTEM INTERCONNECTS

Ilel processing demands the use of efficient system interconnects for fast communication
d shared memory, /O, and peripheral devices. Hierarchical

buses, crossbar switc ks are often used for this purpose.

A generalized multiproc in Fig. 7.1. This architecture combines features from the
UMA, NUMA, and COMA models introduced in Section 1.4.1. Each processor P; is attached to its own local
memory and private cache. Multiple processors are connected to shared-memory modules through an inter-

processor-memory network (IJPMN).
evices through a processor I/O network (PION). Both

The processors share the access of /O and peripheral d
[PMN and PION are necessary in a shared-resource multiprocessor. Direct interprocessor communications
ication network (IPCN) instead of through the shared

are supported by an optional interprocessor communi
memory.

Para
among multiple processors an
hes, and multistage networ

essor system IS depicted

Network Characteristics Each of the above types of networks can be designed with many choices. The
choices are based on the topology, timing protocol, switching method, and control strategy. Dynamic networks
are used in multiprocessors in which the interconnections are under program control. Timing, switching,
and control are three major operational characteristics of an interconnection network. The timing control
can be either synchronous or asynchronous. Synchronous networks are controlled by a global cloFk that
Synchronizes all network activities. Asynchronous networks use handshaking or interlocking mechanisms t0
coordinate fast and slow devices requesting use of the same network.

Anetwork can transfer data using either circuit switching or packet switching. In circuit switching, once
a device is granted a path in the network, it occupies the path for the entire duration of the data transfer.

282 wmmae . A
dvanced Compute, Archite
the

Il'l packet SW- ¥ = i " - .
network. ttching, the information is broken into small packets individually competing for a pay, in

(Shared Memory)

SMy| | sm, SM,
LN N
| IPMN
(Shared /0 and Peripherals)
et | Disk Units
[Ca] 5
| Backup storage
LM Pa _
——— Printer
o PION
® :
__T:‘D o’ 5 Terminals
L]
L]
LM+ Py M .
Network
eeoe -
IPCN

Legends: IPMN (Inter-Processor-Memory Network)
PION (Processor- 1/O Network)
IPCN (Inter-Processor Communication Network)
P (Processor)
C (Cache)
SM (Shared Memory)
LM (Local Memory)

Fig. 7.1 Interconnection structures in a generalized multiprocessor system with local memory, private caches,
shared memory, and shared peripherals

Network control strategy is classified as centralized or distributed. With centralized control, a global
controller receives requests from all devices attached to the network and grants the network access to one or
more requesters. In a distributed system, requests are handled by local devices independently.

F

7.1.1 Hierarchical Bus Systems

A bus system consists of a hierarchy of buses connecting various system and subsystem components in 8
computer. Each bus is formed with a number of signal, control, and power lines. Different buses are used to
perform different interconnection functions.

In general, the hierarchy of bus systems are packaged at different levels as depicted in Fig. 7.2, including
local buses on boards, backplane buses, and I/O buses.

Local Bus Buses implemented within processor chips or on printed-circuit boards are called local buses:
On a processor board one may find a local bus which provides a common communication path among major
components (chips) mounted on the board. A memory board uses a memory bus to connect the memory wit

s0rS and Multicomputers

M‘ullﬂlpmces
intcl‘fﬂcc Jogic. An I/O or network interface chip or board use >
the ists of signal and utility lines. " & data bus. Fach of these loca) buse
cons S
Local Peripherals
S
— A(SCSI Bus)
: I — Memory Boarg
LM .CF'U lOCJ Memory Cells
Local Bus Memory Bus
Cache IF _' IF MC

j , ,
System Bus (on backplanes) >
A [

|/O Board Communication Board

—

op| | | F | | cc

Data Bus Data Bus
L | IF Buffer IF
| I
| 1
Network

Disk Printer

Units or Plotter (Ethernet, etc.)

Legends: IF (Interface logic), LM (Local Memory)
|0C (1/O Controller), MC (Memory Controller)
|OP (1/0 Processor), CC (Communication Controller)

Fig.7.2 Bus systems at board level, backplane level, and l/O level

Backplane Bus A backplane is a printed circuit on which many connectors are used to plug in functional
boards. A system bus, consisting of shared si gnal paths and utility lines, is built on the backplane. This system

bus provides a common communication path among all plug-in boards.
d over time such as the VME bus (IEEE Standard

Several backplane bus standards have been develope:
1014-1987), Multibus 1I (IEEE Standard 1296-1987), and Futurebus+ (IEEE Standard 896.1-1991) v
introduced in Chapter 5. However, point to-point switche d as more efficien

altematives, as discussed in Chapters 5 and 13.
J/O bus such as the SCSI

d to a computer system through an O
made of coaxial cables with taps connecting disks,

d interconnects have emerge

IO Bus Tnput/output devices are connecte
(Small Computer Systems Interface) bus. This bus is

Advanced Compyte, Archiy

284 T o
ntroller (Fig. 7.2) Special interface logic iS uge i

printer, and other devices to a processor through an /O co
connect various board types to the backplane bus. | PR — .

Complete specifications for a bus system include logical, t?llle{l:ae co;]ﬁned to the logical and apl,:’li::n(.:'"S
application profiles, and interface requirements. Our study WI-]- and bus support for cache coherep, o
aspects of system buses. Emphasis will be placed on the scalability € ang
fast synchronization.

For example, the core of the Encore Multimax multiprocessor watS’ thea
32-bit address, a 64-bit data path, and a 14-bit vector bus, and operating

' Itiprocessor bus ha
total memory bandwidth of 100 Mbytes/s. The Sequent mu o il
clock rate, and a 32-bit address, for a channel bandwidth of 80 Mbytes/s. A write-back private cache wag Useg

Nanobus, consisting of 2() slots,
t a clock rate of 12.5 MK, wir{; "
d a 64-bit data path, 5 10-My,

to reduce the bus traffic by 50%. . ; .
Digital bus interconnects can be adopted in commercial systems ranging from workstationg to

minicomputers, mainframes, and multiprocessors. Hierarchical bus systems can].!: e.- uIS -ed‘ttodb:li medi‘.lm‘
sized multiprocessors with less than 100 processors. However, the bus approach is limited by bandwigy,

scalability and the packaging technology employed.

Hierarchical Buses and Caches Wilson (1987) proposed a hierarchical cache/ bus architlectu.re s shown
in Fig. 7.3. This is a multilevel tree structure in which the leaf nodes are processors and their private cache

(denoted P; and Cy; in Fig. 7.3). These are divided into several clusters, each of which is connected through

L M1 7 ’ M2 ' LN N Mm
| ‘ Inter-cluster Bus l
I [o |
I * Second-
_C20 C22 Level
77700 V7774 Caches
- - Cluster

a cluster bus.

- L | Bus
Lo First-
|c1o] LEIT] [c12] .. PSB] | evel
Caches
[PoJ[P1][P2] [P3][Pa][P5] | P7][Pe]

Processors

Fig. 7.3 A hierarchical cache/bus architecture for designing a scalable multiprocessor (Courtesy of Wilson;
reprinted from Proc, of Annual Int. Symp. on Computer Architecture, 198 7)

. cessors and Multicomputers

P . 5

The uppe:r—level caches fpnn another level of shared memory between

Jles connected 10 the intercluster bus. Most memory requests sho

mf; s [ntercluster cache coherence is controlled among the second-leve]
ca¢=

ssed 0 the lower level.
p

each cluster and the main memory
uld be satisfied at the lower-level
caches and the resulting effects are

2
8 Example 7.1 Encore Ultramax multiprocessor architecture

—— . .
The Ultramax had a two-level hierarchical-bus architecture as depicted in Fig. 7.4. The Ultramax architecture

as Very similar to that characterized by Wilson, except that the global Nanobus was used only for intercluster

communications.

Global Nanobus

¢)
s [e [59] [RS

Cluster | Nanobus Cluster| Nanobus

> <

Legends: P = Processor
PC = Private Cache
MM = Main Memory
SC = Shared Cache
RS = Route Switch

Fig.7.4 The Ultramax multiprocessor architecture using hierarchical buses with multiple clusters (Courtesy of
Encore Computer Corporation, 1987)

The shared memories were distributed to all clusters instead of being connected to the intercluster bus. The
cluster caches formed the second-level caches and performed the same filtering and cache coherence control
for remote accesses as in Wilson’s scheme. When an access request reached the top bus, it would be routed

down to the cluster memory that matched it with the reference address.

or clusters is to allow transactions initiated on a local

The idea of using bridges between multiprocess :
7.5, multiple buses are used to build a very

bus to be completed on a remote bus. As exemplified in Fig. ; A
large system consisting of three multiprocessor clusters. The bus used in this example is F uturebus+, bu

the basic idea is more general. Bridges are used to interface the clusters. The main functions.._ of a bnd}ff:
include communication protocol conversion, interrupt handling in split transactions, and serving a5 €A°

and memory agents.

Advanced Computer,q
feh it

286 M— _ 1
Processor
Processor| |Processor
J Cache
Cache ‘
|
Dual-Futuerbus+
L : Fache
Cache
{ Memory
Processor
Processor -
Futurebus+
Cable o A
Segment Special Special
Purpose Purpose
Processor| |Processor Bridge Processor @ce_ssor
| l ' Message Message Message—]
Cache Cache J Cache | ||nterface| |Interface| | Interface |
+Futurebus+ + l ' Futurebus+
Message | [Message Message
Cache Cache Interface Interface Interface
] ’ Memory l |
10 Frame 10 o | ‘ o |
Processor Buffer Processor F’rocessor[Processor)
_ SCSI 2/ IPI
FPPI
LAN % % gg %
Connectionto 7 ISDN
Supercomputer V;sualtgatlon
Monitor

Fig. 7.5 A multiprocessor system using multiple Futurebus+ se i .
gments (Reprinted issi
Standard 896.1-1991, copyright © 1991 by IEEE, Inc RFFIRES Wi pettnfslomfion IR

7.1.2 Crossbar Switch and Multiport Memory

SW.Itcliled networks provide'dynamic interconnections between the inputs and outputs. Major classes of
Z:::;;f tizt“::]:or::barc Slt’;mﬁkzd bf;lOW,]based on the number of stages and blocking or nonblocking. We
ar networks and multiport memory stry '
Ctures first and th i ks.
Cro : , nd then the multistage networ
ssbar nefworks are mostly used in small or medium-size systems The 1ti . —
extended to larger systems if the increased latency problem can be Suitabi Y mu rgtage networks
Yy addressed.

Network Stages Dependi i .
—— ni e bicaufsr;gdo: !:he Interstage connectiong used, a single-stage network is also called 2
ata items may have to recircu]ate through the single stage many times befor®

ors and Multicomputers
. 207

Mumprocess
eir destination. A single-s :
gle-stage network is cheaper to build, but multipl
, © passes may be need
ed to

reaChmg .
rtain connections. The i
crossbar switch and multiport memory organi
nization are both si
Ingle-

ostablish €
petworks:
A multistage nghwork consists of more than one stage of switch boxe
c_gnpect frpm any input to any output. We will study unidirectional multi St' Such a network should be able to
choice of mterstellge connection patterns determines the network conne ;S age networks 1n Section 7.1.3. The
erent at different stages, depending the class of networks to bz g;gg:;]; S?I‘Eatt(;ms s
. The Omega network, Flip

or difft
network, and Baseline networks are all multistage networks

«ing versus Nonblocki ;
Blocking sl :lg ul:‘e*-works | A multistage network is called blocking if the si

put-output pairs may result in conflicts in the use of switches or ¢ —

ommunication

stage

connections
[inks.
Examples of blocking networks include the Om : ,
(Goke and Lipovski, 1973), and Delta networks (E’E?e(l?‘?g?r;i 18212,!32502;26 (Wuand Feng,'lggo), Banyan
graph transformations. In fact, most multistage networks are blocking in faHmG:Wc;rks e cqglvalent after
multiple passes through the network may be needed to achieve certain input-out ft c: a blf)ckmg network,
A multistage network is called nonblocking if it can perform all possible tI:)Onne;I']eCt](;T. |
and outputs b}f rearranging its connections. In such a network, a connection path can all::rr;s btweerl bt
between any m_I"-"-l'f"i)'JtPllt pair. The Benes networks (Benes, 1965) have such a capability YPSIO\; eStab]l;Sth
Letworks require almost twice the number of stages to achieve the nonblocking Connf;ctior,:v;; Ellles
networks (Clos, 1953) can also perform all permutations in a single pass without blocking Ce I'tain-Subz] 03
of blocking networks can also be made nonblocking if extra stages arc added or connec'tions are resmﬁzfjs
The blocking problem can be avo orks to be described in the next section. |

In a crosshar network, every input port is ¢
cles in Fig. 2.26a) without blocking. A crossba

ided by using combining netw
Cnossbqr Nefworkf onnected to a free output port through 2
crlosspomt sw1.tch (cir r network is a single-stage network built
with unary switches at the crosspoints.

Once the data is read from the memo
crosspoint switch. In general, such a crossbar network requires the use of n X m crossp

crossbar (n = m) can implement any of the ! permutations without blocking.
As introduced earlier, a crossbar switch network is a single-stage, nonblocki
Each crosspoint in a crossbar network is a unary switch which can be set open or

to-point connection path between the source and destination.
All processors can send memory requests independently an
of multiple requests destined for the same memory module at the sam

requests is serviced at a time. Let us characterize below the crosspoint
lumn of an 7
mory module, each crosspo!

¢ is returned to the requesting processor along the same
oint switches. A square

ry, its valu
ng, permutation network.
closed, providing a point-

poses the problem

d asynchronously. This
ly one of the

e time. In such cases, 0
switching operations.

x m crossbar mesh, only

crosspoint switches in each co .
nt switch

Crosspoint Switch Design Out of n
Ive the contention for each me

one can be connected at a time. To 1es0
must be designed with extra hardware.

Furthermore, each crosspoint switch requires the
address, data path, and control signals. This means t
bus of the same width.

lines accommodating

f connecting
g thatof a

use of a large number 0
s a complexity matchin

hat each crosspoint ha

288 e— Advanced COmP”fﬁrArchitequre
of crosspoint switches and a large numpe, of
ne

7 ' ;
uiring extensive hardware when » is very large g
+30

For an 7 X n crossbar network, this implies that 71” sets
are needed. What this amounts to is a crossbar network req Bk _ ;
far only relatively small crossbar networks with 7 < 16 have been built into commercial machlmes_
On each row of the crossbar mesh, multiple crosspoint SWitCh,eS can be connected simuitan,
Simultaneous data transfers can take place in a crossbar between 7 palr§ of prC"CGSSO.l'S and memorieg
Figure 7.6 shows the schematic design of a row of crosspoint sw1tches'|n a single crossbar Netwoy
for service. Each processor seng B an

Multiplexer modules are used to select one of read or wrife requests o :
independent request, and the arbitration logic makes the selection based on certain fairness or Priority ryjeg

E— 3\
/ (n sets)
\‘_/ Data
Multiplexer
? n processors

modules
Address

OUSI};.

Data

Address (a tree)

Shared [:
memory | Read/Write «— ReadMWrite J
module '

(M;) Control

«——— Request
——» Acknowledge
<«——— Request
———> Acknowledge FHBFOCGSSOI‘S

Arbitration
logic

Memory
Enable

.
<+——— Request
—— Acknowledge)

Fig. 7.6 Schematic design of a row of crosspoint switches in a crossbar network

For example, a 4-bit control signal will be generated for n = 16 processors. Note that n sets of data,
address, and read/write lines are connected to the input of the multiplexer tree. Based on the control signal
received, only one out of » sets of information lines is selected as the output of the multiplexer tree.

The memory address is entered for both read and write access, In the case of read, the data fetched from
memory are returned to the selected processor in the reverse direction using the data path established. In the
case of write, the data on the data path are stored in memory. '

N z’&cknowledge signals are used to indicate the arbitration result to a]| requesting processors. These signals
Initiate data transfer and are used to avoid conflicts. Note that the data path estab?ished ' b:d'rectional in
order to serve both read and write requests for different memory cycles 1s bidi)

messbar lt.:m:tatlons A single processor can send many requests to multiple memory modules. For an
7 X crossbar network, at most # memory words can be delivered to at most » processors in each cycle.

network is cost-effective only for small mu]ti
. Iprocessors wit ;
modules. A single-stage crossbar network is not expandable o:c: ifiwbpr.(l)cessors accessing a few memory
S built.

mpracessnrs and Multicomputers "
arjgitypoBrcic Lned G be built into each crosspoint switch to enhance the fault tolerance

ndancy
Red! f the crossbar network.

and reliability ©
ort Memory Because building a crossbar network into a large system is cost prohibitive, some
multiprocessors used a multiport memory organization. The idea is to move all cro;.spoint
d switching functions associated with each memory module into the memory controller

MultiP
maiﬂﬁame

arbitration an
Thus the memory module becomes more expensive due to the added access ports and associated logic as

demonstrated in Fig. 7.7a. The circles in the diagram represent n switches tied to » input ports of a memory
odule. Only one of n processor requests can be honored at a time.

The multiport memory organizatlion is a compromise solution between a low-cost, low-performance bus
system and a high-cost, high-bandwidth crossbar system. The contention bus is time-shared by all processors
and device modules attached. The multiport memory must resolve conflicts among processors.

This memory structure becomes expensive when m and n become large. A typical mainframe multiprocessor
configuration may have n = 4 processors and m = 16 memory modules. A multiport memory multiprocessor
is not scalable because once the ports are fixed, no more processors can be added without redesigning the
memory controller.

Another drawback is the need for a large number of interconnection cables and connectors when the

configuration becomes large. The ports of each memory module in Fig. 7.7b are prioritized. Some of the

processors are CPUs, some are /O processors, and some are connected to dedicated processors.

n Processors
! P2 see I:'n
L] L] I L]
L] [] L]
12 n 12 n i 172 n
M1 MZ Mm

m Shared memory modules

(a) n-port memory modules used

;P1| P,
1 1. 2 | 2 . 1 1
M M M M
00 !314| _|42J 23‘
| |

110 ‘ 110

(b) Memory ports prioritized or privileged in each module by numbers
urtesy of P.H. Enslow, ACM Computing

Fig.7.7 Multiport memory organizations for multiprocessor systems (Co
Surveys, March 1977)

290 s Advanced Computer,qrch‘
; neq“fe
For example, the Univac 1100/%4 multiprocessor consisted of four CPU;, f?l;rrhlif(})] Processors, ang
scientific vector processors connected to four shared-memory modules, cacthr‘) 1 tC was‘lt}.w.dy P‘)nedﬁ
The access to these ports was prioritized under operating system control. In other :'n:: IP‘TOCCSSOFS, it Gfth;
memory module can be made private with ports accessible only to the owner processors. ¢

1.13 Multistage and Combining Networks

Multistage networks are used to build larger multiprocessor systems. We dCSCI‘l.b(: two n‘wlnstagc netyop
the Omega network and the Butterfly network, that have been built into commcrcral machmf?s‘ We wil] Studya'
special class of multistage networks, called combining networks, for resolving access conflicts aumma“c&l]y
through the network, The combining network was built into the NYU’s Ultracomputer.

Routing in Omega Network We have defined the Omega network in Chapter 2. Iq what fOllows, i
describe the message-routing algorithm and broadcast capability of Omega network. This clasg of Detyygy
was built into the Illinois Cedar multiprocessor (Kuck et al., 1987), into the IBM R?3 (Pﬁster etal, |og 5
and into the NYU Ultracomputer (Gottlieb et al., 1983). An 8-input Omega network is shown in Fig. 78,

[n general, an n-input Omega network has log, » stages. The stages are labeled from 0 to logyn -1 from
the input end to the output end. Data routing is controlled by inspecting the destination code in binary, Whep
the ith high-order bit of the destination code is a 0, a 2 X 2 switch at stage i connects the Input to the Upper
output. Otherwise, the input is directed to the lower output.

Two switch settings are shown in Figs. 7.8a and b with respect to permutations 7, = (0, 7, 6,4,2)(]. 3)
(5) and m, = (0, 6, 4, 7, 3) (1, 5) (2), respectively.

The switch settings in Fig. 7.8a are for the implementation of 7;, which maps 0 — 7, 7 — 6,64
452,250,1-3,351,5- 5. Consider the routing of a message from input 001 to output 011, This
involves the use of switches A, B, and C. Since the most significant bit of the destination 011 s a “zero”,
switch A must be set straight so that the input 001 is connected to the upper output (labeled 2). The middle
bitin 011 is a “one”, thus input 4 to switch B is connected to the lower output with a “crossover” connection,
The least significant bit in 011 is a “one”, implying a flat connection in switch C. Similarly, the switches A,
E, and D are set for routing a message from input 101 to output 101. There exists no conflict in all the switch
settings needed to implement the permutation m in Fig. 7.8a.

Now consider implementing the permutation 7y in the 8-input Omega network (Fig. 7.8b). Conflicts in
switch settings do exist in three switches identified as F, G, and H. The conflicts occurring at F are caused
by the desired routings 000 — 110 and 100 — [1]. Since both destination addresses have a leading bit 1,
[E)ch)th]:né)uts to switch F must be connected to the lower output. To resolve the conflicts, one request must be

ocked.

connections in several passes. For the example 7, we can conpet 000 — 110, 001 — 101, 010 — 010
101 = 001, 110 — 100 in the first pass and 01] =000, 100 — 11 1,111 - 011 in ;he second pass. In general.
if 2 x 2 switch boxes are used, an #-input Ome 82 network can implement i

. : . : s 11188,
ions i ermutations in a single pa
There are n! permutations in total. perm

ssors and Multicomputers
€

MuJﬂP”’
Input Stage 0 291
000 ——™P~e .- 0
001 R
o10—= [—=f=—==-
011 LA 3
100~ X \—wb-mm--
101— \ —>f-----|
10—~ \—p----- 6
] —————> - 7 7| _E |
2 — 111

(a) Permutation 7 = (0, 7, 6, 4, 2) (1, 3) (5) implemented on an Omega network without blocking

Input

000 ——— ™

001

010
011

100
101

110

1M —>

(b) Permutation 7, = (0, 6,4, 7, 3) (1, 5) (2) blocked at switches marked F, G, and H

Fig.7.8 Two switch settings of an 8 X 8 Omega network built with 2 x 2 switches

Forn=8, this implies that only 8%/81=4096/40320=0.1016=10. 16% of all permutations are implementable
ina single pass through an 8-input Omega network. All others will cause blocking and demand up to three
passes to be realized. In general, a maximum of log, n passes are needed for an n-input Omega. Blocking is
not a desired feature in any multistage network, since it lowers the effective bandwidth.
~ The Omega network can also be used to broadcast data from one source to many destinations, as exemp
In Fig, 7.9a, using the upper broadcast or lower broadcast switch settings. In Fig. 7.9a, the message at
001 is being broadcast to all eight outputs through a binary tree connection. _

The two-way shuffle interstage connections can be replaced by four-way shuffle interstage connections
When 4 x 4 switch boxes are used as building blocks, as exemplified in Fig. 7.9b for a] 6-input Omega

Metwork with log, 16 = 2 stages.

lified
input

cast connections

0000

0000 —> 4 x4 [0001
0001 4x4 0010
0010 0011
pemeeepes

0011 0100
0100 r'ﬂf__mm
0101 > 44 - 4x4 —0110
0110 0111
0111 1000
1000 -

1001 - 1001
1010 o 4x4 3 A% 1010
1011 — 1011
1100 — nos
1101 —1101
1110 4x4 4x4 [1110

111 - — 1111

(b) Using four-way shuffle interstage connections

Fig. 7.9 Broadcast capability of an Omega network built with 4 x 4 switches

No-te that a four-way shuffle corresponds to dividing the 16 inputs into four equal subsets and then
shuffling thep*t evenljf among the four subsets. When k x k switch boxes are used, one can define a k-way
shuffle function to build an even larger Omega network with log, n stages ’

;32;::% ;gurseu;trgf:igvest::rgs ttTr}f111s class of netwc?rks is constructed with crossbar switches as building
newor-k s wi.th — 'ESO2 Ele y networks of different sizes. Figure 7.10a shows a 64-input Butterfly
6o eatalliil he intersta ges (2= 083 64) of 8 X 8 crossbar switches. The eight-way shuffle function is used
P G %‘3 c;) i];gcnons betv.veen.stage 0 and stage 1. In Fig. 7.10b, a three-stage Butterfly
Fig. 710b i dentical o the two-stage By o & CTOSSDAr switches. Each of o4 boxs
-Stage Butterfly network in Fig. 7.10a ek of the 64 64 box

In total, sixteen 8 x 8 crossbar switches are used in

ors O d Multicomputers
5§

™
Coﬂncctio
rlerwﬂrks'
Stage 0 Stage 1
— 0
— 1
8x8|e
7
8
— 9
o (Bx8|e
. 15
® []
[] []
L] L]
L] L]
56 56
57 57
*|18x8 8x8le
63 63

(a) Atwo-stage 64 x 64 Butterfly switch network
built with 16 8 x 8 crossbar switches and
eight-way shuffle interstage connections

Stage 0 & 1
2 — 0
i 1
y 7
8 8
it 15
.| 64x64
56 56
63" 63
L
64— 64
65
71
) 72
.| 64x64
127— 127
[]
. ®
L]
408 — 408
409 — 409
415" 415
416 416
423" 423
.| 64x64
504—*:— 50.4
511— 511

Stage 2

.| 8x8

| 8x8

s are allowed in a Butterfly network, making these networks a restricted subclass of O
mega

!15

[]
L]
®
. | 120
. 8x8 |3 127
e
®
[]
; 448
. 8x8B |2 455
[]
[]
[]
| 504
.| 8x8 : 511

built with 192 8 x 8 crossbar switches

(b) Athree-stage 512 x 512 Butterfly switch network

Fig.7.10 Modular construction of Butterfly switch networks with 8 X 8 crossbar switches (Courtesy of BBN

Advanced Computers, Inc., 1990)

Advanced Com.buter Archy
re
204 -
. : a hot spol MY appear correspq, +.
The Hot-Spot Problem When the network traffic 18 nonuﬁgf‘;::z;essors at the same time. For }e)’?:::n to
o , : ssed by ma t spot since it i %
a certa nory module being excessively acce : ecome a hot spo 1 shareq 1,
sefaf:pligr?ilaﬁ:gle being used gas a synchfonization barrier 2 P d Many
tly. In the NYU Ultracomputer and th, B

processors. ce significan
Hot spots may degrade the network perforpat been added to the Omega network. _The PUIPOSE yyy
has tch points where conflicts are taking Dlac:

RP3 multiprocessor, a combining mechanism ination at sWi
combine multiple requests heading for the same destin developed to perform paralle] memoq;

. as been

An atomic read-modify-write primitive Fetch&Add(x, €), h
updates using the combining network. .
mplementing an N-way synchronization With ,

Fetch®Add This atomic memory operation is effective In 1

complexity independent of N. In a Fetch&Add(x, e) operation, eration, the semantics is
e is an integer increment. When a single processor executes this op g

Fetch&Add (x, e)
{temp < X%
x « ftempte (7.1)

return femp|
When N processes attempt Fetch&Add(x, e) at the same memory wor_d simultaneously, the memory j
updated only once following a serialization principle. The sum of the N increments,) + e, + ... + ¢, j5

produced in any arbitrary serialization of the N requests.
This sum is added to the memory word x, resulting in a new value x + e;+ e + ... + ey . The values retumeq

to the N requests are all unique, depending on the serialization order followed. The net result is similar ty
a sequential execution of N Fetch&Adds but is performed in one indivisible operation. Two simultaneoys
requests are combined in a switch as illustrated in Fig. 7.11.

One of the following operations will be performed if processor Py executes Ans; «— Fetch&Add(x, ¢,)
and P, executes Ans, < Fetch&Add(x, e,) simultaneously on the shared variable x. If the request from P,is
executed ahead of that from P, , the following values are returned:

x is an integer variable in shared memory gy

Ans; « x
AHSQ &« X% €] (72)

If the execution order is reversed, the following values are returned:

Ans; « x+te,
AHSQ — x (7 3]

Regardless of the executing order, the value x + ¢, + p. ; i
_ ’ . | T € 15 stored in memory. It is the responsibility of the
:w;tch bO)f to forrp the sum e; + e, : transmit the combined request Fetch& Add(x, e, + e I)) store tl?(; value
FI (;r gg)dm a wait buffer of the switch, and return the values x and x + ¢, to tf : h iy | ests
etch&Add(x, e)) and Fetch&Add(x,), respectively, as illustrated i Fig]7 1 =4 ;sfy the original requ
- /.11 m four steps.

Iticomputers
rs and Mu
Maproes? "

295
Fetch&Add (x, eyq)

Main Memory
Fetch&Add (x, e,)

2

(a) Two requests meet at a switch

Py

Switch Fetch&Add[x,e1+62} Main Memory

- [

(b) The switch forms the sum e, + e,, stores €4
request to memory

in buffer, and transmits the combined

Py

Switch Main Memory
. [

(c) The original value stored in x is returned to switch, and the new value x + e, + g,
is stored in memory

P, X

A

Switch Main Memory
e e | []

(d) The values x and x + eq are returned o P, and P, respectively

A

Fig.7.11 Two Fetch&Add operations are combined to access a shared variable simultaneously via a combining
network

Applications and Drawbacks The Fetch&Add primitive is very effective in accessing sequentially
allocated queue structures in parallel, or in forking out parallel processes with identical code that operate on
different data sets.

Consider the parallel execution of N independent iterations of the following Do loop by p processors:

Doall N=1 to 100
<Code using N>
Endall

Each processor executes a Fetch&Add on N before working on a specific iteration of the loop. In this
case, a unique value of N is returned to each processor, which is used in the code segment. The code for each

processor is written as follows, with N being initialized as 1:

n < Fetch&Add (N, 1)
While (n < 100) Doall
{Code using n}
n < Fetch&Add(N, 1)
Endall
The advantage of using a combining network to implement the Fetch&Add operation is achicved a8

igni i eueing and
Significant increase in network cost. According to NYU Ultracomputer experience, mes:affe:; P E} =
combining in each bidirectional 2 x 2 switch box increased the network cost by a factor ofa

Advanced Compuyte, Archiy
ectypy

206" T
d to make the entire Operat’ion Al LR Eetiogy Operat;
e combining networks have the po‘ﬁ‘ntia]on'
of

tly. Multistag .
ﬁcansgnds of processors. The problejm of increased cqg
" hing technology 10 the future, ang

d cheaper switc
to include 512 processors using 5 i,

d a combining network for sy'nchronization using Fetchg A4 s
th of 13 Gbytes/s using a 50-MHz clock. :
Multistage Omega networks were also bui Cedar rnultllzu‘OCCSi(r)rr é%u;tei; ial" 1986) g i

University of Illinois and in the Ultracomputer (Gottlieb et al., 19?3) at New ot = t;y
The BBN Butterfly processor (TC2000) used 8 x 8 crossbar switch modu]esrﬂo Si:itc; " 0_;}?@ -
Butterfly network for a 64-processor system, and a three-stage 512x 512 Buttek 3{ — Hee ig. 7.10) by
a 512-processor system in the TC2000 Series. The switch hardware Was clocke z:i B ME 2 With a 1by,
data path. The maximum interprocessor bandwidth for a 64-processor TC2000 was designed at 2.4 Gb Yies
The Cray Y-MP multiprocessor used 64-, 128-, or 256-way interleaved memory bankz, each of whig,
could be accessed via four ports. Crossbar networks were used between the processors and memory bagj,
in all Cray multiprocessors. The Alliant FX/2 800 used crossbar interconnects bet\f\/een seven four-procesg,
d, interleaved cache boards which were connected to the

(1860) boards plus one 1/0 board and eight share
physical memory via a memory bus.

Additional switch cycles are also neede
This may increase the network latency signi
supporting large-scale multiprocessors with tho

latency may be alleviated with the use of faster an
he IBM RP3 was designed

Multistage Networks in Real Systems T
speed Omega network for reads or writes an

A 128-port Omega network in the RP3 had a bandwid
It into the

CACHE COHERENCE AND SYNCHRONIZATION

MECHANISMS
Cache coherence protocols for coping with the multicache inconsistency problem are

considered below. Snoopy protocols are designed for bus-connected systems. Director)f—based protocols
rk-connected systems. Finally, we study hardware support for fast synchronization. Software-

in Chapter 11.

apply to netwo
implemented synchronization will be discussed

7.2.1 The Cache Coherence Problem
data inconsistency may occur between adjacent levels

ystem,
he and main memory may contain inconsistent copies of the

In 2 memory hierarchy for a multiprocessor $
ifferent copies of the same memory block because multiple

or within the same level. For example, the cac
same data object. Multiple caches may possess d

processors operate asynchronously and independently.
Caches in a multiprocessing environment introduce the cache coherence problem. When multiple

processors maintain locally cached copies of a unique shared-memory location, any local modification of the
location can result in a globally inconsistent view of memory. Cache coherence schemes prevent this problem
by maintaining a uniform state for each cached block of data. Cache inconsistencies caused by data sharing,

process migration, or I/O are explained below.
Inconsistency in Data Sharing The cache inconsistency problem occurs only when multiple private
caches are used. In general, three sources of the problem are identified: sharing of writable data, process

migrfaﬁon, and I/Q activity. Figure 7.12 illustrates the problems caused by the first two sources Consider &
multiprocessor with two processors, each using a private cache and both sharing the main memory Let X'be

Mumprﬂm“’” ond Multicomputers
297
a shared dat2 element which has been referenced by both processors. Before update, the gy .
consistent: > €e copies of X are
If processor P, writes new data X" into the cache, the same co
shared memory s wrz{e—thmug;? policy. In this case, inconsis
and X) in the two caches (Fig. 7.12a).
On the other hand, inconsistency may also occur when a write-back alicy
in Fig. 7.122. The main memory will be eventually updated when the modified
or invalidated.

tpy will be written irnmediately into the
€NCy occurs between the two copies (X

is used, as shown on the right
data in the cache are replaced

process Migration ar_:d IO Figure 7.12b shows the occurrence of inconsistency after a process containing
 shared variable X" migrates from processor 1 to processor 2 using the write-back cache on the right. In the
middle, a process migrates from processor 2 to processor 1 when using write-through caches.

Processor | P4 P, P4 P, P, P,
| | |
Caches | X X X X X X
] . A
Shared ’ '
Memory X X X
Before update Write-through Write-back

(a) Inconsistency in sharing of writable data

Processors | P4 P, Py P, P, P,
| ! | 1 [
Caches| X X X’ X X
: N |
[| | e | Bus
ER
Shared X X
Memory | X
Before Migration Write-through Write-back

(b) Inconsistency after process migration

Fig.7.12 Cache coherence problems in data sharing and in process migration (Adapted from Dubois, Scheuﬁch,.

and Briggs 1988)

he copies, labeled X and X'. Special precautions

In both cases, inconsistency appears between the two cac .
, -y 1 must be established before processes

must be exercised to avoid such inconsistencies. A coherence protoco
can safely migrate from one processor to another.
Inconsistency problems may occur during /O operations that bypass g Ewalien, + o write through caches
When the I/0 processor loads a new data X’ into the main memory, bypassmE t ‘;l:r'zd memory. When
(middle diagram in Fig. 7.13a), inconsistency occurs between cache 1 and the 8

i ite- hes also create
outputting a data directly from the shared memory (bypassing the caches), the write-back cac

inconsistency.

Advanced C"mbUterA
Fehig,

ach the 1/0 processors (IOP, ,
nd ;

plem is t© att .
robie™ . 2 13b. This way 1/O processor B
. § Share)
e

Fig. /- : i
stency is maintained v;
. a t
rturbations and the poor | 00:111' g,
ity o

298 i

/O inconsistency P
own 1

One possible solution to the 1
to_the private caches (C) and C5), respe
with the CPU. The /O consistency can be main
An obvious shortcoming of this scheme is the

1/O data, which may result in higher miss ratios.

_to-cache const
ein caChC pe

Processors

Caches

Bus

I/O
Processor

Memory (Output)

Memory (Input)
(Write-back)

(Write-through)
(a) /O operations bypassing th

Memory |/O
e cache

Legends:

P, (processor i)

IOP; (/O Processor i)
C; (Cache i)

Bus

Shared Memory

(b) A possible solution

Fig.7.13 Cachei i m o
ache inconsistency after an I/O operation and a possible solution (Adapted from Dubois, Sch
is, Scheurich,

and Briggs, 1988)

Two Protocol A
pproaches Many of the
early commerci : ;
memory systems. A bus is a : ercially available multipro
’ 1 : . ces
in the system to observe Ongg?;lg‘“::lent device for ensuring cache coherence becalzlse ib:ﬁl’s useltil bus-based
locally cached obj emory transactions. If a bus tr : ows all processors
ject, the cache controlle ansaction threatens the i
I i . ; . , consistent state of
using this mechanism to r can take appropriate action : state ofa
ensur s to inval
e coherence are called snoopy protocols beca idate the local copy. Protocols
use each cache snoo
ps on the

transactions of other caches.
On the other hand
o , scalable multi ;
in direct or multistage networks Ull’lrlf_}l‘:eSSor systems interconnect processors usi
as more processors are added tol the ike the situation in buses, the band rcsi using short point-Lo-poitt 7%
mechanism and do not provide an :g;t?m- However, such networks dW] 5 o SR D
problem can be solved using some Varia;:eli‘tdbrgadcast capability. In suo }ilot have a convenient snooping
of directory s ' ch systems, th
chemes. s, the cache coheren®

In general, a cach
, e coherence prot
ocol consi
onsists of the set of possible states in th
s in the local caches, the state

in Chapter 9.

d Multicomputers
liproces”* " - 00

22 snoopy Bus Protocols

g private caches associated with processors tied to a common bus, two approaches have been practiced
In umﬂ_itamin g cache consistency: write-invalidate and write-update policies. Essentially, the Wﬁte-iﬁvalidate
for .malwill ‘nvalidate all remote copies when a local cache block is updated. The write-update policy will
Pohci ast the new data block to all caches containing a copy of the block. yw
brO; g rotocols achieve data consistency among the caches and shared memory through a bus watching
cganism- As illustrated in Fig. 7.14, two snoopy bus protocols create different results. Consider three
mecessofs (P, Py, and P) maintaining consistent copies of block X in their local caches (Fig. 7.14a) and in
ﬂI: shared-memory module marked X.

Using a write-invalidate protocol, the processor P modifies (writes) its cache from X to X’, and all other
copies are invalidated via the bus (denoted / in Fig. 7.14b). Invalidated blocks are sometimes called dirty,
meaning they should not be used. The write-update protocol (Fig. 7.14c) demands the new block content X’
be broadcast to all cache copies via the bus. The memory copy is also updated if write-through caches are
used. In using write-back caches, the memory copy is updated later at block replacement time.

7

Shared X’ Shared
oo Q Memory il I:’ Memory
— Bus —1 Bus

LI |
I I
[
ces Caches n _— n Caches
e Processors @ @ @ Processors

(b) After a write-invalidate operation by P,

Shared
eer I:_J Memory

JLx
| l 1 Bus

T
X' . Caches
@ @ Processors

c) After a write-update operation by Py

(a) Consistent copies of block X are in shared memory
and three processor caches

|
=
Py
(

Fig.7.14 Whrite-invalidate and write-update coherence protocols for write through caches (1:invalidate)

Write-Through Caches The states of a cache block copy change with respect to reac?, u_zrite,’ and
replacement operations in the cache. Figure 7.15 shows the state transitions for two basic wnte-mvahd_ate
snoopy protocols developed for write-through and write-back caches, respectively. A block cop?f of a wnffe-
through cache i attached to processor i can assume one of two possible cache states: valid or invalid (Fig.
7.15a),

Aremote processor is denoted j, where j # i. For each of the
Place. Note that all cache copies of the same block use the same

In a valid state (Fig. 7.15a), all processors can read (R(i), R())) safely. L
(W (i) safely in a valid state. The invalid state corresponds to the case of the
or being replaced (Z(i) or Z(j)).

two cache stafes, six possible events may take
transition graph in making state changes.‘

ocal processor i can also write
block either being invalidated

Advanced Computer A’Chitequ
re

er cache copies become invalidy

300 he copy 2l O ite (W(i)) i

.) into its €ach® ? R(i)) or write (W{2)) 15 cartied oyt
Wherever a remote processor wmezl(igfgi)elnevef - succes sful read (@ by
- / v . -
The cache block in cache i becomes act ot i -
frac 1 of cache states) can be made iI;

a local processor /. . than the .
: r than \
The fraction of write cycles on th?i bus 18 hlghi octorY (reglstratlo — ed. an atomic Test&Set
due to the need for request invalidations. T?e Cﬁdatioﬂs In case Jocks are © 4 Must
t most 1nva ’

dual copies or dual-ported to filter ou

be enforced. er split into two cache states, 1=1beled

(invalidated or not-in-cache) cagp,

write-back cache can pe furth
e scheme corresponds

7.15b. The INV

eofa
state coherenc

Write-Back Caches The valid stat T
RW (read-write) and RO (read-only) as Sh'll’W“ mb fcg);e This three-
state is equivalent to the invalid state mentioned be1ore:

an ownership protocol.

R(i), W()
R(i)
R() W((i)
20| (i R()
| 1

R()
R()
Z(j)

RW: Read-Write

RO: Read Only

INV: Invalidated or

not in cache
RG), Z(), WG), Z()

2;(*)) =RWr": t:T b:?Ek by processor i. W(j) = Write to block copy in cache j by processor j # i
i) = Read block by processor i. R(j) = Read block copy i : ey
‘i : ‘ : py in cache j by processor j # .

Z(i) = Replace block in cache 1. Z(j) = Replace block copy in cache ,):5 I. :

(b) Write-back cache

Fig.7.15 Two state-transition graphs for a cach
: e block usi ite-invali
Dubois, Scheurich, and Briggs, 1988) R e R

j ters
rs and Multicompu
e _— 30

¢ INV state is entered whenever a remote processor wrifes (W(})) its local co

Z(i)) its own block copy. The RW state corresponds to only one cache COpy existing i i

ned by the local processor i. Read (R(i)) and write (W(i)) can be safely performed i gﬂlln o

he RO state or the INV state, the cache block becomes uniquely owned when a 1;:al fu,l:g&t;(t‘;)
i

Mulop

i Py or the local processor
replaces {
gystem OW
m cithert

Fro
kaS plaCe- o i . "
Other state transitions in Fig. 7.15b can be similarly figured out. Before a block is modified ownershi

t]]p

- exclusive access must first be obtained by a read-only bus transaction which is broadcast to al cach
If a modified block copy exists in a remote cache, memory must first be updated, the co;s
) Y

and memory- _ ;
.qvalidated, and ownership transferred to the requesting cache.
1

Write-once Protocol James Goodman (1983) proposed a cache coherence protocol for bus-based
multiprocessors. This scheme combines the advantages of both write-through and write-back invalidations.
[n order to reduce bus traffic, the very first write of a cache block uses a write-through policy.

This will result in a consistent memory copy while all other cache copies are invalidated. After the first
write, shared memory is updated using a write-back policy. This scheme can be described by the four-state
transition graph shown in Fig. 7.16. The four cache states are defined below:

P-Read

Read-Inv

P-Write

Solid lines; Command issued by local processor
Dashed lines: Commands issued by remote processors
via the system bus.

Fig. 716 Goodman's write-once cache coherence protocol using the write invalidate policy on write-back
caches (Adapted from James Goodman 1983, reprinted from Stenstrom, IEEE Computer, June 1990)

* Valid: The cache block, which is consistent with the memory copy, has been read from shared memory
and has not been modified.

* Invalid- The block is not found in the cache or is inconsistent with the memory copy.

* Reserved: Data has been written exactly once since being read from shared memory. The cache
is consistent with the memory copy, which is the only other copy.

copy

Advanced Compyte, Arch;
it
— fe
302 ;
nd the cache copy is the
’ e than once, a Only
ritten) MOT

different sets of commands. The soliq y;,

abeled read-miss, wri te-hit, ang,,

One

* Dirty: The cache block has been rr;odiﬁedg;’
in the system (thus inconsistent with all 0
Sy

two
Fite,

L , uires
To maintain consistency, the protocol req fogil processorl

: a
Fig. 7.16 correspond to access commands IS.SUed by.s entered. .
miss. Whenever a read-miss occurs, the valid Stat;;l cond wr ite-hit leads to the dirty state, and all ﬁ“ure
A . . The s¢€ k enters the dirty sty
The first write-hit leads to the reserved state the cache block € te.
S fo / Ay OCCUT S'l .
write-hits stay in the dirty state. Whenever a write-mis ;ssued by remote processors via the Shoopy bug
her copies. The write-invalidate Comm&n(i

y g ds
The dashed lines correspond to invalidation CQWT?;ates o1l of
The read-invalidate command reads a block and invall d corresponds to a normal memory reqy by,

an
invalidates all other copies of a block. The bus—read comm

remote processor via the bus ; :
W s trigger the followi
Cache Events and Actions The memory-access and invalidation commands trigg 18 evenyg
and actions:
n the cache, a read-miss oceurs, A p,

* Read-miss: When a processor wants to read a block that 15 e emory has a consistent ¢o
read operation will be initiated. If no dirty copy exists, then main m Y i

. . h 3 !
supplies a copy to the requesting cache. If a dirty copy does exist in a remca:lel cac lzleé that cache wj
inhibit the main memory and send a copy to the requesting cache. In all cases, the cache copy will ep,

the valid state after a read-miss. . .
Write-hit: If the copy is in the dirty or reserved state, the write can be carried out locally and ¢,

new state is dirty. If the new state is valid, a write-invalidate command is bro:.;ldcast to lall caches,

invalidating their copies. The shared memory is written through, and the resulting state is reserye,

after this first write.

Write-miss: When a processor fails to write in a local cache, the copy must come either from the maip
memory or from a remote cache with a dirty block. This is accomplished by sending a read-invalidate
command which will invalidate all cache copies. The local copy is thus updated and ends up in a diry

state. -
* Read-hir: Read-hits can always be performed in a local cache without causing a state transition or

using the snoopy bus for invalidation.
* Block Replacement: If a copy is dirty, it has to be written back to main memory by block replacement.
If the copy is clean (i.e., in either the valid, reserved, or invalid state), no replacement will take place.

Goodman'’s write-once protocol demands special bus lines to inhibjt the main memory when the memory
copy is invalid, and a bus-read operation is needed after a read mis '
g ; 5. Most is
by s standard buses cannot support th
The IEEE Futurebus+ proposed to include this speci isi
pecial bus provision Usi ' '
; - : i . Using a 3 licy after
the first write and using a write-back policy in all additj onal writes eliminates fmg:zzzamci}uvg;iﬁimﬁs
. rl .
Snoopy cache protocols are popular in bus-bageq Multiprocessors because of I;ie_“ simplicity of

implementation. The write-invalidate policies were
] € 1mpl ;
and on the Alliant FX multiprocesgor plometted on the Sequent Symmetry multiprocessof

rs and Multicomputers

Muliproces®® _— 3

ache Coherence To maintain consistency among cache co

5oy ; pies at varj :
to the write-invalidate protocol used on a single bus, C tous levels, Wilson

Multﬂeve’ c

.4 an extension onsistenc .
oposed @ . A : R— - : . y among cac

IOIIJ came level 18 maintained in the same way as described above. Consistency of caches at t;gif’fer:fltclopleis
 the ¢ - evels

. AAlustr
is l:n invalidation must propagate vert_ically up a‘nd down in order to invalidate all copies in the shared
ches at level 2. Supposg pr.ocessor _PI issues a wrife request. The write request Propagates up to the highest
Lab‘l ind invalidates copies in C, C, C6, and Cig, as shown by the arrows to all the shaded copies.
lc\’; igh- evel caches such as Cyp keep track of dirty plock§ beneath .them. A subsequent read request issued
by P will propagate up the hierarchy bccagsc no copics cx1§t. When it rleachcs the top level, cache C, issues
2 flush request down to cache C, and the dirty copy is supplied to the private cache associated with processor
_Note that higher-level caches act as filters for consistency control. An invalidation command or a read
request will not propagate down to clusters that do not contain a copy of the corresponding block. The cache

Cy) acts in this manner.

protocol Performance Issues The performance of any snoopy protocol depends heavily on the workload
patterns and implementation efficiency. The main motivation for using the snooping mechanism is to reduce
pus traffic, with a secondary goal of reducing the effective memory-access time. The block size is very
sensitive to cache performance in write-invalidate protocols, but not in write-update protocols.

For a uniprocessor system, bus traffic and memory-access time are mainly contributed by cache misses.
The miss ratio decreases when block size increases. However, as the block size increases to a data pollution
point, the miss ratio starts to increase. For larger caches, the data pollution point appears at a larger block size.

For a system requiring extensive process migration or synchronization, the write-invalidate protocol will
perform better. However, a cache miss can result for an invalidation initiated by another processor prior to the
cache access. Such invalidation misses may increase bus traffic and thus should be reduced.

Extensive simulation results have suggested that bus traffic in a multiprocessor may increase when the block
size increases. Write-invalidate also facilitates the implementation of synchronization primitives. Typically,
the average number of invalidated cache copies is rather small (one or two) in a small multiprocessor.

The write-update protocol requires a bus broadcast capability. This protocol also can avoid the ping-pong
effect on data shared between multiple caches. Reducing the sharing of data will lessen bus traffic in a write-
update multiprocessor. However, write—update cannot be used with long write bursts. Only through extensive
program traces (trace-driven simulation) can one reveal the cache behavior, hit ratio, bus traffic, and effective
memory-access time.

123 Directory-Based Protocols

Awrite-invalidate protocol may lead to heavy bus traffic caused by read-misses, resulting from the processor
updating a variable and other processors trying to read the same variable. On the other hand, the write-update
protocol may update data items in remote caches which will never be used by other processors. In fact, these
problems pose additional limitations in using buses to build large multiprocessors.

When a multistage or packet switched network is used to build a large multiprocessor with hundreds of
Processors, the snoopy cache protocols must be modified to suit the network capabilities. Since broadcasting
'S expensive to perform in such a network, consistency commands will be sent only to those caches that keep
4 ¢opy of the block. This leads to directory-based protocols for network-connected multiprocessors.

Advanced Computer Archi
£ty

, cache coherence is supported b
Y usi

304 S
Directory Structures In a multistage of packet switched network .
where copies of cache plocks reside. Various directo .

i tjon and what information it stores IY-bage

aintains informa

cache directories to store information on
e, which used a cen

protocols differ mainly in how the directory m:

" Tang (1 ?76) pl_'oposed the first directory schem

" chche directories. This central directory, provid
ually very large and must be associatively searche

lon i i
g search times are two drawbacks in using a central directo
d by Censier

maﬁt:i‘g:;b:ted-direc.tory schcmg was propose
state inf Skie directory which records the state a‘_ld Presenc
: lormatlon is local, but the presence information indicates W
me;of;gc;o-:lltiZila read-mmj (thin lines) 1n cache
memory module ir retransmits the request t0 the (.:lirtY copy in
& cinthand i an supply a copy 10 the reques.tmg caché. In t .

is sent to the memory controller, which sends invalidatio

presence vector residing in the directory D;.

p tral directory containing duplj
ing all the information needed to enforce COnsithates .
d, like the individual cache directories. Colltent-ncy‘ k
ry for a large multiprocessor. 10 apg
and Feautrier (1978). Each memory m
¢ information for each memory bIOCkodu]E
hich caches have a copy afthe b](mk- The
2 results in a request sent to the memory module .T
cache 1. This cache writes back its COpyl Thhe
he case of write-hit at cache 1 (bold lilne ¢
ns to all caches (cache 2) marked in t;}e

Cq 7S 1] —

Fig.7.17 Basic conce i
pt of a directory-based cache co
s Do 1078 herence scheme (Courtesy of Censier and Feautrier, [EEE

sts m '
ust store the locations of all cached copies of

A cache-coherence protocol that does not use broadca
lled a cache

each block of shared data. This li
: . This list of cached locati
ot At ocations, whether centrali istri
oy blo{;;r)é:él;rﬁlfor s zl;zed. or distributed, is ca
o ck. e yupmerte A pointers to specify the |
Pen;-?fsloﬂ to write the associated block of data FORES By e ey whetheri paf:ticula:zache .
ifferent types of directory protocol .
directories, and chained di o LA
) irectori ' ary cat los: ' s, I
e TS Ca(:;:S-. I;L]III-map directories store gmu ;g;'r ies: full map directories; Jimited
D it it GMACS in the system can simultaneous] gt ata associated with each plock in
B S i PR f]:jlmters, where V is the number ();fs ore a copy of any block of data. That
regardless of the system size. Chained-gl’Elp dlrt_%cton'es il they havpmcessors ber o o
irectories emulate the fiyl] mape a}? xed number of pointers Pet entr),
-map schemes by distributin irecto”y
g the direc

ations of

; d Multicomputers
it rocessors an
Multp — o

e caches. The following descriptions of the three classes of cache directories are based
e based on the

aﬂ‘lOng th ; . i .
fication by Chaiken, Fields, Kwihara, and Agarwal (1990):

Original classi

Directories The full-map protocol implements directory entries with one bit per proc

ach bit represents the status of the block in the corresponding processor’s cache (prelf'seme:: er) mry

bit is set, then one and only one processor’s bit is set and that processor can write into the biznltc)-
ck.

maintains two bits of state per block. One bit indicates whether a block is valid, and the other
hether a valid block may be written. The cache coherence protocol must keep the state bits in the
ry and those in the cache consistent.

Figure 7.1 8a illustrates three different states of a full-map directory. In the first state, Jocation X is missing
o all of the caches in the system. The second state results from three caches (C1, C2, and C3) requesting
copies of location X. Three pointers (processor bits) are set in the entry to indicate the caches that have copies
of the block of data. In the first two states, the dirty bit on the left side of the directory entry is set to clean (C),
indicating that no processor has permission to write to the block of data. The third state results from cache
(3 requesting write permission for the block. In the final state, the dirty bit is set to dirty (D), and there is a

single pointer to the block of data in cache C3.

Let us examine the transition from the second
issues the write to cache C3, the following events will take place:

Full-Map
dirty bit. E
If the dirty

A cache
indicates W
memory dil‘eCtO

state to the third state in more detail. Once processor P3

(1) Cache C3 detects that the block containing location X is valid but that the processor does not have
permission t0 write to the block, indicated by the block’s write-permission bit in the cache.

est to the memory module containing location X and stalls processor P3.

nvalidate requests to caches Cl and C2.

lidate requests, set the appropriate bit to indicate that the block

nd acknowledgments back to the memory module.

ledgments, sets the dirty bit, clears the pointers to caches Cl

(2) Cache C3 issuesa write requ
(3) The memory module issues i
(4) Caches Cl and C2 receive the inva

containing location X is invalid, and se

(5) The memory module receives the acknow
and C2, and sends write permission to cache C3.

(6) Cache C3 receives the write permission message, up

processor P3.

dates the state in the cache, and reactivates

wledgments before allowing processor P3 to complete
ents, the protocol guarantees that the memory system
ensures sequential consistency. The full-map protocol provides 2 useful upper bound for the performance of
centralized directory-based cache coherence. However, it is not scalable due to excessive memory overhead.

Because the size of the directory entry associated with each block of memory is proportional to the number
of processors, the memory consumed by the directory is proportional to the size of memory O(N) multiplied
by the size of the directory O(N). Thus, the total memory overhead scales as the square of the number of

processors O(N?').

The memory module waits to receive the ackno
its write transaction. By waiting for acknowledgm

o solve the directory size problem.

Limited Directories Limited directory protocols are designed t
lar block of data limits the growth of

Restricting the number of simultaneously cached copies of any particu

the directory to a constant factor.
et al (1988). The symbol

X using the notation from Agarwal
-map scheme without

A directory protocol can be classified as Dir;
for a scheme with no broadcast. A full

i stands for the number of pointers, and X is NB

Advanced Compyze,
Archn
“upy

at uses i < N pointers is denoteq Di
cept in the case when more thay ; c; ia'
g

306 Tk
ry protocol th

broadcast is represented as Diry NB. A limited directo f
The limited directory p]‘otocol is similar to the fllll"map
request read copies of a particular block of data.

Shared memory

Shared memory

x:[6[[[]+~ (108l

Cache Cache :
(P3) Write X

Read X Read X Read X

Cache
NG, (P2)

(a) Three states of full-map directory

Shared memory

Shared memory

Cache Cac Cache Cache Cache Cache
X: X: | Data||**® X: m eoel . m
P3)

GO e ® GG
Read X

(b) Eviction in a limited directory

Shared memory

Shared memory
X: X;. |Dala|

Cache Cache Cache
X:

GO D (®

Read X

Cache

(P3)

Write X

(c) The chained directory

P I S St st (Courtesy of Chaiken et al. JEEE Computer, June 1990)

0cessors and Multicomputers

Multip
T 307

ioure 7.18b shows the situation when three caches request read copies in
a memory s .
ystem with a

rotocol. In t.his case, we can view the two-pointer directory as a two-w
shared copies. When cache C3 requests a copy of location X, the memc?r}; Set~zssociaﬁv3 cache of
. module must inya
alidate

ointers 10 87 : :
y in either cache CI or cache C2. This process of pointer replacement ig called evi
viction. Since the

he € op - : .
:iire ctory acts as a set-associative cache, it must have a pointer replacement policy
If the multiprocessor exhibits processor locality in the sense that in any given interval of tj
ubset of @ 11 the processors access a given memory word, then a limited directory is sufﬁcienr':‘l‘:3 & small
S 0 capture this

(all worker set of processors.

" Directory pointers in a Dir; NB protocol encode binary processor identifiers, so each pointer requ;

 bits of memory, where N is the number of processors in the system. Given the same aSS“mPtion?:ﬁs log,

¢ 1l-map protocol, the memory overhead of limited directory schemes grows as O(V log, N). or the
These protocols are considered scalable with respect to memory overhead because the resource required to

implement them BTOWS approximately linearly with the number of processors in the system. Dir, B protocols

allow more than i copies of each block of data to exist, but they resort to a broadcast mechanism when more

tan i cached copies of a block need to be invalidated. However, point-to-point interconnection networks do

not provide an efficient systemwide broadcast capability. In such networks, it is difficult to determine the

completion of a broadcast to ensure sequential consistency.

Chained Directories Chained directories realize the scalability of limited directories without restricting
the number of shared copies of data blocks. This type of cache coherence scheme is called a chained scheme
because it keeps track of shared copies of data by maintaining a chain of directory pointers. '

The simpler of the two schemes implements a singly linked chain, which is best described by example
(Fig. 7.18c). Suppose there are no shared copies of location X. If processor P1 reads location X, the memory
sends a copy to cache C1, along with a chain termination (CT) pointer. The memory also keeps a pointer to
cache C1. Subsequently, when processor P2 reads location X, the memory sends a copy to cache C2, along
with the pointer to cache C1. The memory then keeps a pointer to cache C2.

By repeating the above step, all of the caches can cache a copy of the location X. If processor P3 writes
to location X, it is necessary to send a data invalidation message down the chain. To ensure sequential
consistency, the memory module denies processor P3 write permission until the processor with the chain
termination pointer acknowledges the invalidation of the chain. Perhaps this scheme should be called a gossip
protocol (as opposed to a snoopy protocol) because information is passed from individual to individual rather

than being spread by covert observation.
The possibility of cache block replacement complicates chained-directory protocols.

Suppose that caches C1 through CN all have copies of location X and that location X and location Y map
to the same (direct-mapped) cache line. If processor P; reads location Y, it must first evict location X from its

cache with the following possibilities:

(1) Send a message down the chain to cache C;_

or
(2) Invalidate location X in cache C;;; through cache Cy.

The second scheme can be implemented by a less complex protocol than the fi : i
consistency is maintained by locking the memory location while invalidations are i progress. Another

solution to the replacement problem is to use a doubly linked chain. This scheme maintains fom‘ard ;n;il
backward chain pointers for each cached copy so that the protocol does not have to traverse the chain whe

| with a pointer to cache C;+ and splice C; out of the chain,

rst. In either case, sequential

Advanced Cy,
MPute, A
rch, i

"y lip,,
izes the replacement condition 4 th

- 7 e .
directory poInters), twice the Coy o
p .

nln]tl

308" T
tim
i 'reCtory op
there is a cache replacement. The doubly linked i;ansmission of extrd

. e
a large block size (due to ocol. _
ger average message Jex coherenc® prot 4o {imited dll’CCtOl'.y protocols, they "
an The pointer SIZes grow as the | c..‘i]iu

memory in the caches, and a more comp mplex
Although the chained protocols are more ot directories: =
ry used for the che or memory block is indepep, et ;u""

scalable in terms of the amount of memo ¢ pointers per ¢
of the number of processors, and the number © P

numbe ; and virtual ;
r of processors. a] address caches a ual addregg &

Cache Design Alternatives The relative meT roblem, the flushing problem, OS kcm_el over;?e“'
have to be judged based on the access time; the aliasing P considerations. Beyond the use of priva,
special tagging at the process level, and cost/performance
three design alternatives are suggested below.
Each of the design alternatives has is 0
evidence to determine whether any of the alterna
More research and trace data are needed to apply
multiprocessors. is to completely elimi
: S
Shared Caches An alternative approach to maintaining cach® COhe;Ic; C:i\l/ate caches are);llol;n;;a'te o
problem by using shared caches attached to shared-memory lmodules. trli)butes - —, In th
case. This approach will reduce the main memory access time but con "8 te

overall memory-access time and to resolving access conflicts. o ih o
: ake the second-
Shared caches can be built as second-level caches. Sometimes, one can m evel cache

partially shared by different clusters of processors. Various cache architectures are possible if priv.ate ang
shared caches are both used in a memory hierarchy. The use of shared cache alone may be against th;
scalability of the entire system. Tradeoffs between using private caches, caches shared by multiprocesg,

clusters, and shared main memory are interesting topics for further research.

4,
Cﬁch g

and shortcomings. There exists insuff,
e than the use of private cac
£,

in designing high—pe]-fm.man
Ce

wn advantages

ives 1 S
tives is always ‘
these cache architectures

better or WOIS

Noncacheable Data Another approach is not to cache shared writable data. Shared data are noncacheabe,
and only instructions or private data are cacheable in local caches. Shared data include locks, process queues,
and any other data structures protected by critical sections.

The compiler must tag data as either cacheable or noncacheable. Special hardware tagging must be used
to distinguish them. Cache systems with cacheable and noncacheable blocks demand more support from

hardware and compilers.

Cache Flushing A third approach is to use cache flushing every time a synchronization primitive is

executed. This may work well with transaction processing multiprocessor systems. Cache flushes are slow

unless special hardware is used. This approach does not solve /0 and process migration problems.
Flushing can be made very selective by the compiler in order to increase efficiency. Cache flushing

synchronization, I/O, and process migration may be carried 8 :
. e out unconditionally or selective e flushing
is more often used with virtual address caches. yor selectively. Cach i

7.2.4 Hardware Synchronization Mechanisms

lticomputers
. reSSOrS and Mu
Multproc _— 3

correct sequencing of processors and ensures mutually exclusive access to
zation can be implemented in software, firmware, and hardware through co
nformation in memory.

essor systems use hardware mechanisms to implement low-level or primitive synchronizati
software (operating system) level synchronization mechanisms sych as semaphd:er;

shared writable data,

fOrCGS
ntrolled sharing of data

chroniZa
and control 1
Multiproc

, se
a[lons. or u - 5 . @
opermm.r ors. Only hardware synchronization mechanisms are studied below. Software approaches to
ot 7 will be treated in Chapter 10.

lecg-m;mization
Atomic Operations Most multiprocessors are equipped with hardvffare mechanisms for enforcing atomic

rations such as memory read, write, or read-modify-write operations which can be used to implement
ope) Synchronization primitives. Besides atomic memory operations, some interprocessor interrupts can be
z::; for synchronization purposes. For example, the synchronization primitives, Test&Set (lock) and Reset

(lock), are defined below:

5

Test&Set (lock)

temp < lock, lock « 1,

return temp (7.4)
Reset (lock)

lock < 0

Test&Set is implemented with atomic read-rodify-write memory operations. To synchronize concurrent
processes, the software may repeat Test&Set until the returned value (femp) becomes 0. This synchronization
primitive may tie up some bus cycles while a processor enters busy-waiting on the spin lock. To avoid
spinning, interprocessor interrupts can be used.

A lock tied to an interrupt is called a suspend lock. Using such a lock, a process does not relinquish the
processor while it is waiting. Whenever the process fails to open the lock, it records its status and disables
all interrupts aiming at the lock. When the lock is open, it signals all waiting processors through an interrupt.
A similar primitive, Compare&Swap, was implemented in IBM 370 mainframes.

Concurrent processes residing in different processors can be synchronized using barriers. A barrier can
be implemented by a shared-memory word which keeps counting the number of processes reaching the
barrier. After all processes have updated the barrier counter, the synchronization point has been reached. No
processor can execute beyond the barrier until the synchronization process is complete.

Wired Barrier Synchronization A wired-NOR logic is shown in Fig. 7.19 for implementing a barrier
mechanism for fast synchronization. Each processor uses a dedicated control vector X = (Xj, X5, ..., X,,) and
accesses a common monitor vector ¥ = (¥}, Y5,, ¥,,) in shared memory, where m corresponds to the
barrier lines used.

The number of barrier lines needed for synchronization depends on the multiprogramming degree and the
size of the multiprocessor system. Each control bit X; is connected to the base (input) of a probing transistor.
The monitor bit ¥; checks the collector voltage (output) of the transistor.

Each barrier line is wired-NOR to # transistors from » processors. Whenever bit X; is raised to high (1),
fhe corresponding transistor is closed, pulling down (0) the level of barrier line i. The wired-NOR connection
implies that line i will be high (1) only if control bits X; from all processors are low (0).

Advanced Compute, Arch,

hy
| the completion of a process on Prece

310" T~
ss finishes its eXecutiy SSor;

. v 10 signa
ontrol bit X;to Sogwheﬂ the proce

ed and reset ;0 rticipating Processors are all set to 0; aitg
the p o barrier has been crossed. Thig iy the

hronizatio p o :
ly one barrier line is needed to g, 8i

0
ncurrent processes. T the

This demonstrates the ability to use .th.e,c
The bit X; is set to 1 when a process 15 initiat s from
When all processes finish their jobs, the Xi lh it
barrier line is then raised to high (1), signallng ; € “bits. Thus 0n
watched by all processors through snooping on the - olving many €0

; : ization inV
initiation and completion of a single synchroniza
5 SV
R -3 Ri line 1
: line m

X1"Xm Yo Y

- - ”X \PREA
Xp=-Xm Yoo Ym XgooAm Y47 Tm
4
Processor 1 Processor 2 Processor 3 Processor

(a) Barrier lines and interface logic

Step 1: Forking (use of one barrier line)
Processor 1 Processor2 Processor 3 Processor 4

X a
Y [o @ @

Step 2: Process 1 and Process 3 reach the synchronization point

x [d o]
Yy [[[0 [0]

Process1 Process2 Process 3 Process 4
Step 3: All processes reach the synchronization point
x @ @ [0
v

Process 1 Process 2 Process 3 Process 4

(b) Synchronization steps

Fig.7.19 The synchronization of four independent processes on four

line (Adapted from Hwang and Shang, Proc. Int. Con R Bkt processors using one wired-NOR barrier

Processing, 1991)

ors and Multicomputers

Multprocess .),

% :
&,) Example 7.2 Wired barrier synchronization of fiv

€ partiall
ordered processes (Hwang and Shang, P Y

1991)

@:—rsym’hronization pattern is predicted after compile time, then one can follow the precedence graph of a

parﬁﬂﬂy ordered set of processes to perform multiple synchronization as demonstrated in Fig. 7.20.

Processes
Py Py Pg Py Ps

8 (8)
@ b c
2 OO
) ! o
) ()
Yy Y Y VY v
(a) Synchronization patterns (b) Precedence graph

Step 0: Initializing the control vectors (use 5 barrier lines)
Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

X [[10[o[0] [AT[olo[] [[o[or[1]
Y [O[o[o[o[o] [o[o[olola] [o[o[orol0]
Step 1: Synchronization at barrier a

X [o[1[ofofo] [o[T[ofor1] [o[ofor[A]
Y [1[0[o[0][0] [1]o[o[o]0] [1][o[o[o]o] [1]o[o]0]0] [1]o[o]0]0]

Step 2a: Synchronization at barrier b

X [0[0[0[0[0] [o[o[oTo[T] [O[ofoT]
Y [A[[o[o0] [A[[oloo] [A[[olol0]
Step 2b: Synchronization at barrier ¢

X [oofofoo] [ofofofar] [O[0[o[1]
Y [0l (ALl [AL[0[0)
Step 3: Synchronization at barrier d

X [ofofofolo] [oofofar] [olofororT]

Y [AAR[O] [0 [0 [0
Step 4: Synchronization at barrier e

X [O[o[o[oo] [o[o[o[ola] [ofo[o[o[0 O[ol0[0[0)

[—]
=
=
|
=

Y [1]1[1 1111011 1011

(c) Synchronization steps

Fig.7.20 The synchronization of five partially ordered processes using wired-NOR barrier lines (Adapted from
Hwang and Shang, Proc. Int. Conf. Parallel Pracessing, 1991)

Advanced Computer A
fc}mequ

ric nodes; poard space. The exterpal IO interface wﬁn
i t:zl array. The message I/ intcrface wag l‘eqmras
ed

arate board For uume
| = oute i h)
k. he me.S'h connecredr riss : l

Each node was on @ S€p;
the same i860 chip. The local memory t00 S
implemented only on the boundary nodes with a
for message passing odes an

7.25.

between local n

(North)

Legends:
1C: Input Controller

FB: Flit Buffer

(West)

(South)
cted to neighboring

airs of /1O channels conne

Fig.7.25 The structure of a mesh-connected router with four p

routers

Each router had 10 I/O ports, 5 for inp r output. Four pairs of I/0 channels were used for mesh
connection to the four neighbors at the north, south, east, and west nodes. -

Flow control digits (flits) buffers were used at the end of input channels to hold the incoming flits. The
concept of flits will be clarified in the next section. Besides four pairs of external channels, a fifth pair was
used for internal connection between the router and the local node. A 5 % 5 crossbar switch was used to
establish a connection between any input channel and any output channel.

The functions of the hardware router included pipelined message routing at the flit level and resolving

buffer or channel deadlock situations to achieve deadlock-free routing. In the next section, we will explain

various routing mechanisms and deadlock avoidance schemes.
All the /O channels shown in Figs. 7.24 and 7.25 are physical channels which allow only one message

(flit) to pass at a time. Through time-sharing, one can also implement virtual channels to multiplex the use of

physical channels as described in the next section.

ut and 5 fo

‘e | 74 MESSAGE-PASSING MECHANISMS

s

MessarfcI pZ:lSﬁmg in a multicomputer network demands special hardware and software

support. In this section, we study the store-and-fi

_ e AR o, -and-forward and wormh '

an : ole

alyze their cgmmumcatmn latenme_s. We introduce the concept of virtual channel Droutmg sc'hemF:s aqd

a message-passing network are examined. We show how to avoid deadlocks us g vi e?dIOCk -y
ing virtual channels.

d Multicomputers
MUH"PNCBSSOI"S an m 3 ' 9

tic and adaptive routing algorithms are presented for achieving deadlock-free message

dy deterministic dimension-order routing schemes such as E-cube routing for hypercuhes
routh-Y routing for two-dimensional meshes. Then we discuss adaptive routing using virtual channels or
A% | subnets. Besides one-to-one unicast routing, we will consider one-to-many multicast and one-to-all
wﬁ:;cast operations using virtual subnets and greedy routing algorithms.

Both determinis
ing. We first stu

bro
7.4.1 Message-Routing Schemes
Message formats are introduced below. Refined formats led to the improvement from store-and-forward to

ormholerouting in two generations of multicomputers. A handshaking protocol is described for asynchronous
“; elining of successive routers along a communication path. Finally, latency analysis is conducted to show
fhz time difference between the two routing schemes presented.

ats Information units used in message routing are specified in Fig. 7.26. A message is the

Message Form : ‘ i
Jogical unit for internode communication. It is often assembled from an arbitrary number of fixed-length

packets, thus it may have a variable length.

Message

Packet

Ft' piop|/p|DbpiDiID|S|R

[AP B —mmleme el

R: Routing information
S: Sequence Number
D: Data only flits
Fig.7.26 Theformat of message, packets,andflits (control flow digits) used as information units of communication
in a message-passing network

A packet is the basic unit containing the destination address for routing purposes. Because different
packets may arrive at the destination asynchronously, a sequence number is needed in each packet to allow
reassembly of the message transmitted.

A packet can be further divided into a number of fixed-length flits (flow control digits). Routing information
(destination) and sequence number occupy the header flits. The remaining flits are the data elements of a
packet.

In multicomputers with store-and-forward routing, packets are the smallest unit of information
transmission. In wormhole-routed networks, packets are further subdivided into flits. The flit length is often
affected by the network size.

The packet length is determined by the routing scheme and network implementation. Typical packet
lengths range from 64 to 512 bits. The sequence number may occupy one to two flits depending on the
mes:.sage length. Other factors affecting the choice of packet and flit sizes include channel bandwidth, router
design, network traffic intensity, etc.

St , - _ -

Th:re-and":f""_”“"d Routing Packets are the basic unit of information flow in a store-and-forward network.

fro concept is illustrated in Fig. 7.27a. Each node is required to use a packet buffer. A packet is transmitted
M 2 source node to a destination node through a sequence of intermediate nodes.

Advanced Computer A’Chheq
Urg

. it is forwarded t
he buffer. Then 1t1s 10 © the
tored 10 ode are both available. et

jving n :
0 ortional to the distance (the number of ho
prop implemented in the first generatigy, !

was

320" T—

When a packet reaches an intermediate node, o

node if the desired output channel and a packet buf.fcl‘ n

The latency in store-and-forward networks is dI_rGCt]Yh g
between the source and the destination. This routing ¢ e

Jatter generations of multicm-npmﬂr

7 27b. Flit buffers are used in the hafdwa,:

multicomputers.
cket into smaller
he destination node is done through .

Wormhole Routing By subdividing the pa 4 in Fig
implement the wormhole routing scheme, as illustratec e node to t
routers attached to nodes. The transmission from the sourc

sequence of routers.
Source Node
Packet buffer

e

ffers in successive nodes

pestination Node

(a) Store-and-forward routing using packet bu
Destination Node

Source Node
] e [
Intermediate Nodes _
- |
oo 0 |

(b) Wormhole routing using flit buffers in successive routers

Fig.7.27 Store-and-forward routing and wormhole routing (Courtesy of Lionel Ni, 1 991)

ThAll ﬂ;(e flits in; the same packet are transmitted in order as inseparable companions in a pipelined fashion
e packet can be visualized as a railroad train with an engine ' i '
o bore cars (data i), gine car (the header flit) towing a long sequence
Only the header flit knows where the train (packet) is goi
i : going. All the data flits (bo
header flit. Different packets can be interleaved during transmission. However the(ﬂit: fizi)d?f}l:;eﬁl:)?:kt;z

canéot be n:uxl;s:dI up. Otherwise they may be towed to the wron g destinations
€ prove i ’
p elow that wormhole routing has a latency almost independent of the distance between the

source and the destination.

Asynchronous Pipelining. The pipelini
_ . pipelining of successive flits j
h o e flits in ‘ ;
;.n dshaking protocol as shown in Fig, 7.28. Along the iy 1-]3':1 packet is done asynlchrcfmously using @
adjacent routers. 1t ready/request (R/A) line is used between
When the receiving router (D) is ready (Fi
. y (Fig. 7.28a) t - .
the R/A line low. When the sendin . o receive a flit (i i T -
: rout : €. the flit b]
through the channel. Boue () is ready (Fig. 7.28b), it raises the liniffgg;is : v:ll Iira bl?r; 'l:spf;liltj
While the flit is being received i R
Vo< by D (Fig. 7.28¢), the R/A line is kept high, A ft
igh. After flit i is removed from

o .) next nOde .g thE

putiprocess’s and Multicomputers " 3,

Router S Router D

. _ RA(high)

"""""" 1 0ok

flit i

Channel

(a) D is ready to receive a flit (b) S is ready to send flit i

RIA (low)

RIA (high)

[s - = P i, ™
J H = =L YO =

(d) Flit/is removed from D's buffer and flit j + 1
arrives at S's buffer

(c) Flit i is received by D
Fig.7.28 Handshaking protocol between two wormhole routers (Courtesy of Lionel Ni, 1991)

Asynchronous pipelining can be very efficient, and the clock used can be faster than that used in a
synchronous pipeline. However, the pipeline can be stalled if flit buffers or successive channels along the
h are not available during certain cycles. Should that happen, the packet can be buffered, blocked, dragged,

at
Er detoured. We will discuss these flow control methods in Section 7.4.3.

Latency Analysis A time comparison between store-and-forward and wormhole-routed networks is given
in Fig. 7.29. Let L be the packet length (in bits), ¥ the channel bandwidth (in bits/s), D the distance (number

of nodes traversed minus 1), and F the flit length (in bits).

Y

Tsr
[1] Dgta

N2 LTI l
- header Packet]:D:I:D L
N4 [TTTT]

N1

> Time
(a) Store-and-forward routing
A
e Ty ——>
l— /W —>
N1 L I
Ne| [T T
D
na| [T TT] ‘
N4 [TTTT]
> Time

(a) Wormhole routing

Fig.7.29 Time comparison between the two routing techniques

Advanced Computer A'thiz

i essed by
322 " rward networ k is exXpr
icati T fora store-and-10
The communication latency £sr U.s)
Tsp= ';;; o+
d by
is expresse
Ty for a wormhole-routed network
The latency Ty tor el (?‘6)
= g XD) |
6, Twr = LIWifL>>F Ths "

Ty
r P al to D. In EQ: L

; rtion
t Top is directly propo
at Isr resource shortage (such as Changg,

uting latency-
ncy and bloc 1so been ignored because it i Mg

45 propagation de

Equation 7.5 implies th
distance D has a negligible effect on the 10

We have ignored the network startup late
being busy or buffers being full, etc.) The cha =
sunaller han Be tews 1 Lenfi Ty 71, a typical first generation value of 11; SgaI:gereh::S: 2000 ang

Accordmg to the festlmate given in Table 1, P Current systems employ muc st lp SSOTS,
o Rty e : uts; Ore would therefore be smaller, but wormhole routing woy
abov

links and routers. Both the latency figures .
outing.
still have much lower latency than packet store-and-forward 1

k time due t0
lay has 2

7.4.2 Deadlock and Virtual Channels |
een nodes in a wormhole-routed multicomputer network are actually

The communication channels betw g of a physical channel leads to the concept

shared by many possible source and destination pairs. The sharin

of virtual channels. _ L . . . ;
We introduce below the concept and explain its applications in avoiding deadlocks in this section and in

facilitating network partitioning for multicasting in Section 7.4..4.
Virtual Channels A virtual channel is a logical link between two nodes. It is formed by a flit buffer in
the source node, a physical channel between them, and a flit buffer in the receiver node. Figure 7.30 shows

the concept of four virtual channels sharing a
single physical channel. sl [-

Four flit buffers are used at the source node
and receiver node, respectively. One source
buffer is paired with one receiver buffer to form
a virtual channel when the physical channel is

l

{0}~

allocated for the pair.
—
In other words, the physical channel is time- zirw‘ysmal
shared by all the virtual channels. Besides the annel - —

buffers and channel involved, some channel

states must be identified with different virtual -
channels. The source buffers hold flits awaiting - =
use of the channel. The receiver b ¥ D

- ” uffers :
hold flits just t:ralnsmltted over the channe]. :gLECUﬂerS A Sl e
The channel (wires or fibers) provides L e destination node
communication medium betw 8-7.30 i

een them. Four virtyaf channels sharing a physical channel

ik '
ith time multiplexing on a f lit-by-flit basis

ors and Multicomputers

- roCess
Multipr® W 323

Comparing the setup in Fig. 7.30 with that in Fig. 7.28, the di
ds. The sharing of a physical channel by a set of virtual channe
gnds:

ﬁit—b}"ﬂit basis.

fference lies ip

. the added buffers
Is is conducted °rs at both

by time-multiplcxin.g on

l/)
& Example 7.3 The deadlock situations caused by circular
waits at buffers or at channels

S : et S
Asillustrated in Fig. 7.31, two types of deadlock situations are caused by a circular wait at buffers or channels,

A buffer deadlock is shown in Fig. 7.31a for a store-and-forward network. A circular wait situation results
from four packets occupying four buffers in four nodes. Unless one packet is discarded or misrouted, the
deadlock cannot be broken. In Fig. 7.31b, a channel deadlock results from four messages being simultaneously
gransmitted along four channels in a mesh-connected network using wormhole routing,

Packet Buffer Packet Buffer
~—{o[p[p[o[oM [Ele] cleleh——
Node A Node D
Node B Node C

Packet Buffer | Packet Buffer |
S A[A[A[A]A]

lr%B‘B‘BIBEI

(a) Buffer deadlock among four nodes with store-and-forward routing

Message 3
Router A Node A Node D
4 [—1: X Router D
Message m3D
m4 D m2 D
Node B ode C
RouterB | y m1D
E ,D:
A/ Message 2
Flit buffer Message 1 Router C

(b) Channel deadlock among four nodes with wormhole routing; shaded boxes are flit buffers

Fig.7.31 Deadlock situations caused by a circular wait at buffers or at communication channels

Advanced Compute,
N

multaneously. If none of the chap
nels ;
n

324" .
els si
rther illustrated in Fig. 73 the
-32 usinga

Four flits from four messages occupy th
ue. Circu

. "
ci: cle is freed, the deadlock situation will contin
annel-dependence graph
7% _ j
e channels involved are represented by nodes, and directed
heme is preseﬂted u

relati
ations among them. A deadlock avoidance S¢
hannels, V3 and Vg in Fig. 7.32¢, one can break th
g the virtual channels V3 and ¥, a;deadl
' ’ Crt

btained by usin

ral, thus avoiding deadlock. Channel multipley:
ufficiently short. Virtual chan}:‘;xlng e
b Can be

arrows are used to show the ¢
sing virtual ch s cpen
g annels. de“ﬁt

D .
cy::?:{:ckm:ordance By adding two virtual ¢
OfChg;mn:Odlﬁfed channel-dependence graph is 0
- el C,, instead of reusing C; and Cy.
e cycle in Fig. 7.32b is being converted to spi

implementt ‘t:l;e “f:ilt th leyel or at the packet level if the pac
ith either unidirectional channels or hidirectiona

ket length s §
| channels.

(Vif g
a S

g 2

The use of vi
; irtual channel
exists a trad 'S maY reduce t
bl chan;:g b}?Ween network throu ghpui:ea efeCtlve channel bandwidth avaj
- High-speed multiplexing s r Nd communication latency available to each request. Th
equired for impleitianitn Cyn detennining the degr .f m
g a lasge iy ee of using
mber of virtual)
channels.

buffer o
r channel re
sources, polici
Based on these policie » policies must be set repards
S, we describe below ¢ garding how to res |
eterministi Olve th :
stic ¢ conflict.

Oﬂ 1 1
r

rs and Multicomputers

Multiproces*® .. 35

et Collision Resolution In order to move a flit between adjacent nodes in a pipeline of channels. three

onts must be present: (1) the source buffer holding the flit, (2) the channel being allocated, and (3) the

m = .
:Zeiv er buffer accepting the flit.

When tWO packets reach the same node, they may request the same receiver buffer or the same outgoing

pannel. TWO arbitration decisions must be made: (i) Which packet will be allocated the channel? and (ii)

ot will be done with the packet being denied the channel? These decisions lead to the four methods
justrated in Fig- 7.33 for coping with the packet collision problem.

Figure 7 33 illustrates four methods for resolving the conflict between two packets competing for the use
of the same outgoing channel at an intermediate node. Packet 1 is being allocated the channel, and packet 2
being denied- A buffering method has been proposed with the virtual cut-through routing scheme devised by
Kermani and Kleinrock (1979).

packet 2 is temporarily stored in a packet buffer. When the channel becomes available later, it will be
transmitted then. This buffering approach has the advantage of not wasting the resources already allocated.
However, it requires the use of a large buffer to hold the entire packet.

Furthermore, the packet buffers along the communication path should not form a cycle as shown in
Fig. 7.31a. The packet buffer however may cause significant storage delay. The virtual cut-through method
offers a compromise by combining the store-and-forward and wormhole routing schemes. When collisions
do not occur, the scheme should perform as well as wormhole routing. In the worst case, it will behave like
a store-and-forward network.

pure wormhole routing uses a blocking policy in case of packet collision, as illustrated in Fig. 7.33b. The
second packet is being blocked from advancing; however, it is not being abandoned. Figure 7.33c shows the
discard policy, which simply drops the packet being blocked from passing through.

The fourth policy is called detour (Fig. 7.33d). The blocked packet is routed to a detour channel. The
blocking policy is economical to implement but may result in the idling of resources allocated to the blocked
packet.

Pacret 1
flit | Outgoing Control l | Packet 1
— - ——»
Packet 2 <>?’ buffer| channel
-= —>
Packet buffer Packet 2 '
(a) Buffering in virtual cut-through routing (b) Blocking flow control

I Packet 1 Detour channel . Packet 1

N _ . i
Packet 2 I Outgoing
46 ___ } __ Bt

JW Packet 2 channel

(c) Discard and retransmission (d) Detour after being blocked

Fig.7.33 Flow control methods for resolving a collision between two packets requesting the same outgoing
channel (packet 1 being allocated the channel and packet 2 being denied)

Advanced C‘-‘""P”R"’Archheq
h‘re

it demands packet retransmissq, :
|

326 -
rarely used now beg
auSe 5

sources, 4t s
of res ing, This policy 18 f

The discard policy may result i . caf . J
acknowledgment. Otherwise, a packet may b had used this discard policy.
its unstable packet delivery rate. The BBN Butterfly 1€ However, the detour may waste more chany,]

Detour routing offers more flexibility in pac P nhcgt:mow- e-routed packet may enter a cyj, gf

Machine and the Denelcor HEP had yge 4 thi

resources than necessary to reach the de Connectl
livelock, which wastes network resources. Both the &0

detour policy. il
In practice, some multicomputer networks use hybrid P

cies which may combine the advantages of Somg

of the above flow control policies. | .
p nducted Jeterministically O adaptlvely. Indeterminjgy;
0 ce and destination addresses. In Otte

Dimension-Order Routing packet routing can be c0n " by the SOUT
routing, the communication path is completely dett":rlnlﬂe Y jependent of network condition.
words, the routing path is uniquely predetermined in advance, Indep s are possible. In both
Adaptive routing may depend on network conditions, and alt.er.nalte p{;tin algorithms are giVe:;y Ees .
routing, deadlock-free algorithms are desired. Two such deterministic routing eloy,
based on a concept called dimension order routing.
cessive chan

Dimension-order routing requires the selection of Suc
k. In the case of a two-d

the dimensions of a multidimensional networ . vo-t
is called X-Y routing because a routing path along the X-dimension 1§ ¢
orks, the scheme 15 €2

along the Y-dimension. For hypercube (or n-cube) netw : :
proposed by Sullivan and Bashkow (1977). These two routing algorithms are

examples.
with N = 2" nodes. Each node b is binary-coded ag

E-cube Routing on Hypercube Consider an n-cube : _
5180 and the destination node is d=d,, | ... dydy. We

b=b, b, ... byby. Thus the source node 18§ = Sy-1 +-
inimum number of steps.

want to determine a route from s to d with a m1
., n, where the ith dimension corresponds to the (7 — 1)st bit in the

We denote the » dimensions as i = 1,2, ..
The route is uniquely determined as follows:

node address. Let v =v,,; ... v1vp be any node along the route.
for all n dimensions (i =1, ..., n). Start the following with

nels to follow a specific order baseq g,
imensional mesh network, the schep,
decided first before choosing a path
lled E-cube routing as originally
described below by presenting

1. Compute the direction bit 7;= 51 ®d;

dimension i =1 and v =s.
2. Route from the current node v to the next node v & 271 if r, = 1. Skip this step if ; = 0.
3. Move to dimension i + 1 (i.e. i « i+1).Ifi< n, gotostep 2, else done.

22
Example 7.4 E-cube routing on a four-dimensional
hypercube

;"}ie above E-cube routing algorithm is illustrated with the example in Fig. 7.34. Now n = 4, s = 0110 and
t - 1;0211. Thus P= gy = 1011. Route from s to s ® 2°= 0111 since n=0® ll =] Route’ fromv= blll
oV =0101 since r, = 1 ® 0 = 1. Skip dimension i =3 because ;=1 @ 1 =0 R;oute from v= 010110

v @23 =1101 = dsince ry= 1,

ors and Multicomputers

ﬁjpfﬂcess |
N EEa. 327
4 dim 2 .
dim 3
Source: s=0110
Destination: d=1101
Route:
dim 1 0110 -0111-0101-1101
dim 4
0110 0111 1110 111
0010 0011
010 011
A
0100 0101 e i
0000 = = o

Fig.7.34 E-cube routing on a hypercube computer with 16 nodes

The route selected is shown in Fig. 7.34 by arrows. Note that the route is determined from dimension 1
to dimension 4 in order. If the ith bit of s and d agree, no routing is needed along dimension i. Otherwise,
move from the current node to the other node along the same dimension. The procedure is repeated until the

destination is reached.

X-Y Routing on a 2D Mesh The same idea is applicable to mesh-connected networks. X-Y routing is
illustrated by the example in Fig. 7.35. From any source node s = (x1y) to any destination node d = (x,,),
route from s along the X-axis first until it reaches the column Y,, where d is located. Then route to d along

the Y-axis.
There are four possible X-Y routing patterns corresponding to the east-north, east-south, west-north, and

west-south paths chosen.

D
& Example 7.5 X-Y routing on a 2D mesh-connected
multicomputer

Four (source, destination) pairs are shown in Fig. 7.35 to illustrate the four possible routing patterns on a

two-dimensional mesh.

Advanced Compute, Arch;
it

is set
32¢" Wi 6). An cast-south route s Setup from g,
ode (7,6): he fourth route is west-norgy bou’)

%

4) to (2:,0)- : dimenis n
s uted first and then the Y-dimension, 5 dﬂadlock

)ton
An east-north route is needed from node (2,1)

is neede o
to node (4,2). A west-south route 1§ nee O i always
from node (6,3) to node (1,5). If the ?(-dlmcnSI n
or circular wait situation will not exist.

Four (source; destination) pairs: (2,1,7,6)—> (0,7;4,2)—> (5,4:2,0)—= (6,3;1,5)---~

Fig.7.35 X-Y routing on a 2D mesh computer with 8 x 8 = 64 nodes

It is left as an exercise for the reader to prove that both E-cube and X-Y schemes result in deadlock-free
routing. Both can be applied in either store-and-forward or wormhole-routed networks, resulting in a minimal
route with the shortest distance between source and destination.

However, the same dimension order routing scheme cannot produce minimal routes for torus networks.
Nonminimal routing algorithms, producing deadlock-free routes, allow packets to traverse through longet

paths, sometimes to reduce network traffic or for other reasons,

Adaptive Routing

The main purpose of using adaptive routing is to achieve efficiency and avoid deadlock

Tl;he Co‘_lc‘;p_t og \;i;t;al channels makes adaptive routing more economical and feasible to implement. We have
srownin ¥ig. /.52 how to apply virtual channels for this purpose. The idea can be further extended by having

virtual channels jn all connections along the same dimension of 2 mesh-connected network (Fig. 7.36)-

. ocessors and Multicomputers N

Multip
22 02 112]2
i i A Al LA
Y 4 Yly ¥y
21 o1 |1 121
3 TR) [Tk
Y Y I L
20 00 [|10 20

(a) Original mesh without virtual channel

02 = 12 [22 02 22
T A A A A

Y

Y
-
M

Y

01 e 11 = 21 01 > 11 21
A A A A A [
Y Y Y / Y Yy
00 10 = 20 00 »> 10 > 20
(c) For a westbound message (d) For an eastbound message

Fig.7.36 Adaptive X-Y routing using virtual channels to avoid deadlock; only westbound and eastbound traffic
are deadlock-free (Courtesy of Lionel Ni, 1991)

%
&’) Example 7.6 Adaptive X-Y routing using virtual channels

This example uses two pairs of virtual channels in the Y-dimension of a mesh using X-Y routing.

For westbound traffic, the virtual network in Fig. 7.36¢ can be used to avoid deadlock because all eastbound
X-channels are not in use. Similarly, the virtual network in Fig. 7.36d supports only eastbound traffic using
a different set of virtual Y-channels.

The two virtual networks are used at different times; thus deadlock can be adaptively avoided. This concept
will be further elaborated for achieving deadlockfree multicast routing in the next section.

144 Multicast Routing Algorithms

Various communication patterns are specified below. Routing efficiency is defined. The concept of virtual
networks and network partitioning are applied to realize the complex communication patterns with efficiency.

Communication Patterns Four types of communication patterns may appear in multicomputer networks.
Wha.lt Wwe have implemented in previous sections is the one-to-one unicast pattern with one source and one
destination,
A multicast pattern corresponds to one-to-many communication in which one source sends the same
Message to multiple destinations.
theA broadcast pattern corresponds to the case of one-to-all communication. The most generalized pattern is
Many-to-many conference communication.

Advanced Compl,ter -
it

i fe
330 Jementing multicast, broadcast, anq confe
e : : : ;

o the requiremens for 1 pl mented with multiple unicasts Sequeniy g,

In what follows, we consider the ¢ imple e ing chsmesmustbesedy, impley’ N

all patterns 031? y 5peci

mmunication patterns. Of course,]
Cco unic p icts can he avol €

even simultaneously if resource confl
these multi-destination patterns.

1S are channe{ ban.dwc.drh and compy, Wnicq,
used efficiency parail any time period) indicates the effectivE o

5 ; nl
Routing Efficiency Two commo Yy - instant (or during s dicated by the packet transmissi{,n de:‘a
k)

latency. The channel bandwidth at an o
transmission rate achieved to deliver the messag
involved. :um b
: maxim

An optimally routed network should achieve both
communication patterns involved. However, -thes ik
maximum bandwidth may not necessarily achieve m s the more

Depending on the switching technology used, latgn)é ore in 8 WO
network, while in general the bandwidth affects efficiency

andwidth and minimum latency -
two parameters are not totally independent, AchiEvine
e two

atency at the same time, and vice versy

important issue ina store-and-foyy,

rmhole-routed network. a

L)
& Example 7.7 Multicast and broadcast ona meSh-Connected
computer

T

Multicast routing is implemented on a 3 x 3 mesh in Fig. 7.37. The source node is identified as §, whig,

transmits a packet to five destinations labeled D; fori=1,2,..3.
| [p2l>p3
p2| |D3 D2 —
A A i
D4
» D4
A A A A
D5
D1 S > Dl S — > D5
(a) Five unicasts with traffic = 13 (b) A multicast pattern with traffic = 7
and distance = 4 and distance = 4
1 A
A
D1j«=— S —= » D ===
> Tp @ 1 > 2

© ;?Qf?ltg irf;n :rtt!icgisgtgr?gg s %” L (d) Broadcast to all nodes via a tree (numbers
IN nodes correspond to levels of the tree)

Fig. 7.37 Multiple uni ;
- PR patterns, and a broadcast tree onaj3dx4 h puter
mesh com

: ors and Multicomputers
-~ _— 33

Jestination multicast can be implemented by five unicasts, as shown in Fig. 7.37a. Th
’ 8. 7.37a. The X-Y

is ﬁVB‘)
h o requires the use of 1 +3 +4+ 3 +2 =13 channels, and the latency is 4 for the 1 h
ongest pat

outing -
jeading ©© implemented by replicati i
. ast can be implemented by rep icating the packet at an intermediate node, and multipl i

ch their destinations with significantly reduced channel traffic. , R
w0 multicast routes are given in Figs. 7.37b and 7.37c, resulting in traffic of 7 and 6, respectively. O
rmhole'muted network, the multicast route in Fig. 7.37c¢ is better. For a store-and-forward netwgr.k ?ha
e in Fig. 7.37b is better and has a shorter latency. e
[. .

A four-level spanning tree is used from node S to broadcast a packet to all the mesh nodes in Fig. 7.37d
Nodes reached at level 7 of the tree have latency i. This broadcast tree should result in minimum latency as;

acket I'ea

wo

mum traffic.

2
[(j) Example 7.8 Multicast and broadcast on a hypercube
computer

e

To broadcast on an 7-
is illustrated in Fig. i
broadeast tree for a hypercube.

cube, a similar spanning tree is used.to reach all nodes within a latency of n. This
38a for a 4-cube rooted at node 0000. Again, minimum traffic should result with a

0110 0111 1110 111

0010

(a) Broadcast tree for a 4-cube rooted at node 0000

0110 0111 1110 11

ooooO """ 0001 10“(;0’""*'
(b) A multicast tree from node 0101 to seven destination nodes
1100, 0111, 1010, 1110, 1011, 1000, and 0010

Fig.7.38 Broadcast tree and multicast tree on a 4-cube using a greedy algorithm (Lan, Esfahnian, and Ni, 1990)

Advanced comPUterA,, .
che

i .
332 sipg 2P om node 01(?1 to Seven destip, .

5 7.38b for sem¥ ahie packet through the dlmensron(s) Whic;tlgn

ding Cay

i i in Fi
Iticast tree is shown 4 on sen

A greedy mu ;
nodes. The greedy multicast algorithm 15 L ;
= . AtionsS- ; ension 2 and :
reach the most number of remaining destinations d estinatlons yia dim 1 five destlna i
Starting from the source node.S'=0“”vthere = ¢ 0101 0111 and Qie ~ L e
use a}‘ : oD and four destinations via dimen
Siog

via dimension 4. Therefore, the first-
tions reac

nst
hree destina able 10 dlmem 51100, and 0111 — 0110.

wiedJevel channels 1111 = 1110, 1111 loy
|

From node 1101, there are t ;
1. Thus the second-level channels used include ; : 5
nations can be reached with tur 5

110 =

Similarly, the remaining desti
0, and fourth-level channe

1100 — 1000, and 0110 — 001 . ;
ia all dimensions before sele.:

_In case of a tie betw
0

Extending the multicast tree, one
cover set

certain dimensions to obtain a minimum ficient. Therefore: the tree may not be uniquely generateq,
ufficient. 11¢" oquires the least number of traffic chanpg
s

dimensions, selecting any one of them is §
It has been proved that this greedy multicast algol:ﬂhm red ¢ multicast Operations on wormhole-r,
: : . . ~Touy
compared with multiple unicasts or a broadc ‘he data in the flit buffer. ted
proadcast tree, all outgoing channels at the sap,

networks, the router in each node should be able to replicate
In order t i multicast tree 01 a)
o synchronize the growth of a pushed one level down. Otherwise, additiony

level of the tree must be ready before transmission can be
buffering is needed at intermediate nodes.
channels along both dimensions as shown i,

Virtual Networks Consider a mesh with dual virtual

Fig. 7.3%a.

_ These virtual channels ¢an be u
virtual network in Fig. 7.39b should be used.

sed to generate four possible virtual networks. For west-north traffic, p,

A

02 = 12 [22
W
o1 F5 11] 21
A
LAR

'00‘_10‘,20

(a) Adual-channel 3 x 3 mesh

’02: 12H22 ‘02 > 12— 22 02 .
4 L L 1 r 1 12 22 LDZ % 12 [22
01 [=— 11 |« — 21 01 — 1.1 > 21 ’ 1 , 1 :
]]] 'y] :[‘ 01 11 21 01 = 1 2
00 (= 10 f= 20 > l
00 10 » 20 00 10 ’
(b) West-north subnet = . L
(c) East- . .
north subnet (d) West-south subnet (e)E t
e) East-south subne

ig- 3 i

Mufﬂi‘rofessars and Multicomputers - 333
gimilarly, one can construct three other virtual nets for other traffic orientatipns. Note that no cylcle %s
sssible on any of the virtual networks. Thus deadlock can be completely avoided when X-Y routing is
impiementcd on these networks. -
If both pairs between adjacent nodes are physical channels, then any two of the four virtual network§ can
be simultaneously used without conflict. If only one pair of physical channels is ghared by the dual virtual
channels between adjacent nodes, then only (b) and (e) or (c) and (d) can be used simultaneously. |
Other combinations, such as (b) and (c), or (b) and (d), or (c) and (e), or (d) and (€), cannot coexist at the
same time due to a shortage of channels. _ .
Obviously, adding channels to the network will increase the adaptivity in making routing decisions.
However, the increased cost can be appreciable and thus prevent the use of redundancy.

Network Partitioning The concept of virtual networks leads to the partitioning of a given physical network
into logical subnetworks for multicast communications. The idea is illustrated in Fig. 7.40.

West East
r A N A N
] o]
(10,5/« 1,5l«25l«35/«45 556575
Iy i k Iy Iy T '} A
0,4}« 14}«24l«—3 4«44 >{54 6474
North < A _ll [A A A A A >- North
0,3« 1,3]«—{2,3|«—{3,3|«—{4,3|-»53} 6,373
A A A ‘ A A A A A
F 0,2}« 1. 2l«22l« 3 2l« {22l >l52l »lg2l>|72| 7
A / 1 4 L y Y ir L] L

f
south< |01}« 11— 2131}« {51} >6.11 7] & soum

4
‘_Jl?'ﬂ‘”_ 3,0(<—{4,0}—>5,0}>(6,0|>(7,0

0,0=<—1,0 >
Lt
L > A v -
West East

Fig. 7.40 Partitioning of a 6 x 8 mesh into four subnets for a multicast from source node (4,2). Shaded nodes
are along the boundary of adjacent subnets (Courtesy of Lin, McKinly, and Ni, 1991)

_ Suppose sourck node (4, 2) wants to transmit to a subset of nodes in the 6 x 8 mesh. The mesh is partitioned
m‘to.four logical subnets. All traffic heading for east and north uses the subnet at the upper right corner.
Similarly, one constructs three other subnets at the remaining corners of the mesh.
. Nf)des in the fifth column and third row are along the boundary between subnets. Essentially, the traffic
- be}ng directed outward from the center node (4, 2). There is no deadlock if an X-Y multicast is performed
10 this partitioned mesh.
af}:n;lllgirly, one can partition a binary n-cube into 2" ' subcubes to provide deadlock-free adaptive routing.
cube has 7 + 1 levels with 2" virtual channels per level for the bidirectional network. The number

., \IULTIPROCESSOR OPERATING SYSTEMS

s section, we discuss the operating system requirements for multiprocessors.
£, a classification of multiprocessor operating systems is presented. We then
siscuss other system software supports needed for muitiprocessing,

" esor Operating System
il A ; u"iproc - '
" sificatio” petween the OpCrating g |
Cla erenc
4.1

e
¢ e ML T
" i cﬂ"- Compu[c.r 5yslem Ullhp_l 2 e
fly it falarge exity In the opg,, My,
el and those O 8 complexity i o dling 1,
urdc is the ﬁdd'l'I;ullanCUUS]Y- This L‘Omplem < Y
ere I k sl
or

; y 1§ . o
. le async R
must W ble to SuppOr t multip ymhro“‘ou R
g d

Uy,

_ n required ip, . y

. ich ar¢ ofte :le alloc. '_dn Perah

Leap o uter include the resou <M ang, "y
compu

M m; ':'J

| revention of sysy, an,

an techion: £ i : €aq;
rnr.-11n*:ulnpmgrdV and datasel Prgxceplion handling. In additjo, l{)«dl(J

MOFY & - OF ! f ‘
e, inalio hniques for efficier, ,

he "l pro s term (ems also need techniq p l““lza“ \

abnor ultiprocessor sys ovide input-output and proces, los o
bilities, M pr

. Dad.h
ust : Itiprocessor .0
rces and, hence, n;lﬂ reasons for using a m: jn[:hc event g?:lem 1§ [Dp
schemes. One Of»lh;'li']:yand graceful degradatio HMailyr P,

tive reliabili
some effec

. He
be capable of p rowdlﬂg Sysiemn reconfigy Aligy "
0 system must also tracapabilitiesand (he Na Schy,
operating sys ful degradation. These ex A
€
tosupport grac

h heavier burden o - ey

. environment places a much heavier burdey, i lhe%:ﬂu

nenv)

processor executio e -
system (0 support aut

tically the exploitation of paralleh:sm in i
ing executed. An operating system which Perforp, "4
and the programs bcll'lg' es which are associated with multiprocessjn b
will negate other advanldﬁ' (the operating system for a Multiprocesg;, o ng
it is of utmost importance tha 8 Umpu
hedeed ZT;C:[I]rillore than one processing unit in the system
dim;}:oi:lr?:to the design of the operati{lg system. The {;llﬂuence
of processors on the design of an OPFW""E syste‘m IS stll a resea
modularity of processors and the Jnlerconnecu‘on Structure 3
the system development. Fur:hermorf:. Commumc_apon scheme
mechanisms, and placement and assignment policies dominay
the operating system. We introduce below only the basic config
appeared in existing multiprocessor systems,
There are basically (hree organizations that have been utilized
operating systems for multiprocessors, namely. master-sjqpe Conﬁg;”
~PIe Supertisor for each processor. ang fioating superyiso, control. For gag

available assumeq the master-¢

tl o
1ICU”|cn Y abilities wh

{
N

rJ
ly,
sou

inlroduCCSa
of a Iarge nup, .‘
ch probley, 3
mong thep ,a
> SYnchrop;gyg
¢ the efficiency
urations thy; 14

In the desion

ntin its contro| and utilization of the

slave iy INg modes are superior to the mastet-

1 pcrl.lrm&nce

III d
1 1) Vit ¢ modc_ o

I all Progess, Y |

AN exampla

operat

uMgr.

n CeSLnr
¢ Processor, called the master. maintains the status
5 .

he work 10 all the slave pr 'W
he’ Cyber. |70, where the "m

of the m A "pPUI'llun.\t
aster.. Mode 1

MULTIPROCESSOR ARCHITEC TURE AND PROGRAMMING 527

| byone peripheral processor Py Al the other processors (central
8T ed as slaves 10 Po. Another example is found in the DEC

AV e . : ;
Lol J-mch (here are two identical processors. One of the processors Is
2V and the other as slave. The operating system runs only on the

LR
8 mah;aw reated as a schedulable resource,
| s

hibe ryisor routine 1s al\‘vays exgcuted in the same processor, a slave

(e3P L supervisor call instruction for an executive service must be
i (rap which acknowledges the request and performs he appropriate
, 1'nuw}\1sof and its associaled procedures need not be reentrant

The suil‘f_ ane Processor that uses them. There are other characteristics
1 ‘.|_13-e operating system. Table conflicts and lock-out problems for
e 'bmblfs are simplified by forcing a single processor to run the execu-
© anir his operaling system mode causes the entire system to be very
'Hu“f‘ir', illasm;.phic failure§ which require operation intervention to restart
ﬂ‘!._pctu:o cessor when an |rrecc_:\"era_ble error occurs. In addition to the
e e overall syslem.lheunl_lzanonof the slave processors may become
il ol - if the master cannot dispatch processes fast enough to keep the
~ ably 10¥ master-slave mode is most effective for special applications where
s US) The well defined or for asymmetrical systems in which the slaves have
orkload the master processor. It is the mode sometimes used if there are
. ;blm.\ than :
SA sors involved. _
L pro is a separate superuisor system (kernel) running in each processor,
When lhm.yswm characteristics are very different from the master-slave
¢ ~‘?"ml|l1n?,':'similar to the approach taken by computer networks, where each
Lqms T.‘b ains a copy of a basic kernel. Resource sharing occurs at a higher
esof Lo;mple‘ via a shared file structure. Each processor services its own
j ;c;]f;evcr. since there is some interaction between the processors, it is
..:‘J”‘mr some of the supervisory code to be reentrant or replicated to provide
I—J;aifl‘-o pies for each processor. Although each supervisor has its own set qf
¢ tables. some tables are common and shared by the whole system. This
«s able access problems. The method used in accessing the shared resources
és on the degree of coupling among the processors. The separate supervisor
g syslem is not as sensitive 10 a catastrophic failure as a master-slave
- Also. each processor has its own set of input-output devices and files, and
reconguration of 1/O usually requires manual intervention and possibly
~unual switching
Uniortunately, the replication of the kernel in the processors would demand
memory which may be underutilized, especially when compared with the
2on of the shared data structures. A static form of caching could be used to
irequently used portions of the operating system code, while the infrequently
“udeould be centralized in a shared memory. Unfortunately, the determina-
- Which portions of operating system are frequently executed is relatively
make and 15 likely to be dependent of the application workload.
"@mg supervisor control scheme treats all the processors as well as other
~ "mmetncally or as an anonymous pool of resources. This is the most
" ol operation and the most flexible. In this mode, the supervisor

T

A 1unlhl'l."””""F“""H‘I’d
Vi 1]['
; |1u|l.ll'IL‘uu th,
ines il \I)' Ih]. e

(yIe S ol resources. (."'“[h ' lyD

n‘”.“:“: (g o’ IluLl“F ! .L'|l||'»" sl .‘M“h“hll_h or “lltll.llll § H
.u‘tf-h- joud PP that 47 ahul'!”#'-"“'“'“'”‘"*llpc
Py e e et onticts and table Jogy Vo,
" “:'[I];_‘SL' CCESSES In such A w'dy“ "! (iti 'IJ‘L_

[

(.I!" ' !

A ere 1
T 18 . n[[t‘[T a0 p ; 13)
\ (tocon™™ on has the advantageg of I\-"\r »

11‘111* (0 wrdti” I — : _
I of Oy ol 8 reduced capacity SYSIL-D'Q‘IQ, h
gvaila e the most efficient yse i m g
m oy and Ma=™ o thi dvy;
ancyd ~ecute n this mode gpo ,,

s * redundd ystems tha! exee o are (h, M
1[\“' L -r.lllﬂb'- thc (.m t v
1[0 'l (‘ﬂ ' |
'w‘tTﬂd”‘" o powever, 4r€ O PUTe exampje, K

BM - gystems: eralization that is poce, 4

he X o operain® ¥ e only generali: hat is POssib, -V o,
s abo 1 C,mstcr-slave type and (he ulj s yp,
Jasses 08 ‘gusuali,\’t In Table 7.3, we SUmmari,, dle htu] I

pced 155 rol.

cystem Pré pvisor €01 ; { the abov the

3 ing su . s ol the above three My;.
s the ﬁt‘“““?’ ; dshomomlﬂg hree ype q)

a@eS, :
.m_h:BO " computers:

¢ Requirements for Multiprocessors

aised in a discussion on multiprocesg,, :
0

it differs from uniprocessor Software: i partigyy
xecute on multiple processors differ frp, i + hoy .-
familiar multiprogrammed uniprocesso, :[Wi

es of differences. These are the architecy, V]Iror.-rr_r-_.
alay,
i

7.4.2 Softwar

One of the issues
question of how

often r
Wa,

execute on the moreé

There are basically two sour¢
(hat are unique to the multiprocessor, and a new programming

oarallel applications. Such differences would warrant that the py,,
oftware of the system should provide facilities that are different fro, [hufar?:
in conventional multiprogrammed UNIProcessor environmen;s A Ose.r("'
grammed uniprocessor can simulate the multiple processor er.wim -
creating multiple *virtual processors” for the users. For example, Elm_fn--
routinely requests the concurrent execution of multiple programs with Ih.mlu'-
gi Otl:e program "pipeq“ as the input to the other. In this case, each prog:afrhE
lhc're":rgehf';:: :;::::;lﬂg bt;n avirtual processor. At this level of programexcﬁ;
e ¢s between a multiprogrammed uniprocessor sysien
ystem. However, the presence of multiple processors and "

nts usuall
that must be provided y Increases the amount of management st

An architectural atirj
system is nonhomogeneit
[uncuonally different, (h
if one processor poss:es
Programs cap only rup

Ybl;}ell::?e:] ay affect programming in a multp™
i l"a] processors are nonhomogencoss
S¢5 emula; reated ‘?‘{ﬁ‘erently by software. For EHT_

lon capability not possessed by anotf

‘0 CO]T] ' o
Pletion on the processor with the emui*"”

MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 529

al
I‘I“‘r

Cgpstem
. ¢ 15 Always executed in the same processor. If the slave nseds service that mus!
et o, then 1t must request that service and wait unil the current program
o 18 s imterrupted and the supervisor 15 dispatched, The supervisor and the
e .‘..r ot have 1o be reentrant since there 15 only the one Eebeemur ik sy
Lpuses executing the supervisor simplifies the table conflict and lock-out psmb]em'

ul"n
L upervIse

X . ‘t.'f“‘" 3
ngle P e overall system is comparatively inflexible. Thys |

| e e software and hardware.

m ;
et 8 ubject 10 catastrophic farlures that require Operalor intervention to restart

i I8 8 : ;
" (it 1“ Jesgnated 15 the master has a failure or irrecoverable error
. A + - ‘ i
.. ,.nu"‘f“‘.rqwcm can build up and become quite appreciable if the master cannot cxecule
N con the ‘u"nc‘ fast cnuu!h [\l k“p the slnw:(s) busy_

a [(= . .
ping system 15 most effective for special applications where the work load is well

'I.-..]‘-'r'L ; (ng . :
~ joperd | systems in which the slaves have less capability than the master processor

ype of system requires

ach processor
ces 1t own needs. In effect, each processor (supervisor) has its own set of 1/0

ortiser ne
”\'L‘\\{'f servl
L L
el files- ¢
P lor
4 \g\ﬁﬂr)
\? .m‘r cach processor: ; : :

s 0 sctually cach supervisor) has its own set of private tables, although some tables

" proces® o the entire system, and that creates table-access control problems.

ne

i " mon { z :

i Nul':‘; upervisor operating system 1s as sensitive as is the master-slave system; however,
e .:l‘.;tla‘“n \ndividual processor that has failed will probably be quite difficult.

o st o ,mmediately above, the reconfiguration of 1/O usually requires manual inter-

: N)
osaust © ibly manual switching.

Ic. _
some of the supervisory code to be reentrant or replicated to provide separate

g peruIsar operating system.

" ;slﬂ“ floats from one processor to another, although several of the processors may be
ol JperVISOT SETVIce routines at the same time.

et ;f F::stt:m can attain better load balancing over all types of resources.

s Y i A
Tﬁ:mf:'“ service requests are resolved by priorities that can be set statically or under dynamic
o

;r-n.[!."i ‘
\os of the supervisory code must be reentrant since several processors can execute the same
eriice routine at the same time.

¢ 7,bk-sccess conflicts and table lock-out delays can occur, but there is no way to avoid this with
aultiple supervisors; the important point is that they must be controlled in such a way that system

stegity s protected.

* Hence, software resource managers must provide appropriate dispatching
wechanisms for such programs. Another example of software complexity occurs
*¢vslem with asymmetric main memory. In this case, not all processors can
wes 1ll memory. This complicates the operating system software for resource
nagement
Mere s a second potential source of difference between multiprocessor and
“Prcessor software. This is in the programming style peculiar to parallel
"alions The basic unit of a program in execution is that of a process, an
:‘_'“_""Jff' ' schedulable entity (a sequential program) that runs a processor and
“rdware and software resources. It may also execute concurrently with other

hen it neey.
R all jnﬂ])’w “€ds o,
T K A Jenst |Hil""| y ' W

Wi
. o parallel program, iy
jyed | Hence. @ P b,y
; W 1
)Ll"‘“*' , |]L'| f ~ehsCh.))
o ”ll racting i cssing 19 achieved by enpy,
one ! NICHe yroces

k .. “1', .
y ol moft 1nnl 0 mul ’g “-,(;l.'\"'ng cdn he ll’ldlLd'ltiI 1 3 &
(W ylentt alle '
¢ !

il _

SNy "cht,m‘ users musl h‘- Dfn\:!(h.f -:il!ri Hq

0 ard el e s X

el pro* gt par 10 indicate explicit pdrl:nch.q“ U‘I}ll. by b
i detected by the compiler i ey

by,

eactions arallelism - ,
bl par! ind recognizes the Program floyy |

F _ ‘)
L arofli _ ivial units of progra, ...
he 50 o o 1l dCICC"’]'I.On” '“dh.nll'“l

o dihions, . of these units may be indep,. - by
4nd other € rocess. S0Me ‘fl Pendep, g
be idenuficd & other Pf"c"f:ynchronizalion takes op inc
; . _sur 5){‘510 Y ; . i) rfja.“t :
uliproces ih nalty. This could mgmﬁcdn_“yd_ raqd in,
reale m"i‘j conization mechanisms are not efficiep, , [-‘:",.,!,_
; n;l oroperl designed. In some processor the ¢, 1
e n : i » . '
w mplementcd chrcetly in hardware or l'nu.-rg%dc ;
prmives 1€ ot be provided. For example, the pyp. ¢ 1,
v * 1 L S v
ve been implemented Wh the Scmdphom‘-‘wvn;}:”“
mp (hereby taking 2 significant number it 00

. Stryeps,
- tware ; .
primitive m:(:herc DIOCESSES need to synchronize often,
environmen

bom;?cck‘r;m control structures are provided (0 aid the prograyy,
ogram-

i | algorithms. Three basic nonsequential Program-cop,.
efficient paralle . These control structures are characterizeq by the . My
have been ldenuﬁ;i;ﬂy focus on a small program and not on (he “;‘\"t?ral{rm'
Programmft;:;; The first example is the message-based Organizatjoy i:r
H;:;?mz Cm* operating system. In this orgamzat.ion, computation ;s pen
by multiple homogeneous processes that execute independent]y 44 inlerge
messages. The grain size of a typical process dcpen_ds on the system,

The second example of a control structure is the chore sirycy;, In-
structure, all codes are broken into small units. The process that executes e,
of code (and the code itself) is called a chore. An important characterisic of ag
is that once it begins execution, it runs to completion. Hence, to avoid long:
chores are basically small. They have relatively very little input and theyree
onlya few different objects. Moreover, they do not block and are noninternp:
As part of its output, one chore might request the execution of a small s

additional chores. Examples of systems that use this structure are the Pl
and the BCC-50,

Consider the memory-management portion of the operating syser *
controls swapping betw

e ¢en the main memory and a fixed-head d”"-giﬂ.’".
between the gt ¢ (@) the disk command to request the transfer of a paifa s
sector tramgm o 1€ Memory, and (b) acknowledging completior
The thirg '1;:::1" " arranging for any subsequent action. -
Often used 1 gy U2l CONtrol structure is that of production $ o5 0
arlifici| Mielligence systems. Productions are express”

B

ma_- h.r. I."' j

r ln d'.:‘r Bl

fems.’

MULTIPROCESSOR ARCHITECTURE AND PROGRAMMING 31

\ !
;.\ﬂ*f‘l“‘“" - Whenever the boolean antecedent evaluates to

nt - -~ .
(ol | may be performed. .l" contrast to chores, production conse-
. include code which might block. In a production system

seqe?
ot M e often required (a) to ¢ '

o s are € _ 0 control the selection of ante-
Y ated next (h) to order (if necessary) the execution of selected

? .\.“w clect the subset pl runnable consequents to be executed, and
o q.-gm.ir}\ the execution of the selected consequents. Note that by
-l three control structures, they are all compatible with parallel
e of concurrency ina multiprocessor can increase the complexity
".,.7:{;, pecialy in the recovery step. In a uniprocessor, it is always
e parallelism by disabling interrupts and, if necessary, halting
o are s needed to establish effective error recovery capability. This
W& he aid of hardware mechanisms, may be quite complex.

Wt M ‘ ;
or of running processes in a multiprocessor system is

Toeved
¢ .-..u:l the beh;m_ |
‘ (han in umpr_ocessor env1ronm_ents. Although parallel programs
apkt complex to implement, there is a natural problem of nondeter-
b cessors. Some efforts have been made to prove the correctness

- .I w“'.-,'.nprt .
A rams by researchers but extending these proofs to complex pro-
ﬂfL -

S8 formidable task.

| Opersting System Requirements
n

; goals for an operating system are to provide programmer interface
t o ent) to the machine, manage resources, provide mechanisms (system
i 1o implement policies (user definable), and facilitate matching applica-
. he machime. It must also help achieve reliability. But this and other
o aiributes incur a cost that may be unacceptable. Guidelines should be
ading performance for desirable attributes. The degree of trans-
that should be made available to the programmer

Bed for tr
+f the detailed machine

4 110 be determined.
- e different levels of interaction in the specification of an operating

- o multiprocessing systems. Asynchronous supervisor processes share the
o0 of the address-space management, process management, and syn-
- o lavels. Efficient operating systems are designed to have a modular

-+ .nd herarchical organization. This makes the detection and localization
eaer The classic functions of an operating system include the creation of

<such as processes and their domains, which include the memory segments.

“«munugement and sharing of segments, as was discussed in Chapter 2, are also
“un operaling system functions. Other functions are the management of
mmunications through mailboxes or message buffers. Messages are
ine the interface between processes and help to reduce the number of

7ot can be propagated through the system.
TUlprocessor system, processes can execute ¢
meract Planned and controlled interaction is referre

oncurrently until they
d to as process

| LF1 PROCESSING

PARA

ARL . e =

L Iq)(m:hw“|zall()]1. PTOLCISb LO’"muniL
ocess - 11es, COOPErAting proce.. U

n of Pr |ﬂba| Vﬂrldb]c& Pc 2 p OL‘:&},Q,‘ Uy n

: cy. T _
sharcd imit therf c(‘“C”"c"f {Iq ,hle relation, :;;'“'\t; ;

of , arce falls into op
ronize rding 2 reso € of '\r.“‘__‘

ate 105 5 1€ - 0 ¢ 0
cale llmrl!l proces®® her competitors or producers LO”“"mm ru“fl
coopert oy are el Jugh shared memory, com- iy, "
ategoric® es place thrc { or reusabl Petitgy, ",
vl ICﬂl”n (a rflfasc rmancn SabDle rc'\IUUrc \"ll_,'
e . (emporary or cons S p

memory (o pass ! porary NStimap), . By,
d - "0y,
-onsumer? onals

_ ds gndum e concurrent processes, the presen, o

In sysIEms ¥ - erals an drives which must not be g, g "0y,
(T

..‘r
as unil rect : ,-fpmgram f :
ices. This requirem , $he,

(o these deVice o €Nl may a1, 1t

il ' _
yclusive A€ ¢ u data segmen! during updating, Proce
may compelc f0r . Thc same L‘Qm “Q\ G
called virtual resources, such ag = lligy

esclusive 3 s (o what are

ing 2 i inoe 1
concerning on buffers between cooperating processes. Since it myq bey by
communicall not access the buffer simultaneously, CI‘CJU‘;WJJJI';;
g

(h processes 40 _ ; o T
that b{&h ;P;usl be ensured. This exclusiveness _of access 15 called
::c bu c; O i request for mutual exclusion on the use of 5 ffs[aurl:"

tween ' : G

(he desire to reserve Of release the resource. Process cooperation ang Comp,
may both be implemented if a mechanistm provided for process cog,
synchronization. ThiS mechanism will be discussed in Section &1

s for processor cooperation and Compefiyg,

i t
The above requiremen _ .
and medium-term scheduling of -
|

obvious implications 0N short- med |
processors. I a desired resource or object 1s not available, the process -

it must be suspended, blocked, or retry until it becpmcs available. There
two levels of exclusiveness. One consists of the requirements for referralof.
2 data structure (virtual resource) which may often be of short duration. Th
is the requirement for, perhaps, a substantial delay until the physical .
such as the processor or tape unit, becomes available. If the delay is shor
not worthwhile to shift the attention of the processor from the process it
running on it to another process. If the delay exceeds the time required (0w
the processor, the ability to shift attention may be vital for efficient utlhzai
the processor.

The sharing of the multiple processors may be achieved by placing f¢
processes together in shared memory and providing a mcchﬂnismlfﬂf)
f:;}f:ﬂ:]ng ll::e attention of a processor from one process (0 another. This*

e ed context switching. Sharing of the processors introduces (hree*
ordinate problems:

I The protection 1 antal 007
of the resources i dentd
of one pro illful or accl
1 -[;-y other processes process from w
2. The - _ o
Provision for communication among processes and between user P°

and supervisor processes

[COVETS interprocess synchronization mechanisms, system deadlocks,
rhis ch_aplichem es. multiprocessor scheduling, and parallel algorithms. These are
FmICCllOn Lopics in developing a sophisticated operating system for a multi-
port2™ stem. The parallel algorithms form the basis in using MIMD com-
roccssfgoiyomer related issues that have not been covered below, readers are

pgtf,;:,'d > heck the attached bibliographic notes.
i vl

6.1 INTERPROCESS COMMUNICATION MECHANISMS

Various interprocess communication schemes have been proposed by computer
designers. This section enumerates some of the process-synchronization mecha-
sisms implementable at the instruction level. High-level mechanisms such as the
pand V primitives and conditional critical regions are then presented. Examples
are given on the producer-consumer processes and the reacs--writer problem
using these mechanisms. The extension of conditional critical regions to monitors
is also discussed.

8.1.1 Process Synchronization Mechanisms

Cooperating processes in a multiprocessor environment must often communicate
and Synchronize. Execution of one process can influence the other via com-
E‘;’:;Zﬁt:;;: hl.;lterprocess commupication employs one of two schemesl: use of
“ g | San ;s O message passing. Often the processes that.commumc‘ate do
eed andy C romzatlm_l mechanism. A process executes wnlh unpredictable

geénerates actions or events which must be recognized by another

557

) PARALLEL PROTESSING

¢ set of constraints ;“['he Orderyp,
perating e :mchranH“O" EQUITEE 10r° the gp,
Al Y]

LS 3 d
.d to delay executiop of ling

an, P
pffj__wl |-'
tr 5 -
ok constraimt : > commonly
weh of synchronization arc Y employe

5 7

; . :) Whe
. are mutudl exclusion and condition sy, mmh_n .
These o ensures that a physical or virtual resoup, 2y,

g (J{ ”l:

:-\l. 1

canables ‘
(hat mutual exclusio

. tion oce . - ep .

Anather stud ate that is 1nappropr late for executing , :
o s I d

L‘Ih_]'--cI IS 1

9

mpts such an operation should be dcl«’iy;:dl::;n e,
Prncess“h'“'h e s 10 the desired value as a result of oth th
data object charfgt il nchronization is sometimes calleg CCr Dl'rjil.:_: |
exccuted. This I)Pc] exclusive execution of a critical SeCtion ”ditlr;,n J
jzation. The mu{.uai—ablc gate cafi be enforced by an entry ' .‘*-‘nrﬁ.lj.
controlled by a ar 2) and an exit protocol denoted b, M Mocg) g
MUTEXBEGIN (g ¢ ontry and exit protocols can lJEXE‘-'-
Alternatively. the effect of the entry P > Can be eXpre,,,.
gaw'?i?ciarc certain problemsassociated with implementing MUtg,
MUTEXEND construct. Exccution of the MUTEXBEG]N Statep .
detect the status of the critical section. If it 1s busy, the Process a”':"'
enter the critical section must wail. Th;; can be qone by selting an':;:}:"
show that a process is currently in the critical section. Executiop 0[{‘:;;:::
END statement should reset the status of the critical sectiop (4 idle”ahpg'l"‘-
a mechanism to schedule the waiting process to use the critical <. "
One implementation is the use of the LOCK and UNLQC
correspond to MUTEXBEGIN and MUTEXEND respec;
consider that there is a single gare that each process must pass
4 CS and also leave it. I a process attempting to enter the S finds the 3.
locked (open) it locks (closes) it as 1t enters the CS in one indivisible o'e
that all other processes attempting to enter the CS will find the gate lcic
completion, the process unlocks the gate and exits from the CS. As :

variable gare = 0(1) means that the gate is open (closed), the
controlled by the gate can be writlen as

FE(,,‘

¢ 15)
urs in a set of cooperating Processe, htlrjl_"

al secyy, -
K Opera
vely. Fo. .
througy ;..

suming

dCCRss it

LOCK (gate)
€xecute critical section |
UNLOCK (gate)

Th 'K I
¢ LOCK (x) OPeTation may be implemented as follows: |

var x shared iNteger: |
er;
LOCK (x) begin ’ |
Vary. integer
¥ x
whll = n
) a: 1 do Y < x: // wait until gate s ot

end S8t 9ate to ynavailable status

MULTIPROCESSING CONTROL AND ALGORITHMS S99

_hl‘“-,rgﬁﬂlon may be implemented 35

'\-‘IL

UNLOCK(x) x « o

(K mechanism as shown is not satisfactory because two or more
1L d x = 0 before one reaches the x . | sltatement. This can be
‘ ~

fin , :
& T:;c orocessor has an instruction that both ey and sets (modifies) a
! an Instruction. called TEST--‘}ND_SETH» and available on .lhc
: -"_uf]nlests and sets a shared variable x I a single read-modify-wrise memory
_,\u.-‘:r‘oduﬁ a variable). Th.e rcadl-modlfy.-wme operation must take place
#0775 that the memory location. x, is not accessed and modified by
L essor before the current processor completes the lest-and-set opera.-
et F‘-’; qvisibility is usually a complished by the requesting processor which
- T"’“ bus until the cycle 1. completed. Therefore the set of operations
s ‘h:.- || is indivisible in tne following definition of TEST_AND_SET(x)
I |

var x: shared integer;
TEST_AND_SET(x): begin
var y: integer;
y « X:
Ify=0thenx — 1
end

-, |OCK operation may be rewritten as

var x: shared integer:
LOCK(x): begin
var y. integer:
Repeat |y — TEST_AND _SET(x)! untily = 0:
end

{n/mportant property of locks 1s that a process does not relinquish the processor
 which 1t 1s executing while it is waiting for a lock held by another process.
[hus.111s able to resume execution very quickly when the lock becomes available.
“osewer, this property may create problems for the error-recovery mechanism of
“csisiem when the processor which is executing the lock fails. The error-recovery
“eedure has 1o be sophisticated enough to ensure that deadlocks are not in-
“atd & aresult of the recovery process itsell.

\"other instruction used to enforce mutual exclusion of access to a shared
~“% 0 memory location m_addr is the compare-and-swap (CAS) instruction.
“irichon s available on the IBM 370, 168. A typical syntax of this instruction
*0addinonal operands +_old and r_new, which are processor registers

puul.l FI PRUK FSSING

o MP! L W* :
new. M addr) The action © the CAS "
'“S il Mg 1oy,
follow? .]
var m_addr: shared address. y,
var r old. new: registers: :
. CAS flag.

d = m_addr then

CAS: if r_ol
[m_ﬁddf ~ I _New, Z « 1}
else
[r_oid « m addr; z « 0}

:'h the CAS instruction is a procesg
or fi

ice that associa{ed wi ‘)
Is::):[lﬁccom json indica}escqyz:ilfl)‘!. .);]gam,lhe ‘?"eCUtion o gz.Th
(that 15, the slalcmcn) s an I ivisiDIe operation. We illyg C in.t"'«.,
sl ared singly linked queue data ale fh,

he two processes P, and P;uTc:]“ft J:r m

- HIE)

CAS instruction wil
which is 26CESS concurrently byt
which can dformed ON the queuc ar¢ ENQUEUE(X) o
ENQUEUE(X) adds 2 nd Ie :j IOHIE; DTAII'L; of the queuea;:ﬁj D lea[l,
3 elet 3 " of the queue. HE DE ,i-
. AD ang OlE
N

ceturns 2 pointer to the ‘ h
| variables. Assuming that the queue s neve
rempty(fOrSI, IL,

shared glob2 P
the ENQUEUE(X) primitive fora ponconcurrent system can be deg;: My
”beda:
Procedure ENQUEUE(X);
var P; pointer; Pis | i :
et p //P is local to each invocation //
LINK(X) « A //terminate last node’s li
P ~ TAIL s Ik
TAIL « X;
LI « X;
erlN':’K(P) X: //attach new node to queue//

Suppose proce
process P, requests to enqueue node X. While P is executing the primt
to the same g

it gets interru -

Assume that tpl::dint:zr:::‘lwhl(:h requests to enqueuc node Y

8.1a illustrates the state tff lﬁn occurs at the end of statement P TAILfE
procedure to completion tf e queue at the time of interruption. I Ps exect®’
to the queue. However o:ter P, returns control to P,. node will be al
from the queue urliru:I de Y, which was added by P, . would ha¢ beendet”
updated to point to thﬂllonally‘ This error occurs because poinlef
problem by using the ce last node attached by process Pz We can pol
node. This can be acc:s Iqstwclion to update P to POiI;l to the Jast ana»n:--

mplished by replacing the TAIL < X ctateme”

!

, *——* T = \ o)

MULTIPROX R
ESSING CONTR(I AND ALGORITHMS S61

Process Process

Tail
3 aee
46 P

(@) Before the interruption

X .
™ ene ——P
& P
Tail
(b) After the P, execution
Tail=X Y

e

(c) Followed by the P, execution

i1 Interleaved execution of ENQUEUE by process P, and process P,.
e

st CASP.X, TAIL until TAIL = X"'. The modified ENQUEUE(X) primitive

<hown below:

Procedure ENQUEUE(X);
var P: pointer,
begin
LINK(X) « A;
P « TAIL;
repeat CAS P X, TAIL until TAIL = X;
LINK(P) « X;
end
— i ‘ ted
* (A3 instruction ensures that the logical state gPl)Jrzfgrl:; lr(l;::lreliim

T« maintained on resumption of the interrupte
“1h state P to the most recent value of TAIL.

LLEL FELEE b
HITE URE AND PARA
C a
L W ¢ of the execution of the -
. e f the primitive by p iy
execution © Y P (Fig, e

AbS : 1 ,
Figu“?’cnoﬂ of % than the test-and-sel instrugyjo, BUre Y s

” ¥ . l] JIII:

¢ c0 useful d swap, also a Mg, Oy

» gion 18 MOT ompare double and S alable on e’“enl h,
nstruc Letion is the 0 < which enforce mutual exc'“Sion the]H‘*Ir;r"' .
CASIU or varialior” od-accumulator-and-clear-me, Fop My L°
There %€ © 6 has the [0 MMlogy tay
.wc" R . Ui, I h"i
Hooey . Jsing TAS has a drawback in Ml N
mstru;ut; struct busy accessing and testing i rQCL‘SsQS L
¢ | : : m d 4l
ot cril ecti “5 -lock, which results in perfotmance% ya“:l}:t[r 8
: il OF -xt-swapped off its Craq ™
called bush “n mally be context SVf' ;P Tt lprocessm Whﬁra.d“‘if ox
process cann! sor is said 10 be locke dOrJNL(C.:)C ock-out on Vil e

oce oo b,

Hence. the Pr de. In gencral. LOCK_ ah h K p”mlllves ypﬂlm.;
supervisor moct ated in user mode because the user Procegs e of
allowed 10 D€ € C‘; critical section- On the other hand, if {p, uge‘:lay be s: o
out while holdll:_gmc it attempts 0 access a critical sectiop, the Oﬂlak%f; If
visor call cach dl Hence the CAS instruction was provided ag e Exze]r; ﬂad_“‘* ;3

‘1 C[ease . 2 t'on 4 e £

greatly Inc ome synchronization in user mode, Ny,

ism of letting the user dos : o

' in-locks is two.f|
: degradation due to spin o-fold
The performance _ . i
- inniﬁg, it actively consumes memory b‘andwld'th lhat might o cr% ,
]l:ccﬂ used more constructively. If th_c spinning period is tog long prwlk'l- b
not effectively utilized during that perlod. Anumber of methods have beenufﬁsg
(o reduce the degradation due to spin-locks. The first method is aimeq alprreu:;,.
(he request rate to memory and,.hcnce, the degree of memory confg, %
accomplished by delaying _lhe reissuance of the lock request for gp iﬂl‘rnl-.‘ b
Thus. the LOCK(x) primitive, for example, tan be modified as '

LOCK(x): begin
y « TEST-AND-SET(x);
whiley # 0 do
begin
PAUSE(T) //
y « TEST-AND-SET(x);
end
end

3! G logce e o

Note that the . i)
ProCessor issuin ased unlessT*
enough. The choyce fo ALl equest TRy AL e el f

: e i
quested " T depends on the granularity of the reso’”
The second m

IL'L’L dCCps h\ Ine
[his ’

-dn

i
¢thod is g . erfor®”
rect p r of P 1;
orpor; ed at relieving the processor A

Hn Be accompligheg &4 separate mechanism which proces® [e

¢ . ¢ :

Continuay ﬁm one of several ways. For Cxamplb EP g
e ock unnl it 15 gvailable, as i ¢

sy JL'.C\S

MUL TIPROCESSING CONTROL AND ALGORITHMS 563

or can execute another ready-to-run process i s
Hroces

: rocessor 18 signaled by the mechanism that the lock
o when (¢ mediately resumes execution of the waiting process
m.n"c | I:u:r'::dlulc becausc the process was not swapped out. The
" pten ¥ ldcd if, in the first access (0 the lock, it is found busy. In this
T ¢ blocked. When the lock becomes available, the
N F"“f:g:;‘d i ate ally exclusive access 10 a
s S scheme seems adequate for a mutually exclusive access

¢ granularily. - _
ars of locks in memory 15 an important factor in the performance
1 .

il
-'”',“; “l!-lllhll"‘) ¢ses Accessing Jockable resources. For example, if all locks are
" rent PO *odule, the contention for these locks can become excessive.
e nememor hes, the accesses to locks by the processors
because of consistency checks. However, contention

Ll o 5507 with private cac
¢ i’ e overhead onsister i
| lieved by distributing the locks into many blocks of

tly re

A
™
-t
(=

22 ocks can e PAT

[(he

e ‘

G"'\n““'h mitive operations
WO 4l section and wa

| o
l‘u.\:ffrcc These prlmllwcs are
mes '

e

can be defined to block a process attempting to enter
ke.up the blocked process when the critical section

ly blocked (that is, dormant), change 1ts state

- if process p 1S logical
' waiting switch (wws) to remember the wake-up

up P)
"‘:]fclwc; elsesetupd wake-up
u

Ca“,. if process p's WWS is set, reset it and continue execution of the process;

“'”‘:15 change p's state to dormant

g these operations requires a wake-up list »yhich is updated dyn_amica]ly. In

4erto prevent loss of information, wake-up signals that occur while a process

ccutingmust be saved and a process should not be allowed to become dormant

Ll all its wake-up signals have been serviced. The wake-up waiting switch
i sus)is the mechanism used to save wake-up signals. A process identification tag
«sppended to the wake-up signal, which is used to route the signal to the appro-
mate receiving process. Hardware or software mechanisms may be used to
npement the wws, which stores the wake-up signals on arrival unul they are
dnowledged. This may result in a potential race condition if the mechanism is
moperly designed. Note that the blocking and unblocking operations constitute
ioverhead which may be significant if designed improperly.

Lock conflicts are resolved in the implementation of the busy-wait because a
i Ilhal finds the lock busy waits until the lock is released. Serialization is
_“rl‘lf“lftfd Another sypchronization primitive was proposed to permit some
_l_lhm“l::“‘{;e“?}' of access to a memory challon while still enforcing some
o megey ¢ ft;rmal of IlhlS anltwe 1S _/ef_ch-and-add (X, e), where X is a

 We gy .”Td lcand ¢1s an integer expression. L_ct the value of X be denoted

: "CViate the primitive as F & A(X, e), which is defined to return the
"V and replace the contents of X by the sum Y + ¢ in one indivisible

ations are initiateq .
81

_Hﬂ':
At dd (
-8 .

o i ; fetch'andmc J vari le y. the effect of lhmuhar
; i s,:\:s,f of (he sh p ~curffd in some unspeciﬁed ¢ . I,
,rfr.manpnw.,;sslﬂrzld be if they e al increment and Cach&r;alkr:
et w0 0 . i ‘o Oty
Jiﬁ*f;‘.‘% L ?P; cgﬂcspimdlﬂgp‘o l:js}f'osm@n in :L t,
ade Al y an . X tr,
w0 vl e 0 rocessOr ™ j which gy, %,

g F&A(x- e Si* F&A(X,e)

;o Yand Y + e, respegy
]

contd
45, may - :
S annd ¥ ;espectwcly, dcpendmg on the pr i,
Meg S}

|of their reqy :
be im |emented within the ¢
pl'()ces .

0 L
: 4d rimitive : '
L : Figure 2 for the ex.ample with WO simultan, o,
wn | ory location . In the example, iy iSOlls %

g

pw - ;5. The S\\fltch formse, + o . .
ty. At the same time, e; is stored JlIamd e

g i

register- 00 . ta:‘ ?cws::: OL‘i&A(X e+ ?;h;&b?.
ansmits ¥ nd YHET S quests F&A(X, ¢)) andjll-”&'f-.
rcspccnvely, \

Register

MULTIPROCESSING CONTROL AND ALGORITHMS 565

8 gmple application of F&A in a multiprocessor environment.
str? yired that all processors which intend to access a given resource
*“ 118 rta ¢ their intentions by incrementing a common counter, X, in
e mdlcura“ count of these requests can be maintained if each processor
o AP 3:;"0 n by the statement FRA(X, 1). Hence if two or more processors
A st Simultangously, X will contain the correct count of requests
onofall instructions. Note that the value returned to each processor

ecution of F&A(X, 1) can be used as its position in the request

P’ ; nchroﬂiution primitive uses the semaphore, which consists of a
oot routine queue, ar}d the two functions P and V. This is described
;t,uﬂl‘f“i ubsection: A]Fhough bs;mpief, semaphores are known to be sufficient
N f] synchronl:a.u'mon problems lor permanent-resource competitors and
.ﬂuﬂ““s " esource pfoduccrs-consumers‘. However, semaphores are often very
ord i rl:l:,,-es,e,nting communication between processes. For this reason
lnfamfcm ing Systems also provide other process-communication mechanisms,
081 0 f les are events and messages. |
o N8P ically provided by th functi ‘ '
™ ent primitives are typically p)y the two functions wait and signal.
E can wait on an event or a combination of events to be true. When
ess signals an event, all processes waiting on that event are placed
thhe ready queue. Other variations are also possible. One potential problem
m:h s is that 2 process has the possibility of waiting on an event that either
::w hecomes true OF was signaled earlier. A slight variation of waiting on an
i used especially in real-time systems, is waiting on a timing queue 2dmin-
qered by the operating system for a specified time period to elapse.

Messages provide an even more flexible and direct method of interprocess
mmunication, especially for producer-consumer relationships. Typical primi-
ues are the functions send and receive, which allow a string of characters to be
russed between processes. Implementation variations are numerous. For example
ond may or may not wait for an acknowledgement. Receive usually waits if n(;
nessage has been sent. The Intel IAPX 432 multiprocessor system uses the send
ind receIve primitives.

55
AP

'1.2 Synchronization with Semaphores

. m‘:.u invented the two operations P and V, which can be shared by many

’:?:‘:i :\'thh im]:lcmcm 1h.e‘mulual-exclusion me_cha'nlislm efficiently. The

i Lolr::ns are called primitives and are assumed indivisible. They operate

Tt atiem mon \’anablc callcd a semqphore. which indicates the number of
Hempling 10 use the critical section:

var s semaphore

" Pimitive P(s) acts as an open bracket or MUTEXBEGIN of a critical

paRaLLFL PROX FSING

- TR Tl AND
- o aoquire ““'“'““r lo enter. T, v
W““"'d:mﬂMWﬂmm““"““cmwmsmmﬂ”nn
o N ",
.)
\ MUTE!
P -
beg!" @ss executing "_‘0 P(s) and pyy j,
glock the .ated with the semaph
na FIFO we { priorty ready-to-run prg e,
|
highes rocess.

Resume ("
ond

UTEXEND

V(s) wmuTEXBEGIN (s)

st

It s < 0 then
in _ .

If an inactive process a;sgc:a;'od |“N‘lfol;h semaphore ¢ il
wake up the highes! pnomy ocked process assomamds' they
and put it in 8 ready list. W*lhs
end
MUTEXEND

usually imitialized to 1. When s can take valye
called a binary semaphore, SInCE it acts as a lock bit, allowing onjy OneU 0r|
2 ume within an associated critical section. I 5 takes any integer vajy, Procy
a counting semaphore. Notice that the P(s) and V(s) operations are mlidh
and testing its status. P(s) and V(s) can be implemented in hardware o u: \

The semaphore 5 18

using locks.
One common use of synchronization mechanisms 1s to permit cone~

processes to exchange data duning execution. The data or messages 1o be exche
are usually stored 1n a circular buffer which 1s used to synchronize the spesss
sending and FECEIVINg Provesses. Such a circular buffer 1s usually called a me
buffer or mailho '
" &i:’:‘;dmfi“m‘ operauing system provides an elegant form ofmes
il T “;mg pe m:: lfsfd as channels to stream data from on¢ Pft‘.’-_
sty £, :n il s~ command on the console in a Unixenti™
the *B" process If th; o Ld‘;‘:“}' to be “listed ” on the c?_msolt by ﬂ,
e ool e 1_511_ to print the listing of the ils on f‘““f_:‘
“oopr T The T T symbol specihes and “opr™ may be used anc - :fn
t0 bevome the inpur 1o “opr " The '{Lu"' X gap shiould cheios tht_' Ou':u“slr'-'
& pipe or bufler from which 1 5 process produces the st J,m‘knf‘\\f
dlustrated o Figure § 3 ‘onsumed and printed by the “oF" T
Whenever 4 Process produces s
300ther Process as mpyt there) u:qmln of output which are "[n‘“’:‘
1o be 3 producer consume’ o

MULTIPROCESSING CONTROL AND ALGORITHMS $67

‘*@ﬁ Console

(a) Command: /s

Current
Jdirectory

Printer

(b) Command: Isjopr

low of data between two processes in UNIX.
8l

buffer may be considefed to consist of a finite number of identical slots
essafe sed for communication between the producer and consumer processes.
:nl;,er of slots is finite, the buffer is arranged as a circular buffer.
| L‘nudgmonsnalc the communication between' the producer and consumer
Tf} ¢ consider a finite buffer BUFFER of size n arranged as a circular queue
.mcw; Ehe slot positions are named 0, 1, ..., n — 1. There are the two pointers
g whic hich correspond to the “head " and “tail” of a circular queue, respectively,
"W.,;: in Figure 8.4. The consumei consumes the message from the head ¢ by
i sh:’mgr and then retrieving the message. Hence, ¢ points to an empty slot before
urd;co nsumption. The producer adds a message to the buffer by updating p
:;urc the add operation. Therefore, pointers p and ¢ move counterclockwise and
#ere can be @ maximum of n message slots for consumption. Initially, p = ¢ = 0,
Jhich indicates that the buffer is empty. Let the variables empty and full be used
o mndicate the number of empty slots and occupied slots, respectively. The empry
urble 1s used to inform the producer of the number of available slots, while the

Figure 8.4 A circular message
buffer with producer pointer p and
consumer pointer c.

A

,.!.q!li\i 1 FI PROCESSING

N[
(TR ARt HITH It RE A
“ _IVMII
. l\r lhc numbe
Jjorms {h€ consumer ber of Mesy,
o e rrent program helow tllustrates the acl; Rey n
i . .Inl.'ll . i - h]n e&
- 4o esses. THE PruduLcroru nsumer will bcsus S of |h‘1t~r1
et 1 el pﬁndeq th "
| J“If l t‘\lx’.“ Wllrlln'
r-"
anple& 1
hared recor
beg!n

- integer,
var p. c.In
full: semaphore;

var emply.
var BUFFER [0:n -~ 1]: message;
nd))
initial emptyY = n full =0, p= 0,¢c=0:
cobegin

Producer: begin |
var m: message:

Cycle
begin
Produce a message m;
P(empty):
pe(p+t1) modn;
BUFFEH [p] « m; // place ‘
V(ful) place message in byt
end
end
Consumer: begin
var m; message;
Cycle
begin
P (full);
ce (c+1) modn;
m « BUFFER [c]; // remove message from buf
V (empty):
Consume message m;
end

end
coend

ye : | ol
and V operations may be extended for ease of problcm [Ormml[;f.

)] . o i "JE dc

I and each o P
initialized 1o nonnegative vilties perates on a set of semaphore

y

MULTIPROCESSING CONTROL AND ALGORITHMS 569

S .s',+ ; et ’Sn+m):
s 7 ogGIN _
rtULTEkB‘ .i<ns>0andforallj1<j<ms =0
o el 1 STS NS <8, = :
Ly (he process IS blocked and put in a set of queues associated
7 tythe set of semaphoress s
N
ML 5 }

MUITE’(cisns s+
fof al ;ke-up highest priority process
W

ssOC'a‘ed with set of semaphores (s, ..., s);
2
MuTEXEND
1500 association between s; and 5;. The 5; symbol is used for convenience
hf\-e“[\he semaphore s; where j > n. The following examples are used to
i Tc (he application of the extended primitives.
I-\il'.‘
sample 8.2 [V PrOCesses, equal priority, m resources Each of N processes
¢quIres exclusive access to a subset of m distinct resources. The processes are
(eqUITES

inted ACCESS without any consideration of priorities. If two processes use
jigoint subsets of resources, they may execute simultaneously. The solution is

gven below:

varr,r,,....r_:semaphore
initial r, =1, = =1, = L
Process i: begin
PE (ra,rb,‘..,r,g;
Use resource &, b, .. ., x;
VE (&85 ccnnly)
end

Semaphore r, is associated with resource i. If the PE primitive is completed
successfully by a process, it indicates that resources a, b, ..., x are available
ind hence are allocated to the process.

Consider the application of this example in which processes X, Y, Z
“ompele for card reader R, printer P, and tape unit 7, as shown in Figure 8.5.
Lach process requires two of the resources simultaneously: X requires R and
P} requires R and T, and Z requires P and T. The “Dining Philosophers’
blem™ can be expressed as a special case of the above example (see
"oblems § 6 and 8.7).

Mample 83: A processes, N priorities, one resource Process i has higher
' than process | + 1, for 1 < i € N — 1. The processes request access
"™ource and are allocated the resource in a mutually exclusive mann=r

IJ\I LFI PRONESSING

cobert® ,); use resource R and P; VE(7,, 7,): eng i
.. in PE(Tg- P .
PN\'C\\ X m o chOU“’T R ‘nd T. VE([R’ rrl; tnd |
jo PECg 7 ve
procest Y bes y; use [ciﬂu“"c P.I'Id T; VE(rp’ r]’}; end
" r L]
process 7. begl® PE(p: 11 »
tﬂ'd 'L"',r::
sht
pr’
Processe;

N
P Devices s
5€
Figure 8.5 Example of multiple resource allocation. .
C
ol
tl

based on the priorities. A request by a process is not honored untilaly i
priority requests have been granted. The resource 1s used nonpreempi

C

5

vars,,....s , R:semaphore t
initial s, =s, =--- =5 =0, r
initial R = 1; 1

Process i; begin

VE (s); // register request of process i // ™
PE(Rs,.....5_.); // check to see if resource is aval
/1 and if there are any outstanding requests I

// made by higher priority processes //
PE (s). // if not, grant resource to process i //

!/ and withdraw outstanding request /l
Use resource:
VE (R)

pup '/ Return or deallocate resource //

MULTIPROCESSING CONTROL AND ALGORITHMS ST1

1 requesting process cannot be blocked on PE(s,) since a VE(s))
- ‘h? o carlier to register request. This example may be used in servicing

hE . u .
"’““;c interrupts. In this case the Processes represent the interrupts
1“u,r|llep[csenls the processor which services the interrupts,
R
an .
" cxample can be clarified further by considering a two-processor

0s a supervisor _P"OCCSS and a user process. If these two processes
in resource in the system simultaneously, the supervisor process
gher priority. The program segments of the supervisor and user

e :
”LF‘ I[::f;::;css the shared resource are shown below :
U agslS
F var . R:semaphore
initial s =U = 0.
initial R=1
Supervisor: begin User: begin
VE(s); VE(u);
PE(R); PE(R, s);
PE(s): PE (u);
Use Resource; Use Resource;
VE(R); VE(R);
end end

yglice that the constructs ldiﬁ'er m?in_ly in the second PE statements. Since the
pervisOr rocess is ofall higher priority than the user process, it only checks to
¢ If the resource is available [PE(R)], whereas the user process also checks to
ol there is an outstanding request from the supervisor [PE(R, s)]. Since we are
multaneous execution of the user and supervisor codes, the execution

onsidering si : ,
i 1he PE(R, s) statement will find s = 1, which was set by the VE(s) operation in
(e supervisor process. Hence, the user process will be blocked until the resource

<released by the supervisor.
Although, semaphores can be implemented using locks, they are more

«nmonly accessed by system calls to the supervisor. The supervisor maintains two
s of lists or queues: blocked and ready. Descriptors for processes that are
Hocked on a semaphore are added to a block queue associated with that sema-
shore. For the generalized P and V, the set of blocked queucs may be quite complex.
However, execution of a PE or VE operation causcs a trap 10 d supervisor routine
#hich completes the operation. The ready list contains descriptors of processes
4l are ready to be assigned to a processor for exccution. In a multiprocessor,
:ih master-slave operating system, a single processor may be responsible for
inaining the ready list.and assigning processes to the slave processors. The
“4list may be shared in a multiprocessor with distributed supervisor. In
L the ready list may be accessed concurrently. Therefore, mutual exclusion
:uuht “nsured and can be accomplished by spin-locks, since enqueuc and
__ " Operations are fast on the ready list. Morcover, a processor that 1s at-
" 10 access the ready list cannot execute any other process.

. uscd {0 program j|

(d > 'y primitivesina Moy,
4t e Pan’ Parg "}
of the 4 prone 10 error. For CXany ¢| !
qJ
one semaphoreanday Ple

' 4
ing 2 | exclusion would no longe, oy,
3 or can forget to ingp X g’

ramm i
proslhc shared modlﬁa.blc Objcq: !
cence oblem with using Semap), h,H"_

er P ; .
oth i exclusion ar¢ nmp|em€:meorcs .

cult 10 identify the Purpog, "sing'

eflects on of , ¥

of other o the Semapho:&-.
¢

nd Monitors

(itieal 5¢¢ oposed by Hoare (1972) 5y,

gifficulties encountered with P and yy .t
fthF IOOI for speCIfymg Communicangn _“’!a

rect expression of the fact thy iy,

shared variables holds, 'ﬂlerprﬁ"”‘
it unti rocesses is done by meang Ofa;h
alt Ut o stem O mponent variables vy, v, ..., {,manEﬁn,;_

yariable Vs
varv: shared record vy v Vo' (type) end

: is used 10 pame a &
The variable V 15 * Ly the values 0

ses i determin€ :

i s. The var
of the single processe .
o ev.ACCS statement 1S

(CCS statements that nam
csect v do await C:S

oand S is a statement list. Note that variablesl:
lso appear in the CCS statement: |

process until the condition, C, ist
d execution of § are unimerrupui«:;l

e. Thus C is guaranieed!
nlecr

iven resource. The global state of a sy,
f the shared variable v and the ngrl-.:
ables in v may only be accessed Wil
of the form :

where C isa boolean expressio
to the executing process may a
A CCS statement delays the executing

S is then executed. The evaluation of C an
by other CCS statemenis that name the same resourc
:)I:atlrzi e:::::) re}x;r:;;n of § begins. Mutual exclusion is provided by guard
not overlapped Colngil;e'm CCS SIalgmepts, each naming the tamc resource &
ditions in CCS .slatemcr]l:m synchronization is provided by expiicit boole
We illustrate the uses.r ‘s |
The first example 15 sols[ilhe conditional critical sections by V0 appl
the two classes of proge on 1o the producer-consumer problem. AS”
$s¢s (producers and consumers) communicd!

bDurlded l

reular buffer ac in

exclusive. Sey rasin Fi ,

Ive. Seven shared ik gure 8.4. Access to this buffer must be mu:%n-%
| sect

are used | les whi _ v
0 Indicate the globg Slat:':lc:‘] .';re associated with the critic?
processes.

an

catior
me (s
g Vid!

MUL TP
VIPROCESSING CONTROE AND AT GORITINMS STY

val M]\tc\ r and carcasm b sample . =
b T bles denoting the Ple 8.1 Variables empty and
m,,.h tepe! vanable R e number of slots empty or occupred
n '

N \ 'l“"l‘k\ np .Illd ne mdicate the “l"“hCl ol [‘Tl\\llh'l‘l‘\ and con

ety mich are working on the byfle

N “.‘“\\'l\.\'\

shared record
begin

“.'[\

var p. ¢ empty tull ne
var BUFFER [0 n N R
end
nitial empty = 0 full = 0.p - 0. ¢ -0,
proc!d“"’ Enqueue (M message)
b.giﬂ
csect v do await empty ~ 0 and np
begin
np<« npt 1,
ampty < empty 1,
end
p< (p*1)modn;
BUFFER [p] « m,
csect v do full < full + 1
end
procedure Dequeue (m: message)
begin
csect v do await full > O and nc = O
begin
nc< nc+ 1,
full < full = 1;
end
¢« (c+1)modn;
m < BUFFER [c].
csect v do empty < empty + 1
end

1] message

0

T second example on the use of the conditional critical section is the solution
«reader-and-writer problem. Improper reading and writing of shared variables
e cassic cause of difficulty in finding operating system bugs. The basic problem
':41 w0 sels of processes executing concurrently may interleave read and wrnite
f' "i“ms insuch a way that improper decisions are made and the shared variables
_ :, - f" improper state. This kind of bug is insidious, for 1t may only show up
‘::"‘cl’j:" ~and then the symptoms occur rarely or never repeat Since they
i ri ap-dhrucular concurrency relationship.
= er-and-writer problem, there are reader and writer processes which
. ““‘”“‘m‘-‘n data segment. Any number of readers may access the segment
cously, but a writer must have exclusive access to it. To prevent a wnier

jTie yURE AND PARA!
necessary that no i
Ore

(i) Hlﬂl’l ek ARE »
' TRE
stely ong: ‘ .
from wallinf ines" fro _ moment lh-‘-lll a writer firsg v req
oquire ! r.sp;'rts o acquire it. The variable aw md"CaILa"'S ‘udor"‘h
) - y gU ; s L 'S %
the 7 mu? ¢ the resource: ™ and nr indicate the nlh° "u,dt‘llnl-”
that W8 0 1y, th (have 3cqulrt‘d the resource. umbcrnh“r"'u
[;‘ﬂd“.’.' [yi [}I‘ “IIJII'
"h“
Iy
FtllﬂPk's
ar v shar d record aw. NW. M inte
Initial aW = =nr =V, ger on
Reader beg!n .
tvdoawalt aw = 0:nr « pr 4+
0ad segment. 1;
csoctvdo arenr—1;
end
Writer: begin
csect v do
begin
aw + aw t 1;

await nr =0 and nw =0:n
:nw

and e,

write to segment;

csect v do begin

nw < NW — 1:
aw « aw — 1’
end

end

end

All the .
Filin] inplf:e):fe;?;,\ir:cl};]onlzation methods we have di
o of them implememg th y sy“C_hfonization or scheduli ey
and mefficient manner tha e solution to certain probl Wb roblem. Hok:
han others. Therefore, they aree:sl l;r:cr?or; complic|a|:
ically equiva¥

Monit
ors— ;
structure a:;mmo" of conditional criti
5.""Chronizali0: s;l of functions thaT”m{ sections A monitor is a shared®
0 a ;
Ehom"' events, and :12:curr°"' Pfocessescc;is- the data structure 10 control”
S NOt more sages as o 1s general] | s
process is g powerful than the specific implementation dt_:rﬁnmon_ mcl?de;w
abstraction f useful ahstract; s¢ other techniqu : s. The notion© awn'f
or 0 es— : j
the implement process COmmu“'fOr. muhiPFOgram ‘.IUSI more g?”"’"‘."aug;
used when 'ation detajls of nication. Con ming, a moritor ¥ ©
To dssur:n'gm”-mmg the the resource w}s,c quently, a programme o lfn |
with the o .t the COrrectnes monitor thay en using it and can jgnort ho
PETALIONS perfo, Sof a Progra implements it
'rm m. ' '
¢d on them A It1s useful to associal® datd
monitor pf”\IdCS 1 hod) in

o
uh"'l'

(ORITHMS 575

MU TIPROK JSSING (NTROI AND Al

Process
|

Monitor

Shared
dala

&a \Imiw' e

tical sections. By so doing, the data

ared data structures with their cri
ocal or hidden within the body of a

e sh
o e no longer shared or global, but |
functions no longer contain critical sections. Instead,

g ‘|naddition, process U alr : '
are centralized and protected within the monitor functions.
provided by a monitor is even more

(riical sections
to shared data structures

penestricted access ! ‘
[it can be checked by a compiler. Many high-level languages today

govide the means for controlling the scope of variable names.
" Monilors provide support for processes to form a multiprogramming system.
Whlea process is active in the sense that it performs a job, a monitor is passive in
e sense that it only executes when called by a process. A monitor IS necessary
1y when WO OF MOT€ Processes communicate to ensure that they communicate
moperly. Figure 8.6 is representation of two processes communicating through
aured data encapsulated by a monitor.
Amonitor consists of a set of permanent variables used to store the resource’s
ik, and some procedures, which implement operations on the resource. A
E:::E[:‘:0 Ez; initialization code for the permanent variables. This code is
vt ar‘-;C x ore any procedure Ibod'y 1S execuledl. The values of the permanent
el gl | }alnef_i belween acl_wallons c_Jf monitor procedures and may be
Wiy t:l? within the monitor. Monitor procedures can have parameters
. Thfsnruum:;&.mh of .Whlchl takes on new values for each procedure activa-
—— a monitor with name mname and procedures OPI. OPN

=
=
=

o

AND PARALLEL PRONCY SSING
§76 « OMPUTER ARL |||THT['R|
. i

monitori
mmn:edeclaralions of permanent
va

1 (parameters)
dure OP
proce s of vanables |,,.
var declaration Ol g Op,
in
bacgode to implement OP1
end

pfocedure OPN (pafa_meters)
var declarations of variableg local o OpN
begc::e to implement OPN
end
bﬂggge to initialize permanent Variab|e
end

The procedure OPJ within monitor mname can b Invokeg y,

¢

call mname - OPJ (arguments).

The execution of the procedures in a given monitor is BUaranteyy 10 be,

exclusive. This ensures that the permanent variables are Never aCces;,e:
currently. _ o

Pushing the monitor concept to its logical limit suggests

be designed as collections of processes and monitors only, [p |

Structure is local to either a process or monitor. This decompy

large systems since it simplifies the problems of program va

tenance. If a data structure changes, it is clear which functio

the addition of a new process or monitor does not require
unchanged components.

The current state of 4 monitor is
memory associated with (he monit
either permanent of lcmporary reso
action. A process Image is that por

hat System;
his Case, Sen,
sition jg vatua'-_'
lidation ang p,
NS are affeceg
the revalidyy;

defined by the monitor image, thal i
Or program. A monitor image repe
urces that are the elements of process
tion of memory belonging to a pros
defining its states, The Process image changes with the execution of a P
associated with the progesg. |y the absence of process activity, p{GCf“S’;:_j
and monitor images differ signiﬁcamly. In this idle state, process mlagheow
no importance and May vanish. However. monitor images—at leas {d\'lﬂl"
resenting permanent resources - mygt remain and resiiie & nonass;gnzw‘_
Monitor functions are feentrant but contain nonreentrant
critical sections. Indeed, Monitor

{'h]-."-r1

PROCES'@OR SCHEDULING STR.JLTE(J;“.‘S
' ‘ (-
9.3 MULT

- mdanagement techp, .,
we discuss the proassof[mullblplu proces Jues s

s systems. The introduction 0 00 B ool Com

procesL! Sysum;ﬁ Deterministic and probabi Odels hy-

c # I. i dln c) | 7 St
scheduling problmmlling schemes. Generally hf g“dfl' OPlimg
evaluate some Sfleduliﬂg problem In multiprocessors is Compytg,

3 SC
the processor

able. However, some

dvnamjc-scheduling algorithms are ¢jose 10 oy,

8.3.1 Dimensions of Multiple Processor Management

Multiprocessor management and scheduling have been a fery;).
ultip

esting problems for researchers in the field of computer enginger;n-

g K:xa

components, particularly those that are nonhomogencous (4.

------) 2o
o B &

asymmetric, increase the amount of m.anagembenlhlh]al mﬂust m Provide: s
the operating system or the _applncauon or both. In 1ts m‘oh genera
problem involves the scheduling of a set of processes on a set i |
arbitrary characteristics in order to optimize some objective fyr .
involves the selection of a process for execution from a set of proce
Basically, there are two resource-allocation decisions that are mage - -
processing systems. One is where to locate code and dat
placement decision: and the other is on which processor to execute ouc Provas-
assignment decision. These decisions are often trivial for a UNIProcessor s
which assignments are dictated. Furthermore. the physical memor 2dems
's accessible o the single Processor in a uniprocessor system.
of accessibility never oceurs and memory-contention problems can ko mins
by mlcrjcuvmg. Oftentimes, assignment decis
B et P14 e
basic kinds of schcduln;;:‘lk;n;_':c:_:‘llll‘l. [?roccssor nmnagm:h:r:‘
nternal progess Ht‘hcdulu;g. external load scheduling an
thei l'i Tl(’i:: ::1:l| ilt‘: I\.L‘. Processes
N smpmdm. .n lu Svstem, A
Procesy
1B &
sien

C" ™ -

S, 2

d I['I F\\ vdl Meme

by Ay »a fra ~ oa
.'\i.»u Lilh e

1on is called processor manag

undergo different st
Process 15 1n
”'IL‘ pn\\l L\Iihﬁn“\ﬂ! Processes A\ P“\"‘“ '

ATy o Ne for somg CXternal response, such 484
VO unblog i

PI'UL\‘\\“] L1 i Ihk‘ ll”h]\\Lk[[]u (\Pt'l.l:'\\}‘ Cld
L% t A
Y ready g

ate transions i i
the run state 1f 1t 1s using 4 P

| May enger

annot ryn because TS W

al. wiye, My

\l.l'[\l‘n\“"u‘ .

h*u'rl-l"m'.‘ s
Lllk‘_ W h\‘[\‘ LIS Ve

y MULTIPROC
r ESSING CONTROL AND ALGORITHMS 891

- 2lllustralcslhﬂ possible state transition experienced by :
at this level performs the short-term prml':*swl-ix:dufgnj
e ,rocess fm”;;i‘: f’;}::f r:e:‘d y-to-fun processes. The sclected
al >]:td wor on a proces? t medium and long-term load-scheduling
S0 select and activate a NEW process to enter the proccssing
- wation of the new process causes it to be put on the ready
1|1~,‘ ' chcdul'“g also acts to control the degree of multiprocessin
1;046 "of active processes) In the system which, if excessive maij
e 3 Chapler 2) ,)
. -‘;f"";-(-c duler of dispatcher perforFIISIts function each time the running
._ rl,gccr‘iff Jof cempted. Its purpose is to select the next running process
‘ h]L‘CkL. Leues. The process scheduler resides in the kernel and can
of red he ready queues. Since it is probably the most fre-

sl ‘ monilof for 1 :
ed 4 gram in the system i should be fairly efficient to minimize

st ‘L'Ulr'
e 0 m-@rhead‘

p syt

6

|
Terminated/
inactive

Transition vent
l Activate process
2 Run process
) Preempt process
4 Block process
5 Wakeup process
¢ Terminate process

Satey o . B
process and their state transitions.

g AND PATZ

 global. A local ready |g,

Ma.
which has a local mem, 4y

r} ; .q'm‘

ocessor. The local reaq . "1, *

I8t I»:"

be local 0
[OICCSSOr
The rtld : pgfﬂm apr
wthesch m:‘l;lpr;ﬂ be bound 1© the overhead encountereq Y the ey
poe 26t st and ncept discourages Process migry, - du
yme © | ready st co r utilization may not be equa) Moy,
) load. o migration, a globa] ' Y iy,
Jight system rmit pr : : tady | "
undef 2l rs. To p¢ ay be llSed- This has the dlS&dVanlage ht! {
m-.pﬂ! P shal‘ﬂj m_cn'IOfy n':-cilonng proccSS Slal‘es by thc pr ‘Jf.r?;‘
e prOCCSSOI; Utl::ztl'?n 1S smal| ok
scheduling a)o,
ever, the SIANCEE o of many theoretllca . orith
How;h e general ob,cc_twe;cms and scheduling techniques thay “SCH.]:.{':
jevelop process? ::‘m execute parallel programs in the];as[time, [,
ol ‘]Lprﬁmms for processor ml@ﬂ;?lta:;cmlmmlzc the execy,
e I:'l rogram when processors are ' ,
of the parallel p ypes of models of processor scheduling, g,

¢ basically two types OF 1T o . .
mc’;;;ministic. In deterministic modc;ls. all the informatiop Iequi
m;znmc characteristics of the problem is known before a sojyy;, ;
ex

hat is. a schedule, is attempted. Such charagteristics are the ¢y,

plroblc;n. th}i:;sllsa.arl d the relationship between the tasks in the system, The o
:;r:;: r:::llanl schedules is to optimize one Or more of the evaluation crite, -
example, in deterministic models, thcl execution time of each process can el
interpreted as the maximum processing time or as the expected processing .-
In the former case, the time to complete the schedule would be cons:-
the maximum time to complete the system of processes, and in the
case, the length of the schedule represents a rough estimate of the mean i
of the computation. The motivation for this objective is that, in many
a poor schedule can lead to an unacceptable response time or utilizato
sysltem resources.

Dclerministic models are not very realistic and do not take into considers
;I;:ng‘;‘:::;a‘;:g ur;zredictablc demands made on the multiprocessor e
ICChni;]ues o :; lo:ls are often formulated to study the dynamlc-schfu—l-'

Place in the system. In stochastic models, the execulion

of a process is a rand ' i
om : ;) i
(cdf) F, vaniable t with a given cumularion distribution

s:rd deviation of th

Processor scheduling :
. uling impl; BT
particular processor f, 8 implies that processes or tasks are to be assIgne”

r (3
Generally, we) refer ¢ CPresents the relationships (if any) among vy

lob‘ . z 0 a set I
Job, Which consigig of 5 Of related processes as a rask system 04

sho . set of) .
ind:n In Figure g 13, Th nPfOCe_sses, is represented as a prcc:‘den‘:" g..h{_
mhclr)f:?'cm OPerations o o fm the graph are tasks which ma) ref o
'Me. The collect: Sofag od 107

- ; ect ngle i relat
1 the direceg cdge be::fr;:fnodesrepft‘;‘int‘sjfsgczanr‘ e ar; = {Te
n - ol processes [= | g

€8 : o]
Mplies that 4 partial ordering of P™

U AND ALGOR I THM "

|| preseatation of 8 task system, G AR S

austs between the processes. Therefore, if T, < T, process T, must be
< xlore T, can be imitiated. Processes with no predecessors are called
s (e, T,), and those with no successors are called final processes
e indivdual nodes within a graph can be related to cach other in a
LFL
umple. 1t 15 possible for all processes in a graph o be independent of
“ 11 thus case, there 1s no precedence relation or partial ordering between
i and all the processes can be scheduled concurrently, provided there
® mocessors available The width of the task graph G, denoted by
* maumum size of any independent subset of processes. In Figure
1T, T, < T, and Ty < Ty The width of the graph is
“ *1h tach node 15 a second attribute which refers (o the time required
"al processor 10 execute the code represented by the nod:;d Slu:':s
“hate s called the weight of the node In a deterministic model,

ol dom
, ‘_ “Msant (or ecach node, whereas, in a "mhas{: mo:ctl -;:]'5 2=
 Megn a known distributiofi ‘
and standard deviation or tem with p processors. a

"%Ilm gra and a muhlpﬁ&'c\'ﬂil Sys (
. tion o
oy ‘hﬁlukﬁusl be developed such that ! s”;:.:i:t;:xpku;wst
™ and in what order as a function of time

have geveloped 1o evaluate 1, oh

et ‘"casurﬁor (hese measures 47 (a) response of Somp, ™
A U edules SO 1 essor utilization The objectives f, rnu[h"»_
0. and () pr heduling are the same p‘!?rfc:-rn-mm:t h{‘»r-,\

[:‘\C : rat and sC ch’ maxlmllmg lhf()u h 0
(b)s emen namely. "J8hpyy i
(esOUICE m?f"f’ rcountcrl'»"lrt ng of tasks in order of Priority, é"a“‘m._h

¢ their uf leting in common wit e,
E;spunsc"'““m ; sghcduk'fs pave much " singi I

: 580 O
(he multiproe®
schedulers

. ing Models
83.2 Delel'l“i“'s" - Schedulisé - ed with timing dia
| Jles are usually display o BamS cajly,

Deterministic ¢B . mcasures of performance based on Gantt chary ,
charts. We define SO fal 0 (he time 1t execution is completed. The oy [.E

(ime of a process 1S € of the flow times of all processes in tp,

. defined as the sum : ' € Schy
e Ilidlcl'lc fow times of processes Tyjand 1 ”.1 Fql%l.ll'c WS ity
For chﬂlpm-":]y while the flow time of the schedule 1s 25.5. The mean f, I
e rcesdpe; divu'din[l the flow ume of a SCh(?d"ll_c by thEOMmBE, of Proceyg
obtained by ractional busy time) of processors P, p. .

: tilization (OF usy ! .
::{c) ;ghﬁdolg,ca::a;b‘ respectively. These utilization values are obtained byg,,
lhc.t‘u;w' during which the processor was busy by the total time during y,

was available for execution. The idle time of Py, Py, and Py 1s 0.5, 00, ay
respectively.

Figure 8.16 shows a process systcm schedule for a given program graphon
processors. The numbers associated with each node in the process graph rep
the execution time of the process. Figure 8.16b gives the optimal schedule for
graph using two processors. Note that this schedule is achieved by keepr
processor idle even when there is a process to execute. Figure 8.16¢ shows!
activating the schedulable process as soon as possible does not necessanly it
::iof:::sl;? s_chc:ule. The total execution ime ET, of the process graphﬁ
Hc:cc - r=|s’; erum gl’ the numbers (weights) as_sociatcd with each";‘
system is E!I - 15 ;PI':: IR D10, UhC Ednciution tinie On,l.hf NG
) : . Therefore the speedup, S, = ET, ET, = {3 = 1.8, fory

l'r
“Ulﬂﬂﬂ‘mm CONTRUL ALY AT

(a) Task

ed as soon 35 possible
jng Swrrert

(c) Sched
ule when processors are activat
(CM Comps!!

Vig
Schedule i
in chart form, using p = 2 processors

T
|

(Courtesy ©f

‘

' FUSENG
RE AN PARALLEL PROX
Tre It '
TER AR W

W (MH o slem
L] I L\I. Ih\ [k PI“LL\M“ sysici n lhi. l"“" uf
ali : :r p =2 The reader can casyly Shoy,
Uy I -

F\,
”ll“ I'l lkl“

In "1L‘.[. I “]VI.
¢

[he mean lllil'-
y g = Wi= “‘? .ssors 1o 3, the Sp‘."‘d.“pdw“\ noting fease
‘he number o P“‘“\‘.ﬂ h sxecution of the Process graph in g, Ire
- to (16 Hence, he €A system. The rationale behypg the Ly
reduces ; (wo-processor syste _ . Cm
cost-cffectiveon d (ime 1s that system llllmlghplll can he r
fimshing of wmpicuuﬂ‘ »f cach set of processes s "““llniyu
(otal computation 11'!“:{) rocess sets processed per uni(of lime.
defined as the numl?rlt“::0 reasons for mimnmazing (he numpy,

There are at It..l.xl rocess system. The first and mog Obvigy, . Mo,
required 10 process a P‘L\SW utilization. If the number of l’“’cc;‘ S toq
second reason 1§ the prt::,s‘in a given time s less than (he lota] nuh STy,
(0 execule a sel of pmlt\e‘ :cmatlling Processors can be used g hackum o,
cessors available, then th d as background proces MOty
for increased rehability and as licg .

ns ~) ' 1 a

pum}ﬂ:?\'cy issue in the study of ;jro::%'s%qr 2;?:1::1:::‘!5:"1!80 IhAL. \IC ||nt)dunll ofovuht_ |
computation time needed to locate ?‘hfmh* ‘Lr. s “':t O'l__ X ‘"‘I.’flgil]gl)ril
a procedure that produces a schedule OT.LV‘L ya L I Processes 5
scheduling algorithm 1s one that can locate a suitable schedy|e
time that is bounded in the length of !hc input by some p
of optimal schedules is NP-compl_elc In many cases. NP
optimal solution may be very difficult to compute
case. However, construction of suitable schedules, t}
answer for the typical input case, is not N P-complet
can be obtained for concurrent processes.

[n this subsection, we examine deter
optimize measures of performance. Unles
environment which consists of a number
with equal or unequal execution times
First we consider preemptive schedules

In order 1o understand the
define process graphs with Mmutually ¢o
_is said to be mutually commensurah|p

IS an integer multiple of
empted from an exec

of performance Th

V|

| T hfk‘d

sors for nongy;

(i

: 0 eff,
1N an oy
olynomia| Conslruru
-complete Implieg thay
in the worg POssibje In
1at is, computing 4 reasop
¢. Therefore Suitable sche,

ministic schedules Which can be g
sstated explicitly, we assume 4 schedul
of identical processors, 4 set of proces
nd a (possibly empty) precedence ord
using two processors.

Preemptive schedule (PS) on p processors,
Mmensurable node weights. A set of nd
Wl there exists a such that each node wei
ofrIna Preemptive schedule. a processor may be p
Uing process if such an action results in an improved meas

orithms are due (o Myng, and Coffman (1966)

; woeepg W
Process durar: S independent processes !
OCess duration of ¢Xecution roces!
On times) o . I,and pp
Thfop"mai PS hasacom . LS)trh..'E.. ‘Fn P

l
gs OF"
the larger of the longest proct
Mumber of processors.

o LT T >

MULTIPROK I\\]hl {
-

| 1|£~"”ljm' the set of nodes of un
jdl &% :
enee of disjoint subsets such that

BT | s & =
a3 4 the same subset or at the sam

”I“\-‘lghl in a graph are

dll nodes in g subset are
C level -

o .']t“]L L] T . evel are ¢ atace

Nl or group scheduling. In 3 grap andidates for

.I“ﬂ . h uf N . e
: upies the first level “‘"Clu“‘l"e’)’ Those n dHUbSLL\ o levels
RIS . . ; USC Nodes £)
A gade L ume period preceding the execyy; ¢s which may be
" e e :1». . and so on. The initial or cnlrdOn of the terminal node
s evel, © : ance node |
Loon 1 an assignmen ¢ In the graph
- yh Sucl 8 Lol levels generate what s Eal]q[:d
oS :nt procedure i
’IUI (he assignment p ure outlined aboy
ETIHAR ; 1 : 1
SV itions. That is, the assignment of node
| o CC 5 ELE * ' .)
el Jefers ll‘rOC“:SS‘mmmgmnl:0 lhciidlcm Possible time withoyt increasing
hL E;|C " e, DMUC da SC | a1l)
A com Jetion “f" i edule is called (he latest-scheduling
MU agy ASSUMES that the number of processors availahle i '
Th]ﬁ-""mg) : " - S available s greater
othe maximum num cr o _proccesses at any level (width of G). This
be conlfaf'wd with the c’u.rh('sf-svhvduhng strategy, which schedules
a processor is available and the precedence constraints have
that the carliest strategy produces carliest-precedence parti-

]L‘\'CI‘

¢ corresponds (0 the
Sto levels is done in a

qu;qujl

, MY
VY Sﬂnn 35

. -_uhﬁt?d. Nole

© arbitrary graph G, a precedence relation will exist between the subsets
.'__'.'m,-i Jrategy due (o the precedence which exists between the nodes in the
" juph. A PS can be constructed for graph G by first scheduling the
' qumbered cubset, then the subset at the next lower level, and so on. Note
" 1nasubset consists of only one node, a node from the next lower subset 1s
P i1t does not violate the precedence constraints of the original graph.
. of the subsets 1 scheduled optimally, a subset schedule results. For (wo
s and equally weighted nodes, an optimal subset schedule for G is an
1l PStor G
Titesultis extended to the case of graphs having mutually commensurable
“weghts. [n order to generate the optimal result, it is necessary o convert
- unioanother graph G, in which all nodes have equal weights. This is done
“uzanode of weight ¢, and creating a sequence of n nodes such thatt; = nt,
“ied in Figure 8.17. Note that the integrity of the original graph must be
-l Tt can then be shown that an optimal subset schedule for G, 1s an
-_?’Sfor G.withk = 2.
approach, one must note whether the number of processes at any level
- "4dNs even, then all processes at that level can be executed in the
" “Mount of ume with no idle time for either of the WO processors. If
K ‘Uf Processes 1s not a multiple of two, then the last lh_ree pfOCﬁSSCS o
“dat that leve] can be exccuted in no less than 3 unit, since all pro-
- ol unit duration. By using the form shown in Figure . m'zielc
‘Eienleve] can be executed in minimum time W“hqm-(i?ﬁ?g;;scf
o J :'.l' 1 4 b
: JJlLrlng x.n Eh]S 'munner cnsrlrcs, that nc; P:;c::;(:;;e f heptimal
(ST 10 generate a mimimal-length PS. .| subset sequence
CWninFigure s 19 For this example. the opuima L

ATy, Ty, Tyl (Tos Tale (Tos Thobe £Tud

(@

. ith mutually commensinibe
i 8.17 Comparison of a graph wi of vep
@ :weightse with the corresponding graph having e

Graph G node weights w, = 7, w, = 14, w, = 10 1/2; (b) g
(b) w=31/2.

The optimal results d
number of processors
and the node

in whie?
erived above can be extended to the Cale Troo:z:
are allowed when the computation graph l?gOﬂe n*
Weights ¢; are mutually commensurable. A rooted "eeoo[or ter®
¢ach node has at most one successor, with the exception of the !

: or It
. ues
node.b which has no successors. We discuss below some technid

“mplive schedyles,

nev
Recall that, in fonpreemptive or basjc schedules, a processo” ™
TOCess 15 ded;

_ esti=
i a] !n\ s

disc o0 that process unti it is completed, The it e
.rbnil:rs:cd here de\'elo_p Optima] nOnprcemptiv . two-prOCt?S”O 3 e
a Ty process ordenngs N which a) processes are of unit duratic

MULTIPROCESSING CONTROL AND ALGORITHMS 601

2

(a)
T Ty P 7, s Ll
) n T, T Ty Tio
T I :
2 3 4 5 ¢

(b)

.

601 (OMPUTER ARCHITECTURE AND PARALLEL PROCCHSsING
-

sim
] algor / -scheduling alp 1
list heduling ,;;J.\:J{Ilrrr\ A hist-sched mng 1'&'—‘””"]1 dSS1p i

Ul

il) v algorithms [or non [ee
P{L class of :\l.hl.tlllhﬂ[. £ P U“mpluc i,

Processes and allocates resources (0 the processes With h‘u_-l\. L in, lill,ll
those runnable at any time instant when the resouree h\‘m,\,‘.l'_w —_
or list L for a graph G of n processes s denoted by . (7 5 It '._'|!l!"-..
senls some pcrmul.ilmn of then processes A process iy Sdi 2 / 'i'l
predecessors have been cnmﬁclcd In using a 1?“ & gfnur;i'{‘; e *L’.né}"‘"'--.j
PrOCesSOr 13 assigned to the ﬁrsl ready process lound iy the h“d Scl’ﬂduiluif'
generating such an optimal list 1s described below. St A u]““u, i
The algorithm is a recursive procedure which begipg .),
in ascending order to the process (processes) which g (are) “CTM Ning "
precedence constraints in the process graph. Notice thyy the :uh:q la ﬁ“‘"

these processes is empty. Assignment proceeds “up the raph~) S,
considers as candidates for the assignment of the next sy bscripy a”'n a "‘ﬂnn:. ‘
successors have already been assigned a subscript. Considerg lio pm%u,\.:.l
this manner amounts to ¢xamining processes in a given Iams“prcczdn\ o A
although the processes are not executed at a time tha correspongs enge iy
In effect, the processes in a graph can be initially assigned suhscrlrlnq% e
manner. This algorithm then reassigns subscripts in the metp o4 .0[;: gy,
The list is formed by listing the processes in decreasing su bscrip, n\fdlein i
with the last subscript assigned. The optimal schedule i lormeg Lf‘ t?ugm.m_
ready processes in the list to idle processors. The algorithm i Hlustrygeq Ssigy
8.20 by means of a process graph with reassigned subscripts, (he rcsul:-.,:“ Fiy
and the optimal schedule. Nty

The above algorithm does not always yield optimal tesults wlep (j, -
of processors is increased beyond two, or when the number of py ion h
and processes are allowed to have arbitrary durations. We describe nﬂn,l;:
emptive scheduling method by Hu (1961). Two problems for process o,
duration were addressed. In the first case, given a fixed numbers ol processors
required (o determine the minimum time required (o execute a process graph T:
second case determines the number of processors required (o process i graph
given time.

We begin to arrive at a solution to these problems if we develop a labr
scheme for the nodes of the graph. A node T, is given the label z, = X, +], whe
X, is the length of the longest path from T, to the final node in the graph. Laki
begins with the final node, which is given the label &, = 1. Nodes that are on¥
removed from the final node are given the label 2, and so on. This Iabclmgsch.crf
makes it clear that the minimum time w,,,, required to execute the graph isrelt
10 %y, . the node(s) with the highest numbered label, by

wmm 2 II'!‘II.\:

~ roe
procedure described above, one can obtain an optimal schedule Iorf_F'
by processing a tree of unit-length processes in the following mannet:

pell
The optimal solutions by Hu are limited to rooted trees. USINé ‘ o5l

 _

MUL TIPROCESSING CONTROL AND ALGORITHMS 603

(@)
.—-l-'-
St T T | Ta [T | B ||| D
1K Tl o | T | | T @ |7
=il
2 4 6 8 10
(&)

12 Ilsstration of Coffman and Graham algorithm. (a) Task graph with reassigned subscripts
- T)); (b) optimal schedule. (Courtesy ACM Computing Surveys, Gonzales, Sept.

“w irst the p (or fewer) nodes with the highest numbered label, i.e., the
‘J"Udts If the number of starting nodes is greater than p, choose p nodes
* “dreater than or equal 1o the o, of those not chosen. In case of a tie,
h i arhllrdry
g I‘hcesscd nodes from the graph. Let the term “starting node™

. “Node with no predecessors.
i l dnd

2 for the remainder o! thic i :ph.

ALLEL PROCESSING

R CHITECTURE AND PAR

684 CoMPUTER !

(U]
}|
Figure 8.21 Tihstration of Hu's optimal algorithm. («) Rooted tree labeled sccording ::I;‘;;
() optimal schedule for three processors. (Courtesy ACM Computing Swrveys: Gonza

i’
The schedules generated in this manner are optimal under the stated 09'" |
'mplcmcﬂ

The labeling and scheduling procedures are quite simple 10 !

illustrated in Figure 8.21. b by f
Recall that the minimum time required to execute a task &7 s

procedure is a,,, . Suppose we wish to process a graph within 2 P 8 o

where r=a_. +Cand Cis a nonnegative integer. The mini®

>

MU FIFREE L) L L

& I“mf“ the]!lph i bime 1ois given by
Jd

Y Mt t 1 D oy 4
| 0‘(',|

podes in the graph with label 2, and * « 1
L which maximizes the given expression To ilustrate th
,l,.w“‘ !i) For € (), for example, value 1* occury when |
pigure ﬂ'\ at, 10 order 10 process the graph in minimum time 1o
{ For C=11Lt"= ’f'“d y* occurs when y « 201 y < 5 and
i od cquired varying C further, we find that three processors ase
P L r ‘ must be proccsscd within nine units, but only two pro
.Jn"“mc I‘i't::"mulmum processing tme of 10 units
. by Graham shows lha_l. for a computing system with n ident s
10 & b s arc aSS_lgncd arbitranily 1o the processors, the
ot wh}:hc el orpmccf.Scsmllnolbcmorcthan twice the time required
d rzn‘“"mt.’,dulc. This bound was derived in connection with the so-<alied
¥ '“hmh,s‘ These anomalies are derived from the counterintuity
s ,:“lhc existence of one of the following conditions can lead 1o ar

ocess list L by another list L', leaving the set of process times
R Jence order <, and the number of processors n unchanged

5”:?::“ of the restrictions of the partial ordering

e of the execution times.

“‘ﬂf some
'.;ust the aumber of proccssors.

e agven Pr

, zneral bound has been obtained by executing a set of processes Twice
e 4 first execution, the processes are characterized by the parameiers »
. vand w (the length of the schedule), and during the second execution by »
o pandw suchthat ' < p and every constraint of < 1salsoin <.i¢c. <

<.+ 1n < The result of this general bound is that

w
<+ —
w)

S _ ' _ _
"uui is the best possible, and, for n = ', the ratio 2 — 1/n can be achieved
* Wrtion ofanyon of L, p, or <.
* thove result was extended 10 a nonhomOgeNEOUs Processor System =

gy }”PPOSC a multiprocessor system consists of n, processors of speed
4 ksuch that u, > py > -+ > py 2 1. then

K (%.6)

o
:J < £ +1 -
: Hay

Yy

FSSIN(
aaLLEL PR
F(TUR AND PARA
HITES
; TER AR . —
-~ (MP It . “Ilh one pTI'ILe‘\\.Ur ”"
) qysler 8 -
b (un*'d"[‘ Fq B.6. Wt have b
l'\lmpk iy t--\‘d.-ﬂt' y
W LA UE ol ‘r‘ 2 I |
proets .
<= 3 | 0)
it} ’

!hill in [-q HH ftll d mlllhp[llh_.‘\

(by ‘.uhs.n{un:!p five "!"”"‘?-IE

e tTe I

. of speed §), the ratio 2 — 45 404
{ schedule is more importang g,

I |

T

L \'mp‘lrlng

10 u.h'nl!t"]I h
\[n‘(‘d] of ne | e 10 “p“m‘l

mination o3
sysiem than lor .
Jtions on nptlmdl Ellg;‘lrllhl'll‘ﬂ. bounds haye 1, _
y of nonoptimal algnnlhm_s: The uerLegt nf preceden,. :.
for the behavior of 797 ounds for processing time an the numbg,
can be used 10 generale ire unit-execution lime. As i lfr >

es requl

ures whose nodes - - o

for grar‘h struul“?:ns group processes into subsets to indicate the oy, -
..... p.ml 1C

precedence Juring which processes ¢an be initiated and still guarap,,. °
i “mcume for the graph. This ime 13 given by the number of pay,,
syeculion i P Flovals .t

e of the longest path in the graph. For a graph of A levels. the
g ' s. In order to execute a graph in this mipp,,..

ecution time is @ = N uni graph in
{-r:cLIE:l-r hound on the number of processors p required is given by
¢ C

I N
p> max[max L, N E,|. max [;) !L..'H

Because of the mit

e

1<i<N 1sisN =1

and the upper bound on the number of processors p required is given by

p < min [max |L;|, max E,IJ

1<isALIsisd lsicN

In both cases. L, and E, refer to the ith latest and earliest precedence part
respectively. and | x| represents the cardiality of the set x. The processes con:
in L, ~ E, are called essential processes. Those processes contained in (¥
subset given by L, ~ E, must be imitiated i — | units after the start of the !
process in the graph (o guarantee minimum execution time.

8.3.3 Stochastic Scheduling Models

Using n . ; -
the rfn d‘;‘::f::’";"“w techniques, the execution time of a process T #"
graph G, le(; bl: t}f ‘wkih Cumulative distribution function F;. Given” e

¢ >¢ € random variable representing total execution ime ("

from when a||
processes are ; T
has a cdf F. started until the last process terminates)

Simply in term

sof F, ,)
(1979, for estimating £ ¢ Ve

maung F; for this class,

der ¢ determine the possible exccution of job 7 we dehn
. e dehne
Jill‘l‘ Il.l l"ri'l b pl-'[’h“ A “lll"}.'l.lr\h of a process gy iph (r 15 d Chamn
0 subgraph arc totally ordered. The jengih of a chaim is

5 i the chain IEna cham, it Plf=u.;;'-‘ s T and the

.r" 'm. cay i1t hain m.rm .f, . A subgraph of | prr'.ck-ls‘x araph

M o be L'hallllllll G- In the following defimtion. a L‘I"_I*\ ol

i i:h‘“”' 4 for w_hn:h h’. L’il’l} be expressed simply in lc‘nns ;}I: the
M "w.u[,un ume F. l,ct_l(. Rk ARl € be all chams from inial to
G For each chain C; contaming processes 7. 7 ot X be
il formed by concatenating the p()i-Ynt:mld] vurlai‘lalc‘;

Nt cesses 1., 1, spe |

X oot ed “Iulhxpfg 3_ v 1 ,\:p + - Fespectively. Then G s said to

| "Il‘pt‘ ynﬂm'ul (G) = X, T “ X, can be factored so that
.‘[“L_] e exactly once. Examples of simple and nonsimple process
nl"hlf l-rn in Figure 8.22

eaho , ithms repre :

"Jltl:~s of paw“e[]; algﬂirtlltclr:n in brljocskc-l;:':d by simple process graphs are

.,N hat can be writte : ructured languages with parallel

) mu-l A4 10 synchronlzanon takes place between any of the components
O

‘Jllcihh’d" s independent 1f, for a |

r-"1 [processes is indepen) ny two processes T, and T, in the set.
W \ I 2Xe % | - !

\ ot T,<T.In lhlIS example (Flgqru 8.22u), processes in set

1 f.r I independent. So al§0 are processes in set [Ty, T,}. Figure 8.22

. .;1: orocess graphs 10 explain the simplicity of graphs.

.;.;lk i number of processors in the system. If K > width(G), each process

;\mms execution immediately aft;r the last predecessor completes. Let

. (,beallthe chains from initial to final processes in graph G. Also let

cution time of process T; be t; with cdf F . Then the total execution time of

qem Gis the maximum of the execution times of all the chains in G. That is,

tc = max) I (8.9)

1<ism TyeC
\it that + and max are commutative and associative operations, respec-
\loreover, + distributes over max. For example. max(a. b) + ¢ =
i~ ¢.b+ ¢). Thus, if G is simple, the expression for (; above can be factored
“moimax and + so that each random variable appears only once. Then,
are independent, the expression for Fg may be found by substituting F,
onvolution) for +, and - (multiplication) for max in the expression for
~«maolution of edfs F, and F, is written as follows:

Fi»F,1) = j F(t — u)F; du (8.10)

-f-f}dmplc in Figure 8.23, there are three chains, €, = T, T, C; =
= I T, Therefore -

=max{(f, + 3 + tg) (t, + 1y + 1s) (e ¥ ts))

u

608 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

(@) G;: simple XXy X; +Xp X, X +
X%y = 00 + X8 + X5

(5) G,: simple x,x, +x,x,+
X Xy + X X, = (X, + X, 0x, + X))

Figure 8.22 Examples of simple ad n;:;;
task graphs. (Courtesy /EEE Trans.
(¢) Gy: nonsimple XXy + XX+ Xy, Engg. Robinson, January 1979)

Since ty + tg is common in the first two summations,

tg = max{max(r,, t,) + ty + lg, tg + Is)

| : - on {0
This expression can be factored further by noting that ¢, is com™
summations:

|-|

(L
l¢ = max{max(t,, t,) + (3, e} + 15

>

= max [, + ly +’,)- (‘2"' L+ l"). ("+".‘v”

L

mulﬂ‘“”l' 1) + Iy t)+1 and Isism

of 1 and F for task graph G. (Courtesy IEEE Trans. Software Engg., Robinson

b1l ?ch ran.dom variable appears only once. Hence, F may be found by
L ubstitution rule:
Fa=(((F1'F2)‘F3)'F4)’Fs (8.12)
consider the four-process merge-sort depicted by the
4. Process S; performs the sorting of one distinct subfile
pair of either subfiles a, and a, or a; and a,
tion of process M, or M,, respectively.

4s another example,

zss graph in Figure 8.2
Jhchis a fourth of file A. After the

wrted, they are merged by the execu

Level

R I

i AND P

EOTUR \RALLFL PROCESSING
MU

(TR wRi

610
ombining Wo or more sorted file
lo

aorging 154 method 1% - » merge of the sorted s a
(o o bigur ¢ 24, cach M, 18 ¢d Subfiles “om
n ki _ rog, "
mediale P“"j‘“w‘h oo are equally hikely. the gy
| ”|| Al p.;umumlrnns of keys are ¢4 y Y- then the ey,
¢ I.md §, have (he sam¢ cdf and the exccution times o " Uligy
' 1¢.df el the cdf of the execution umes of the S's be ¢ _1- ang \
W k 3 5 3 v PR 1 ,n' .
V. be e Furthermore. let the cdf ol the execulion time of el
- y=4.615 simple and the pracess-cxeculmm times 4y % be |
I L Al 4T 1Ind.
execution ames of the §,;s and M, be 1, and M, TeSpeqyy, depy _
of the {uur-prw.‘css merge-sortis fvel, "

hie

5.,
a7

the

l.'.\\.'L'UIIOIl Hme
= max{mux{r,, l5,) + M max(ts,. 1s,) 4 1,
; .

!(’ d d
llnt' Cdf | an I“ i 'll”' h. ve [hL' hY:
d

, have the s
' me
Ib‘ Cd!l

SIIICC 1'5;- ;__!- J_\]'

(‘d[0[!“‘ 1S 3
Fe*= ('LI * 'L’}(!I e F,)e F;= (f | « | 313 = [
I the edf of the exceution time for
d o -

This should be compared wil

erge-sort.

Fch:Fl"Fl"Fl*

for the sequential merge-sort 1S

(scqucnllal) m
FyeFoefonh,

since the execution rime

lyeg = Isi T 152 I A TRl Tt ™?
sumes that the processing environment of the s -
45 the concurrent merge-sort. In practice. this s
o-sort does not encounter interprocess-commur

flicts which creatc overheads in the concurrett“:
., is usually less than that predicted by Eq.x[f)

he effect of these overheads on the performan::

Notice that Eq. 8.15 as
merge-sort 18 the same
since the sequential merg
problems or memory con
sort. Hence. n practice. fs
next section, We consider 1
algorithm

Let ji; and Jiq D2 the meane
1o = Fg and fiey = F.,. respectively.
speedup of the four-process merge-sort as

xecution times of the probability densit}

We can then esumale the theos:

Fquation 89 1s not very useful when the cdfs of 1 executic?
are not known. Bounds can be derived for the mean exec by wsE”
hmited knowledge about the execution times of processes Let us &
expected value of a random variable x bv E(x). The level of a process naprs

\ | b
graph G 1s the mavimum length of any chain in G from an nitial Pro< .
level of an’ proces

he process
ution time

The J'.‘{”T] ol . dc.n"“d by depth(G). is the maximum Y

a process graph G with the number of available S 5 width |

\&I{"\ the ! ind-‘r‘:nd"nf ' § d DI pr (& > .;Ij,!-.
ent. let € C. ¢ _ be all chains 10 G from 17"

 d

MUL TIPROC
CESSING
 CONTROL ANty A1
i "”R“H\.[‘ ﬁll

- . o o) "‘ -
ot H, B8 lh;-btltiid“ processes of leve]
any setobh random variabl| i tor | <
M oe L'Si\;' <1< L, whe
4 it s It
E| max |x ‘-) >
— 1) = MNd I Ef v
\l<isn i I(ij;lﬂ(l;”
S5 (8.17)

“pound follows. For the
or the upper bound, Jet ()
2 o = 0 and define

he]‘“"L‘l .

- o Hy 8 empty: otherwise £ (i, j) is the index of the si

son from Eq. 8.9 of the single process in
. max :
e 15:5»1(15251.{{“'“) 8 I Z max (L) 8

Siet igiem ” (8.18)

max (Z E(t -)) < E(tg) < 7
<igm\T €6 ; = Iaz-_:!,b ;na: IJ") (8.19)

8.19 is useful only if something can be said about

. bound 1 EQ
It from order statisticsis that, if the random variabl
es

-l

‘) An apphcable resu
My are independent and identically distribu Li '
_ y ind ted
.: o i ol ed (i.i.d.) with the mean
E{ max [x;]} <p+ m_—l o 820
j<igm J2m — 1 (8.40)

. jthe number of available processors K = width(G), thet/'s are independent,
= j I cal : :
;)= Land the m, processes on level j have identically distributed execution

i the mean g, and standard deviation g;, then

Y u < Elg) < Y (,uj + T’_;:]—_ a’) (8.21)
V-'Izm; = I

1<j<L

1<j<L
ulated to invesuigate the
form of queucing systems.
nd attributes of the
of the interarrival

odels are often form
hods that take the
n characterisu’cs a

distribution functions
processes, and the specification of the
scheduling rule which

'.-_-u:ing model Probabilistic m
o of dynamic scheduling met

--3_f:qmre the specification of certa
.7 system, such as the probability

.'.r . X

G jilzrﬂf:'C;:_sses, the service times of the

N : ' . . - . »
pline. The service or queueing discipline 15 the

ted and the processor-

“Mine
.:rgnn.:;ﬁ:g;}:; Sﬁqgcnce in Which processes are execu L
" usually ma; time a pr ocess 1s_selccted for service. of assump
% These in Ic regarding queucing systems to ma
*“Mence of Ihcc tide “_‘e lndepend'ence_ of processes an
Ty Simple mmcllefarrwal and service times.
“ Docessing ccl) el of scheduling in 2 multi
may b ements and a single infinit¢ queue 0
i e ARPEOPFIARE for a system with 2 globa
 Mean processing time of processes on eac

N

-

e TURE aND b AR A LAESR § T T
§

$12 CoMPUTER ARCY
cesses to the system is 1/
mean mlcrnrmnl fime of proct S - Assum;
nentially distributed and ¢, Ming the
th

and mtrrarmal (ymes ar¢
t-come-first-serve Sery:
(FCFS)‘ v Vice LY

B - mmon firs
proce s5Cs IS the €O ' ; " e
(ors can be obtained. FI8U 8.25 illustrates the resulting 10y p:‘clmlh;

d areserviced atar Ueye: Moy ¢
ate lle rJ[I_‘
M- The i "8 "

E:;nch processes armve at arate Aan
processors 18 " "'Ihlaliu;?
p= E i
where u 1s the traffic intensity and 1s defined by u = 4/u. The i t
(]976)] an responstl

of processes 1S [chinrock
Clp,u) 1
+

Rp. W) = 31 — m
(.) up(l = p)
ula and is given by

“P

P-

W’ + pl(1 = p)

where C(p, 4) 18 Erlang's C form

Cp.) = —
u

=y n!
scheduling algorithms, such as rounq),

npreemptive priority service disciplines, which can t:gbm (
ems. In an RR service discipline, each time 5 o
lected from the head of the ordered queue andI;rIJGm
alled the time slice or quantum. Ifa processtcrmo-w‘
it departs from the processor. H;T‘

There arc a number of other

preemplive, and no
by the use of queueing syst
selected for execution, itisse

a fixed duration of run time ¢
execution before the end of the quantum,

Task arrival
a
rate, A

Queue

Proces!ors ;.4"
altp™

Figure B.15 Queueing mode! of first
t-serve scheduling disciplise io *

 d

MULTIPROCESSING CONTROL AND ALGORITHMS 613

L rocess has not completed its execution (requires additional
w rccyClCd (o the end of the queue to await its next selection. New
! Ts gmp! join the end of the queue. The RR service discipline can be

! "‘h (he precmplWC_Pffoflly discipline to create a multilevel round-robin
H;-J‘”", cipline This dls‘:'l’h“‘fc 1S used to give higher priority processes
lower priority ones. Policies based on priority can be

|
f"""ggnt control tha? .
W onity of 3 process remains fixed) or dynamic (if the priority of a

r
| Ih"g Cd 10 chaﬂgc)-_
BT service disciplt

ne, a process in the run state is interrupted at the
a ter the ready state. An external event may cause the
s qu{d unning Process: These transitions may necessitate a context switch.
(ng o“c 4 running process can cause an explicit process switch by invoking
prmers For example, in the case of a fault, the process can cause a

ro(her i
G e ,ns[rucllon- . :
o itches context to the operating system, as in the IBM 370 supervisor

tion to be described in Chapter 9.
eduling operations are used to control the load on the multi-

pgterm sch . 1 .o
<0 syslem by makmg decisions on .ac!walmg New processes. One method
oplement the schedule 1s to use priority queues for incoming processes.

system may result in indefinite postponement of

-zation of processes in a
worty processes i the arrival rate of the high priority processes is high. A

processes which cooperate 1o solve a problem may be given higher priority
. sngle ndependent process.

uiee there are many processors as

1 be useful to perform group scheduling,

med 10 processors (o run simultaneously.

it placement decisions for groups of objects at a time,

{ohyects in and out. These different group schedulers

Tige First, if closely related processes run in parallel, blocking due to

nzation and frequency of context switching may be reduced. These will

| ud in increasing performance. Second, if placement decisions are made

" "i_:fvb;ccts with known reference patterns, the “distapc_e“l between the

"’1{‘;.5:-? and their referenced objects might be minimized. Hence,

_ " management for a set of related processes IS easier since

”&? Ior.shanng is restricted to the short presence of lhg processes

, general. a group assignment will not be very successfulIn lessening
_Untext switches unless the processes within the groupare “inste

“M will be hlocked from lack of input Of other synchronization

M
'.5"’:] instruc

well as memory modules to be scheduled,
in which a set of related processes are
Group scheduling can be extended
or to swap groups of
have several possible

