

CHAPTER

ONE

INTRODUCTION TO PARALLEL PROCESSING

of parallel processing on high-performance eomputers are intro- 1sic concepts of

Aiced in this chapter. We will review the architectural evolution, examine various

forms of concurrent activities in modern computer systems, and assess advanced

nlications of parallel processing computers. Parallel computer structures will be

characterized as pipelined computers, urray processors, and multiprocessor systems.

Several new computing concepts, including data fow and VLSI approaches, will

ke introduced. The material presented in this introductory chapter will provide an

overview of the field and pave the way to studying in subsequent chapters the

details of theories of parallel computing, machine architectures, system controls,

fast algorithms, and programming requirements.

1.1 EVOLUTION OF COMPUTER SYSTEMS

Over the past four decades the computer industry has experienced four generations

of development, physically marked by the rapid changing of building blocks from

relays and vacuum tubes (1940-19S0s) to discrete diodes and transistors (1950-

1960s), to small- and medium-scale integrated (SSI/MSI) circuits (1960-1970s),

and to large and very-large-scale integrated (LSI/VLSI) devices (1970s and

beyond). Increases in device speed and reliability and reductions in hardware

cOst and physical size have greatly enhanced computer performance. However,

Detter devices are not the sole factor contributing to high performance. Ever since

the stored-program concept of von Neumann, the computer has been recognized
as more than just a hardware organization problem. A modern computer system is

reaily a composite of such items as processors, memories, functional units, inter

onection networks, compilers, operating systems. peripheral devices, communica-

tion channels, and database banks.
1o design a powerful and cost-effective computer system and to devise efficient

PrOgrams to solve a computational problem, one must understand the underlying

2 cOMPUTER ARCHITECTURE AND PARALLEL PROCESSING

hardware and software system structures and the computing algorithms to h

implemented on the machine with some user-oriented programming languagee

These disciplines constitute the technical scope of computer architecture. Compute

architecture is really a system concept integrating hardware, software, algorithme

and languages to perform large computations. A good computer architect should

master all these disciplines. It is the revolutionary advances in integrated circuits

and system architecture that have contributed most to the signiñcant improvement

of computer performance during the past 40 years. In this section, we review the

generations of computer systems and indicate the general trends in the development

of high performance computers.

1.1.I Generations of Computer Systems
The division of computer systems into generations is determined by the device

technology, system architecture, processing mode, and languages used. We con.

sider each generation to have a time span of about 10 years. Adjacent generations
may overlap in several years as demonstrated in Figure 1.1. The long time span is

intended to cover both development and use of the machines in various parts of

the world. We are currently in the fourth generation, while the fifth generation is

not materialized yet.

The first generation (1938-1953) The introduction of the first electronic analog
computer in 1938 and the first electronic digital computer, ENIAC (Electronic

Numerical Integrator and Computer), in 1946 marked the beginning of the first
of computers. Electromechanical relays were used as switching devices

Computer
generation

Fourth *************

Third ***** ******* '' ***********

Second ***************

First

1940 1950 1960 1970 1980 1990 Yar

igure 1.1 The evolution of computer system

INTRODUCTION TO PARALLEL PROCESSING 3

in
connected

he 1940s, and vacuum tubes were used in the 1950s. These devices were inter
force

nected by insulated wires. Hardware components were expensive then, which

fixed-

d the CPU structure to be bit-serial: arithmetic is done on a bit-by-bit d.noint basis, as in a ripple-carry addition which uses a single full adder and
one bit of carry flag.

Only binary-coded machine language was used in early computers. In 1950, the first stor frst stored-program computer, EDVAC (Electronic Discrete Vai iable Auton matic Computer), was developed. This marked the beginning of the use of
system Software to relieve the user's burden in low-level programming. However, not dificult to imagine that hardware costs predominated and software nOuage features vere rather primitive in the early computers. By 1952, IBM had
language featur

annou announced its 701 electronic calculator. The system used Williams' tube memory, magnetic drums, and magnetic tape.

The second generation (1952-1963) Transistors were invented in 1948. The first
ransistorized digital computer, TRADIC, was built by Bell Laboratories in 1954.
Diccrete transistors and diodes were the building blocks: 800 transistors were
used in TRADIC. Printed circuits appeared. By this time, coincident current
magnetic core memory was developed and Subsequently appeared in many

machines. Assembly languages were used until the development of high-level

languages, Fortran (Jormula translation) in 1956 and Algol (algorithmic language)

in 1960.
In 1959, Sperry Rand built the Larc system and IBM started the Stretch

projeet. These were the first two computers attributable to architectural improve

ment. The Larc had an independent 1/0 processor which operated in parallel with

one or two processing units. Stretch featured instruction lookahead and error
correction, to be discussed in Section 1.2. The first IBM scientific, transistorized
computer, IBM 1620, became available in 1960. Cobol (common business oriented

language) was developed in 1959. Interchangeable disk packs were introduced
in 1963. Batch processing was popular, providing sequential execution of user

programs, one at a time until done.

Ihe third generation (1962-1975) This generation was marked by the use of

mail-scale integrated (SSI) and medium-scale integrated (MSI) circuits as the

bsic building blocks. Multilayered printed circuits were used. Core memory was

ed in CDC-6600 and other machines but, by 1968, many fast computers,
Ke CDC-7600, began to replace cores with solid-state memories. lgn-icve
ages were greatly enhanced with intelligent compilers during this period.

uprogramming was well developed to allow the simultaneous execution of

program segments interleaved with I/0 operations. Many high-performance
andputers, like IBM 360/91, liac IV, TI-ASc, Cyber-175, STAR-100, and C.mmp,
Oeral vector processors were developed in the early seventies. Time-sharin8
perating systems became available in the late 1960s. Virtual memory was de-

veloped by using hierarchically structured memory systems.

hasize
tions.

The present generation computers emni

The fourth generation
(1972-present)

The present generation computers emn 4 COMPUTER
ARCHITECTURE

AND
PARALLEL

PROCESSING

the use of large-scale integrated (LSI) circuits for both logic and memory size nded

processors. Most operating systems are time-sharing, using virtual memor

s,

High-density packaging has appeared. High-level languages are being extns,

to handle both scalar and vector data, like the
extendedFortran in man

es.

Vectorizing compilers have appeared in the second generaion or vector machin

like the Cray-1 (1976) and the Cyber-205 (1982). High-speed mainframes

supers appear in multiprocessor systems, like the Univac 110/80 (1976), Fuiis
and

(1978), and the Cray X-MP (1983). A high degree of pipelining and multiprocessin.

parallel
M 382 (1981), the IBM 370/168 MP, the IBM 3081 (1980), the Burroughs B-7R0

ing
A massively

is greatly emphasized in commercial
supercomputers. A massively parallel

processor (MPP) was custom-designed in 1982. This MPP, consisting of 16.38

bit-slice microprocessors, is under the control of one array controller for satellite

image processing

The future Computers to be used in the 1990s may be the next generation. Very

large-scale integrated (VLSI) chips will be used along with high-density modular

design. Multiprocessors like the 16 processors in the S-1 project at Lawrence

Livermore National Laboratory and in the Denelcor's HEP will be required.

Cray-2 is expected to have four processors, to be delivered in 1985. More than 1000

mega floal-point operations per second (megaflops),are expected in these future

supercomputers. We will study major existing systems and discuss possible future

nahiner in suhseauent chapters.

1.2 PARALLELISM IN UNIPROCEssOR SYSTEMS

Most general-purpose uniprocessor systems have the same basic structure In

this section, we will briefly review the architecture of uniprocessor systems. Th

development of parallelism in uniprocessors will then be introduced categoricallv
It is assumed that readers have had at least one basic course in the past on con.

ventional computer orgar ization. Therefore, we will provide only concise specifi-
cations ofthe architectural features of two popular commercial computers. Parallel
processing mechanisms and methods to balance subsystem bandwidths will then
be described for a typical uniprocessor system. Details of these structures, mechan-
isms, and methods can be found in references suggested in the bibliographic notes.

1.2.1 Basic Uniprocessor Architecture

A typical uniprocessor computer consists of three major components: the main

memory, the central processing unit (CPU), and the input-output (1/0) subsystem
The architectures of two commercially available uniprocessor computers are given
below to show the possible interconnection of structures among the three sub-
systems. We will examine major components in the CPU and in the 1/0 subsystem.

INTRODUCTION TO PARALLEL PROCESSING 9

Console

CPU

RO PC

Main
FlopPY
disk

memory
(2 32 words ALU R15
of 32 bits

Registers
Local memory

each)

Synchronous backplane interconnect (SBI)

Massbus
adapter

Unibus Unibus Massbus
adapter

1/0 devices 1/0 devices

SBI 1/0

device Input-output subsystem

Figure 1.3 The system architecture of the supermini VAX-11/780 uniprocessor system (Courtesy of

Digital Equipment Corporation).

Figure 1.3 shows the architectural components of the super minicomputer

VAX-11/780, manufactured by Digital Equipment Company. The CPU contains

the master controller of the VAX system. There are sixteen 32-bit general-purpose

registers, one of which serves as the program counter (PC). There is also a special

CPU status register containing information about the current state of the processor

and of the program being executed. The CPU contains an arithmetic and logic unit

HLU) With an optional floating-point accelerator, and some local cache memory

WIth an optional diagnostic memory. The CPU can be intervened by the operator

through the console connected to a floppy disk.

CU, the main memory (25 words of 32 bits each), and the 1/O sub-

yms are all connected to a common bus, the synchronous backplane inter-

wi B). Through this bus, all I/O devices can communicate with each other,

ne U, or with the memory. Peripheral storage or I/0 devices can be con-

directly to the SBI through the unibus and its controller (which can be

nnected to PDP-ll series minicomputers), or through a massbus and its con
troller.

System
An 330presentative commercial system is the mainframe computer IBM

/0/Model 168 uniprocessor. shown in Figure 1.4. The CPU contains t

0 COMPUTER
ARCHITECTURE AND

PARALLEL
PROCESSING

Main memory

Logical storage units

LSU2 LSU3
LSUO LSUI

Storage controller

Central processing unit
(CPU)

1/0 channels

1/0 subsystem

Figure 1.4 The system architecture of the mainframe IBM System 370/Model 168 uniprocessor computer (Courtesy of International Business NMachines Corp.).

instruction decoding and execution units as well as a cache. Main memory is
divided into four units. referred to as logical storuge units (LSU). that are four-way interleaved. The storaye controller provides multiport connections between the
CPU and the four LSUs. Peripherals are connected to the system via high-speed I0 channels which operate asynchronously with the CPU. In Chapter 9, we wil show that this uniprocessor can be modified to assume some multiprocessor conhgurations.

Hardware and software means to promote parallelism in uniprocessor systems are introduced in the next three subsections. We begin with hardware approache which emphasize resource multiplicity and time overlapping. It is necessary to
balance the processing rates of various subsystems in order to avoid bottlenecks and to increase total sy'stem throughput, which is the number of instructions (Or
basic computations) performed per unit time. Finally, we study operating system software approaches to achieve parallel processing with better utilization of tne

system resources

INTRODUCTION TO PARALLEL PROCESSING 11 1.2.2 Parallel Processing Mechanisms
of parallel processing mechanisms have been developed in uniprocessor
ber of parallel

A nu We identify them in the following six categories:
computers. We ident

Multiplicity of functional units
Parallelism and pipelining within the CPUJ
Overlapped CPU and 1/0 operations

.Use of a hierarchical memory system
Balancing ol subsystem bandwidths

Multiprogramming and time sharing

We will describe belor will describe below the first four techniques and discuss the remaining two
proaches in the subsections to follow.

logic unit in its nic unit in its CPU. Furthermore, the ALU could only perform one function at a
time, a rather slow process 1or executing a long sequence of arithmetic logic

instructions. In practice, many of the functions of the ALU can be distributed to

Multiplicity of functional units The early computer had only one arithmetic and

multiple and specialized functional units which can operate in parallel. The

COC-6600 (designed in 1964) has 10functional units built into its CPU (Figure 1.5).

These 10 units are independent of each other and may operate simultaneously. A

scoreboard is used to keep track of the availability of the functional units and

registers being demanded. With 10 functional units and 24 registers available, the

instruction issue rate can be significantly increased.
Another good example of a multufunction uniprocessor is the IBM 360/91

(1968), which has two parallel execution units (E units): one for fixed-point

Peripheral
10 Add

processors
functional

units Multiply

Multiply
PPO Divide

PP1

PP2
Fixed add
Increment

PP3
PP4

24

12 registers
Increment

Central
peripheral
channels

Boolean
storage

PPS
PP6
PP7

Shift

Branch

PP8
Instruction

stack PP
Scoreboard

1/0 subsystem
Central processor

Memory

Figure 1.5 The system System architecture of the CDC-6600 computer (Courtesy of Control Data Corp.).

12 OMPUTER ARCHITECTURE AND PARALLFL PROCESSINCG

ating-
arithmetic. and the other for tloating-point arithmetic. Within the floati.

E unit are two functional units: one for floating-pOint add-subtract and tPOn
for foating-point multiply-divide. IBM 360,91 is a highly pipelined, multi oher
scientific uniprocessor. We will study 360/91 in detail in Chapter 3. Almon,

actice
units to perform parallel or simultaneous arithmetic logic operations. This Dra

array processors of functional specialization and distribution can be extended to array prce

modern computers and attached processors are equipped with multiple fun

and multiprocessors. to be discussed in subsequent chapters.

Parallelism and pipelining within the CPU Parallel adders, using such technin as carry-lookahead and carry-save, are now built into almost all ALUs. Thie
contrast to the bit-serial adders used in the first-generation machines. High-sDeed multiplier recoding and convergence division are techniques for explorina parallelism and the sharing of hardware resources for the functions of multinl and divide (to be described in Section 3.2.2). The use of multiple functional unite is a form of parallelism with the CPU.

Various phases of instruction executions are now pipelined, including instruc. tion fetch, decode, operand fetch, arithmetic logic execution, and store result. To facilitate overlapped instruction executions through the pipe, instruction prefetch and data buffering techniques have been developed. Instruction and arithmetic pipeline designs will be covered in Chapters 3 and 4. Most commercial uniprocessor systems are now pipelined in their CPU with a clock rate between 10 and 500 ns.

s is in

Overlapped CPU and l/0 operations 1/0 operations can be performed simul. taneously with the CPU computations by using separate 1/0 controllers, channels, or 1/0 processors. The direct-memory-access (DMA) channel can be used to provide direct information transfer between the 1/0 devices and the main memory.
The DMA is conducted on a cyele-stealing basis, which is apparent to the CPU. Furthermore. 10 multiprocessing. such as the use of the 10 1/0 processors in CDC-6600(Figure 1.5), can speed up data transfer between the CPU (or memory)
and the outside world. I/0 subsystems for supporting parallel processing will be
described in Section 2.5. Back-end database machines can be used to manage large
databases stored on disks.

Use of hierarchical memory system Usually, the CPU is about 1000 times faster
than memory access. A hierarchical memory system can be used to close up the
speed gap. Computer memory hierarchy is conceptually illustrated in Figure 1.6.
The innermost level is the register files directly addressable by ALU. Cache memory
can be used to serve as a buffer between the CPU and the main memory. Block
access of the main memory can be achieved through multiway interleaving across
parallel memory modules (see Figure 1.4). Virtual memory space can be establishea
with the use of disks and tape units at the outer levels. Details of memory subsystems for both uniprocessor and multiprocessorcomputers are given in Chapter 2. Various interleaved memory organizations are

given ih Section 3.1.4. Parallel memories for array processors are treated in

INTRODUCTION TO PARALLEL PROCESSING 13

CPU

|Registers

Cache

Main memory
(RAMs or core)

Fixed-head disks, drum,
charge-coupled devices,

or magnetic bubble memory

Moving head disks

Magnetic tape units

Figure 1.6 The classical memory hierarchy.

Section 6.2.4, along with the description of the Burroughs Scientific Processor

u/8). Multiprocessor memory and cache coherence problems will be treated in

Section 7.3. All these techniques are intended to broaden the memory bandwidth

to match that of the CPU.

1.2.3 Balancing of Subsystem Bandwidth
general, the CPU is the fastest unit in a computer, with a processor cycle tp
ens of nanoseconds; the main memory has a cycle time t of hundreds O

ofs nds, and the 1/0 devices are the slowest with an average access time la nano
Ol a few milliseconds. It is thus observed that

(1.1) tm,

14 COMPUTER ARCHITECTURE AND PaRALLEL PROCESING

For example, the IBM 370/168 has = S ms (disk), , = 320 ns, and

With these speed gaps between the subsystems, we need to match the
bandwidths in order to avoid a system bottleneck problem.

The bandwidth of a system is defined as the number of operations perfor

per unit time. In the case of a main memory system, the memory bandwida

measured by the number of memory words that can be accessed (either fetch

store) per unit time. Let W be the number of words delivered per memory cycle
Then the maximum memory bandwidth B, is equal to

80 ns heir rocessing

formed
th is sed (either fetch

ot

W
B (words/s or bytes/s)

(1.2)
For example, the 1BM 3033 uniprocessor has a processor cycle 1, = $7 ns. Eigh

double words (8 bytes each) can be requested from an eight-way interleaved
memory system (with eight LSEs in Figure 1.7) per each memory cycle t. 456 ns. Thus, the maximum memory bandwidth of the 3033 is B, = 8 x 8 bytes/4sk ns 140 megabytes/s. Memory access conflicts may cause delayed access of some of the processor requests. In practice the utilized memory bandwidth B"m is usuallv lower than B; that is, B BA rough measure of B, has been suggested as

B B
M (1.3)

where M is the number of interleaved memory modules in the memory system (to be described in Section 3.1.4). For the 1BM 3033 uniprocessor, we thus have an approximate B = 140//8 = 49.5 megabytes/s. For external memory and 1/0 devices, the concept of bandwidth is more involved because of the sequential-access nature of magnetic disks and tape units. Considering the latencies and rotational delays, the data transfer rate may vary. In general, we refer to the average data transfer rate B, as the bandwidth of a disk unit. A typical modern disk may have a data rate of I megabyte/s. With multiple disk drives, the data rate can increase to 10 megabytes/s, say for 10 drives per channel controller. A modern magnetic tape unit has a data transfer rate around 1.5 megabytes/s. Other peripheral devices. like line printers, readers/punch, and CRT terminals, are much slower due to mechanical motions. The bandwidth of a processor is measured as the maximum CPU computation rate B,. as in 160 megaflops for the Cray-1 and 12.5 million instructions per second (MIPS) for 1BM 370/168. These are all peak values obtained by 1/t, = 1/12.5ns and /80 ns respectively. In practice the utilized CPU rate is B B The utilized CPU rate B is based on measuring the number of output results (in words) per second:

(words/s) , (1.4)
where R. is the number of word results and T, is the total CPU time required 1o generate the R results. For a machine with variable word length. the rate wil vary. For example. the CDC Cyber-205 has a peak CPU rate of 200 megaflops for

INTRODUCTION TO PARALLEL PROCESSING 15

Bytc 0 LSE

Byte 7

Eight
double

words Byte 8 LSE

(64 bytes)
or

sixteen

32-bit
words

are

accessed

Byte 15 per
rmemory

cycle

Bvte 56 LSE

Be 63

Logical
storage elements

gure1.7 The interlea ed memory structure in 1BM 033 uniprocessor.

16 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

32-bit results and only 100 megaflops for 64-bit results (one vector processor js

assumed).
Based on current technology (1983), the following relationships have been

observed between the bandwidths of the major subsystems in a high-performance
uniprocessor:

(1.5) B,2B2 B,2 B,> B,
This implies that the main memory has the highest bandwidth, since it must be
updated by both the CPU and the I/O devices, as illustrated in Figure 1.8. Due to the unbalanced speeds (Eq. 1.1), we need to match the processing power of the three subsystems. Two major approaches are described below.

Bandwidth balancing between CPU and memory The speed gap between the CPU and the main memory can be closed up by using fast cache memory between them The cache should have an access time 1, = 1,. A block of memory words is moved from the main memory into the cache (such as 16 words/block for the IBM 3033) so that immediate instructions/data can be available most of the time from the cache. The cache serves as a data/instruction buffer. Detailed descriptions of cache memories will be given in Sections 2.4 and 7.3

Bandwidth balancing between memory and 1/0 devices Input-output channels with different speeds can be used between the slow 1/0 devices and the main memory. These 1/0 channels perform buffering and multiplexing functions to transfer the data from multiple disks into the main memory by stealing cycles from the CPU. Furthermore, intelligent disk controllers or database machines can be used to filter out the irrelevant data just off the tracks of the disk. This filtering will alleviate the 1/0 channel saturation problem. The combined buffering, multi plexing, and filtering operations thus can provide a faster, more effective data transfer rate, matching that of the memory. In the ideal case, we wish to achieve a totally balanced system, in which the entire memory bandwidth matches the bandwidth sum of the processor and 1/0 devices; that is,

B+ B = B (1.6)
where B = B, and B = B are both maximized. Achieving this total balance requires tremendous hardware and software supports beyond any of the existing systems.

1.2.4 Multiprogramming and Time Sharing
Even when there is only one CPU in a uniprocessor system, we can still achieve a high degree of resource sharing among many user programs. We will briefly review the concepts of multiprogramming and time sharing in this subsection. These are software approaches to achieve concurrency in a uniprocessor system. Tte

(B
)

De
vic

e
1

/O
 s

y
st

e
m

M

ai
n

m
em

or
y

C
P

U

C
ac

he

Re
gi

ste
rs

m

em
or

y
fo

r

1
/O

 c
h

an
n

el
s

In
tel

lig
en

t
de

vi
ce

co

nt
ro

lle
rs

 o
r

da
tab

as
e

m
ac

hi
ne

fil

ter
ing

)

D
ev

ic
e

in
st

ru
ct

io
ns

M

em
or

y
m

od
ul

es

an
d

da

ta

D
ev

ic
e

A
L

U

(In
te

rle
av

ed
)

(B
uf

fe
rin

g.
m

ul
tip

iex
in

g)

AL
U

*
*

*
*

D

ev
ice

Se
co

nd
ar

y
St

or
ag

es

Fi
gu

re
 1

.8

B
an

dw
id

th
 b

al
an

ci
ng

 m
ec

ha
ni

sm
s

be
tw

ee
n

C
P

U
,

m
em

or
y,

 a
nd

 1
/0O

 s
ub

sy
ste

m
 in

 a

un
ip

ro
ce

ss
or

 c
om

pu
te

r.

conventional
batch processing is illustrated by the sequential

execution in i

1.9a. We use the notation i, c, and o to represent
the input, compute, anc

operations, respectively.

in Figure
and output

1 COMPUTER
ArCHITECTURE

AND
PARALLEL

PROCESSING

Multiprogramming Within the same time interval, there may be multiple proces. are

aware of the fact that some computer programs are CPU-bound (computari the

among the various functional units. The program interleaving 1S intended t s.

ltiple processe

active in a computer. competing for memory, 1/0, and CPU resources. We

1o
Multiprogra

intensive), and some are 1/0-bound (input-output
intensive). We can mix

execution of various types of programs in the computer to balance bandwidthe

promoie better resource utilization through overlapping /o and CPU operations

As illustrated in Figure 1.9b, whenever a process P 1S tied up with I/0 opera.

tions, the system scheduler can switch the CPU to process P2. This allows the

Simultaneous execution of several programs in the system. when P2 is done

the CPU can be switched to P3. Note the overlapped 1/0 and CPU operations and

thé CPU wait time are greatly reduced. This interleaving of CPU and 1/0 opera

tions among several programs is called multiprogramming. The programs can be
mixed across the boundary of user tasks and system processes, in either a mono-

programming or a multiprogramming environment. The total execution time is
reduced with multiprogramming. The processes P. P2..... may belong to the

same or different programs.

Time sharing Multiprogramming on a uniprocessor is centered around the sharing

of the CPU by many programs. Sometimes a high-priority program may occupy
the CPU for too long to allow others to share. This problem can be overcome by
using a time-sharing operating system. The concept extends from multiprogram-
ming by assigning fixed or variable time slices to multiple programs. In other words,
equal opportunities are given to all programs competing for the use of the CPU.
This concept is illustrated in Figure 1.9e. The execution time saved with time
sharing may be greater than with either batch or multiprogram processing modes.

The time-sharing use of the CPU by multiple programs in a uniprocessor
computer creates the concept of virtual processors. Time sharing is particularly

effective when applied to a computer system connected to many interactive ter-
minals. Each user at a terminal can interact with the computer on an instantaneous
basis. Each user thinks that he or she is the sole user of the system. because tne response is so fast (waiting time between time slices is not recognizable by humans).

Time sharing is indispensable to the development of real-time computer systems. Time sharing.was hrst developed for a uniprocessor system. The concept ca be extended to designing interactive time-sharing multiprocessor systems. course. the time sharing on multiprocessors is much more complicated. We wi" discuss the operating system design considerations for multiprocessor systems "

Chapters 7. 8. and 9. 1The perlormance of either a uniprocessor or a multiprocesso system depends heavly on the capability of the operating system. After all, tn major function of an operating system is to optimize the resource allocation an
management, which often leads to high performance

P

2
P

(a
)

B
a
tc

h
 p

ro
c
e
ss

in
g

C
P

U
 p

ha
se

P
C

O2

T

im
e

P
C3

sa

v
e
d

P

1
/0

 ph
as

e

(b
)

M
u

lt
ip

ro
g

ra
m

m
ed

 p
ro

ce
ss

in
g

3
2

C
P

U
 p

h
a
se

T
im

e
 s

av
ed

C

2
i:

in
p

u
t

Pa

C
:c

o
m

p
u

te

O
:o

u
tp

u
t

P
O3

,1
/o

1/

0 p
hase

(c

)
T

im
e
-s

h
a
re

d
 p

ro
ce

ss
in

g

F
ig

u
re

 1
.9

O

p
e
ra

ti
n

g
 s

y
st

e
m

 a
p

p
ro

a
c
h

e
s

to
 a

ch
ie

v
e

p
a
ra

ll
e
l

p
ro

c
e
ss

in
g

 i
n

 a
 u

n
ip

ro
c
e
ss

o
r

c
o

m
p

u
te

r.

COMPUTER ARCHITECTURE AND PARALLEL PROCESSIN

13 PARALLEL COMPUTER STRUCTURES

The basic Parallel computers are those systems that emphasize parallel processing, The e divide bas
architectural features of parallel computers are introduced below. We diyid

parallel computers into three architectural configurations.

. Pipeline computers

Array processors
.Multiprocessor systems

A pipeline computer performs overlapped computations to exploit tempora
parallelism. An array processor uses multiple synchronized arithmetic logiC units
to achieve spatial parallelism. A multiprocessor system achieves asynchronous
parallelism through a set of interactive processors with shared resources (memories

database, etc.). These three parallel approaches to computer system design are not
mutually exclusive. In fact, most existing computers are now pipelined, and some

Ol them assume also an "array" or a "multiprocessor structure. The fundamental
difference between an array processor and a multiprocessor system is that the
processing elements in an array processor operate synchronously but processors in a multiprocessor system may operate asynchronously.

New computing concepts to be introduced in this section include the data filow computers and some VLSI algorithmic processors. All these new approaches
demand extensive hardware to achieve parallelism. The rapid progress in the VLSI technology has made these new approaches possible.

1.3.1 Pipeline Computers

Normally, the process of executing an instruction in a digital computer involves four major steps: instruction fetch (IF) from the main memory; instruction de- coding (1D), identifying the operation to be performed; operand fetch (OF), if needed in the execution; and then execution (EX) of the decoded arithmetic logic operation. In a nonpipelined computer, these four steps must be completed before the next instruction can be issued. In a pipelined computer, successive instructions are executed in an overlapped fashion, as illustrated in Figure 1.10. Four pipeline stages, IF, ID, OF, and EX, are arranged into a linear cascade. The two space- time diagrams show the difference between overlapped instruction execution and sequentially nonoverlapped execution.
An instruction cycle consists of multiple pipeline cycles. A pipeline cycle can be set equal to the delay of the slowest stage. The flow of data (input operands, intermediate results, and output results) from stage to stage is triggered by a ccmmon clock of the pipeline. In other words, the operation of all stages is synchronized under a common clock control. Interface latches are used between adjacent segments to hold the intermediate results. For the nonpipelined (non overlapped) computer, it takes tour pipeline cycles to complete one instruction. Once a pipeline is filled up, an output result is produced from the pipeline on each

INTRODUCTION TO PARALLEL PROCESSING 21

S S (Stages)

ID OF EX

(a) A pipelined processor

Pipeline

stages

O/P

EX
4 44|4

IB 44|
OF

6 7 89 Time
2 3 4

(pipeline
cycles)

(6) Space-time diagram for a pipelined processor

Stages

o/p 0/p o/p

X

OF

ID

Time
8 9 10 11 12 13

2 4 5

(c) Space-time diagram for a nonpipelined processor

Figure 1.10 Basic concepts of pipelined processor and overlapped
instruction execution.

cycle. The instruction cycle has been effectively reduced to one-fourth of the

original cycle time by such overlapped execution.

Theoretically, a k-stage linear pipeline processor
could be at most k times

laster. We will prove this in Chapter 3. However, due to memory conflicts, data

ependency, branch and interrupts, this ideal speedup may not be achieved for

-o-sequence computations. What has been described so far is the instruction

Ppelne. For some CPU-bound instructions, the execution phase can be further

partlioned into a multiple-stage
arithmetic logic pipeline, as for sophisticated

COMPUTER ARCHITECTURE AND PARALLEL PROCESSIN

line computer ffoating-point operations. Some main issues in designing a pipelin

ling
nclude job sequencing, collision prevention, congestion control, branch

with
hand

each
reconfiguration, and hazard resolution. We will learn how to cope wit|
these problems later.

Due to the overlapped instruction and arithmetic execution, it is s obvious that
pipeline machines are better tuned to perform the same operations repeated
through the pipeline. Whenever there is a change of operation, say from add.
py, the arithmetic pipeline must be drained and reconfigured, which wi
cause extra time delays. Therefore, pipeline computers are more attractive toe
vector processing, where component operations may be repeated many timee
Most existing pipeline computers emphasize vector processing. We will study basio
vector processing requirements in Chapter 3. Various vectorization methods will be presented in Chapter 4, after learning the structure and capability of com.
mercially available pipeline supercomputers and attached processors.

A typical pipeline computer is conceptually depicted in Figure 1.11. This
architecture is very similar to several commercial machines like Cray-l and VP-200 to be described in Chapter 4. Both scalar arithmetic pipelines and vector arithmetic pipelines are provided. The instruction preprocessing unit iS itself pipelined with three stages shown. The OF stage consists of two independent stages, one for letching scalar operands and the other for vector operand ierch. The scalar registers are fewer in quantity than the vector registers because each vector register implies a whole set of component registers. For example, a vector register in Cray-1 contains 64 component registers, each of which is 64 bits wide. Each vector register in Cray-1 requires 4096 fip-flops. Both scalar and vector data could appear in fixed-point or floating-point format. This means different pipelines can be dedicated to different arithmetic logic functions with different data formats The scalar arithmetic pipelines difler from the vector arithmetic pipelines in struc- ture and control strategies. Modern vector processors are usually augmented with a powerful scalar processor to handle a mixture of vector and scalar instructions.

Pipelined computers to be studied in Chapter 4 include the early vector
processors, Control Data's Star-100 and Texas Instruments' Advanced Scientific
Computer (ASC); the attached pipeline processors, AP-120B and FPS-164 by Floating Point Systems, Datawest MATP, and 1BM 3838; and recent vector
processors, Cray-1, Cyber-205, and Fujitsu VP-200. Vectorization methods to be
studied include resource reservation, pipeline chaining, vector segmentation, vectorizing compiler design, and optimization of compilers for vector processing A performance evaluation model for pipeline processors will also be presented.

tedly
to

will

1.3.2 Array Computers

An array processor is a synchronous parallel computer with multiple arithmetic
logic units, called processing elements (PE), that can operate in parallel in a lock
step fashion. By replication of ALUs, one can achieve the spatial parallelism. The
PEs are synchronized to perform the same function at the same time. An appro-
priate data-routing mechanism must be established among the PEs. A typical

S
c
a
la

r
p

ro
c
e
ss

o
r

S
c
a
la

r
d

a
ta

S

P

S
P

*

*
*

*
*

*
-
*

-
*

*
*

*

*
*

*
*

*
*

*
*

*
*

*

S
ca

la
r

re
gi

st
er

s
*

*
*

*
*

*
-
*

*
*

S
ca

la
r

fe
tc

h

K

S
S

ca
la

r
pi

pe
li

ne
s

*
*

*
*

*
*

*
*

*
*

*
~

*
*

*
*

*
.-

In
st

ru
ct

io
n

fe

tc
h

(I
F

)

In
st

ru
ct

io
n

M

ai
n

d
ec

o
d

e
(I

D
)

-
(
O

F
)
-

m
em

or
yy

IS

K

V

ec
to

r
pr

oc
es

so
r

*
*

*
*

*
*

*
*

*
*

*
|

V
P

V
ec

to
r

fe
tc

h

V
P2

In

st
ru

ct
io

n
 p

re
pr

oc
es

si
ng

V
ec

to
r

re
g

is
te

rs

*
*

*

*
*

*
*

VP

V
ec

to
r

p
ip

el
in

es

V
e
c
to

r
d

a
ta

IS
:

in
st

ru
c
ti

o
n

 s
tr

e
a
m

O

F
:

o
p

e
ra

n
d

 f
et

ch

K
:

c
o

n
tr

o
l

si
g

n
a
ls

F
ig

u
re

 1
.1

1

F
u

n
ct

io
n

al
 s

tr
u

c
tu

re
 o

f
a

m
o

d
er

n
 p

ip
el

in
e

co
m

p
u

te
r

w
it

h
 s

ca
la

r
an

d
 v

ec
to

r
ca

p
ab

il
it

ie
s.

24 coMPUTER ARCHITECTURE AND PARALLEL PROCESSING

/o

PE: processing elemen
CP: control processo0

CM: control memory

CP
Control
unit

(scalar

processing) P: processor
M: memory CM

********* ************************************** ssse.
Data
bus

PEN
PE PE,

Control (Array
processing8)

Inter-PE connection network
(data routing)

Figure 1.12 Functional structure of an SIMD array processor with concurrent scalar processing in the
conirol unit.

array processor is depicted in Figure 1.12. Scalar and control-type instructions are directly executed in the control unit (CU). Each PE consists of an ALU with registers and a local memory. The PEs are interconnected by a data-routing network. The interconnection pattern to be established for specific computation is under program control from the CU. Vector instructions are broadcast to the PEs for distributed execution over diferent component operands fetched directly from the local memories. Instruction fetch (Irom local memories or from the control memory) and decode is done by the control unit. The PEs are passive devices without in* struction decoding capabilities.

INTRODUCTION TO PARALLEL PROCESSING 25

Various interconnection structures for a set of PEs will be studied in Chapter 5.

Roth recirculating networks and multistage networks will be covered. Associative

memory, which is content addressable, will also be treated there in the context of

0arallel processing. Array processors designed with associative memories are

called associative processors. Parallel algorithms on array processors will be given

for matrix multiplication, merge sort, and fast Fourier transform (FFT). A per.

formance evaluation ol the array processor will be presented, with emphasis on

resource optimization.

Modern array processors will be described in Chapter 6. Diferent array

Drocessors may use different interconnection networks among the PEs. For

example, IIliac-1V uses a mesh-structured network and Burroughs Scientific

Processor (BSP) uses a crossbar network. In addition to Iliac-IV and BSP, we will

study a bit-slice array processor called a massively parallel processor (MPP).

Array processors are much more diffñcult to program than pipeline machines. We

will study various performance enhancement methods for array processors,

including the use of skewed memory allocation, language extensions for vector

array processing, and possible future architectural improvements.

1.3.3 Multiprocessor Systems

Research and development of multiprocessor systems are aimed at improving

throughput, reliability, flexibility, and availability. A basic multiprocessor

organization is conceptually depicted in Figure 1.13. The system contains two or

more processors of approximately comparable capabilities. All processors share

access to common sets of memory modules, 1/0 channels, and peripheral devices.

Most importantly, the entire system must be controlled by a single integrated

operating system providing interactions between processors and their programs

at various levels. Besides the shared memories and I/O devices, each processor

has its own local memory and private devices. Interprocessor communications

can be done through the shared memories or through an interrupt network.

Multiprocessor hardware system organization is determined primarily by

the interconnection
structure to be used between the memories and processors

(and between memories and 1/O channels, if needed). Three different interconnec-

tions have been practiced in the past

.Time-shared common bus

.Crossbar switch network

Multuport memories

These organizations and their possible extensions for multiprocessor systems will

be described in detail in Chapter 7. Techniques or exploiting concurrency in

uRiprocessors will be studied. including the development of some parallel

anguage leatures and the poss1ble detection of parallelism in user programs.

pecial memory organzation for multiprocessors will be treated in Section 7..

wIll cover hierarchical vatual memory, cache structures, parallel memories,

H68
ON B

26

paging, and various memory management issues. Multiprocessor operating

mechanisms, and various multiple processor scheduling strategies. ncation
Parallel

INTRODUCTION 10 PARALLEL PROCESSING 27

will also be studied in Chapt 8. Important topics include protection
systems will also

sche mes svstem deadlock resolution methods, interprocess communication
laorithms for multiprocessors Will also be studied. Both synchronous and asvn. alg
chronous algorithms will be specified and evaluated.

We will present several exploratory and commercial multiprocessor systems in
Chapter 9, including the C.mmp system and Cm* system developed at Carnegie AMellon University, the S-I multiprocessor system developed at the Lawrence ermore National Laboratory, the IBM System 370/Model 168 MP system, the

M 30R1. the U.vac 1100/80 and 90 MP, the Tandem multiprocessor, Denelcor

Sy

IB

HEP system, and the Cray X-MP and Cray-2 systems.
What we have discussed so far are centralized computing systems, in which all

hardware-software resources are housed in the same computing center with

neligible communication delays among subsystems. The continuing decline of
computer hardware and communication costs has made possible the decentraliza-
tion of hardware, controls, and databases in a computer system. Claims made for
distributed processing systems include last response, high availability, graceful

degradation, resource sharing, high adaptability to changes in work load, and better
expandability. Distributed computing is being widely practiced in banking

institutions, airline companies, government services, nationwide dealership, and

chain department stores. Computer networks and distributed processing are

beyond the scope of this book.

1.3.4 Performance of Parallel Computers

The speedup that can be achieved by a parallel computer with n identical processors

working concurrently on a single problem is at most n times faster than a single

processor. In practice, the speedup is much less, since some processors are idle at a

given time because of conflicts over memory access or communication paths,

inefficient algorithms for exploiting the natural concurrency in the computing

problem, or many other reasons to be discussed in subsequent chapters. Figure 1.14

shows the various estimates of the actual speedup, ranging from a lower-bound

log, n to an upper-bound n/ln n.

The lower-bound log2 n is known as the Minsky's conjecture. Most commercial

multiprocessor systems have from n = 2 to n = 4 processors. Exploratory research

multiprocessors have challenged n = 16 processors in the C.mmp and S-1 systemns.

USing Minsky's conjecture, only a speedup of 2 to 4 can be expected from existing

multiprocessors with 4 to 16 processors. This sounds rather pessimistic. A more

oplimistic speedup estimate is upper bounded by n/lnn as derived below.

Consider a computing problem, which can be executed by a uniprocessor in

unit time, 7, = 1. Let f be the probability of assigning the same probiem o

Processors working equally with an average load d, = 1/i per processor. Furtner

more, assume equal probability of each operating mode using i processors, that is

1, 1or n operating modes: i = 1,2,..., n. The average time required to so

VI

2seo Je»p) u

CHAPTER

FIVE
STRUCTURES AND ALGORITHMS

FOR ARRAY PROCESSORS

This chapter deals with the interconnection structures and parallel algorithms for

SIMD array processors and associative processors. The various organizations and

control mechanisms ol array prOCessors are presented first. Interconnection

networks used in array processors will be characterized by their routing functions
and implementation methods. We then study the structure of associative memory
and parallel search in associative array procesors. SIMD algorithms are presented

for matrix manipulation, parallel sorting, fast Fourier transform, and associative

search and retrieval operations.

5.1 SIMD ARRAY PROCESSORS

A synchronous array of parallel processors is called an array processor, which

consists of multiple processing elements (PEs) under the supervision of one

control unit (CU). An array processor can handle single instruction and muliple

data (SIMD) streams. In this sense, array processors are also known as SIMD

computers. SIMD machines are especially designed to perform vector computations
over matrices or arrays of data. În this book, the terms array processors, parallel

processors, and SIMD computers are used interchangeably.
SIMD computers appear in two basic architectural organizations: array

processors, using random-access memory; and associative processors, using

-dddressable (or associative) memory. The first three sections of this

Cnapter deal primarily with array processors. We will study associative processors

eon S.4 as a special type of array processor whose PEs correspond to the

words of an associative memory.
325

52 SIMD INTERCONNECTION NETWORKS

Various interconnection networks have been suggested for SIMD computers. In
his section, we distinguish between single-stage, recirculating networks and multi

stage SIMD networks. Important network classes to be presented include the

Illiac network, the flip network, the n cube, the Omega network, the data
manipulator, the barrel shifter, and the shuffie-exchange network. We shall

concentrate on inter-PE communications as modeled by configuration I in

Figure 5.1. The interprocessor-memory communication networks will be studied
in Chapter 7 for MIMD operations.

334 cOMPUTER ARCHITECTURE AND PARALLEL PROCESSING

5.2.1 Static Versus Dynamic Networks

The topological structure of an SIMD array processor is mainly characteri.

the data-routing network used in interconnecting the processing elements E
ally, such an inter-PE communication network can be specified by a set of d
routing functions. If we identily the addresses of all the PEs in an SIMD ma

one-to by the set S = {0, 1.2,...,N- 1), each routing function f is a bijection (a one-to
one and onto mapping) from S to S. Whef a routing function f is executed via th

the interconnection network, the PE; copies the contents of its R, register into t

Rro register of PEyar This data-routing operation occurs in all active PEs simul.
taneously. An inactive PE may receive data from another PE ifa routing function
is executed, but it cannot transmit data. To pass data between PEs that are hot
directly connected in the network, the data must be passed through intermediate
PEs by executing a sequence of routing functions through the interconnection
network.

The SIMD interconnection networks are classified into the following two
categories based on network topologies: static networks and dynamic networks,

Static networks Topologies in the static networks can be classified according to
the dimensions required for layout. For illustration, one-dimensional, two-
dimensional, three-dimensional, and hypercube are shown in Figure 5.4. Examples
of one-dimensional topologies include the linear array used for some pipeline
architectures (Figure 5.40). Two-dimensional topologies include the ring, star,
tree, mesh, and systolic array. Examples of these structures are shown in Figures
5.4b through 5.4/.

Three-dimensional topologies include the completely connected chordal ring,
3 cube. and 3-cube-connected-cycle networks depicted in Figures 5.4g through
54j. A D-dimensional. Wwide hypercube contains W nodes in each dimension,
and there is a connection to a node in each dimension. The mesh and the 3 cube
are actually two- and three-dimensional hypercubes. respectively. The cube

connected-cycle is a deviation of the hypercube. For example. the 3-cube-connected.
cycle shown in Figure 5.4j is obtained from the 3 cube.

Dynamic networks We consider two classes of dynamic networks: single-stage
versus multistage. as described below separately:

Single-stage networks A single-stage network is a switching network with N
input selectors (IS) and N output selectors (OS), as demonstrated in Figure 5.5.
Each IS is essentially a 1-to-D demultiplexer and each OS is an M-to-I multiplexer
where 1 s Ds Nand 1s MsN.Note that the crossbar-switching network is a
single-stage network with D = M = N. To establish a desired connecting path,
different path control signals wil be applied to all IS and OS selectors.

The single-stage network is also called a recirculating network. Data items
may have to recirculate through the single stage several times before reaching

their final destinations. The number of recirculations needed depends on the

ALGO GORITHMS FO FOR ARRAAY PROCESSORS 335

0-0-0-

-O

(6) Ring (a) Linear array

(c) Star

(e) Near-neighbor mesh Systoli array d) Tree

Completely connected h) Chordal ring (i)3 cube

oe 54 Statk interco
)3-cube-connected cycle

rCOectioe metwort topologles. (Courtesy of Feag, IEEE Compater, December

336 cOMPUTER
ARCHITECTURE AND PARALLEL

PROCESSING

OS
0

IS

OS

OS
N-1|

IS N-
N-1

Figure 5.5 Conceptual view of a d sing stage interconnection network,

connectivity in the single-stage network. In general, the higher is the har

JoTk is
connectivity, the less is the number of recirculations. The crossbar networ

ablish any conn extreme case in which only one circulation is needed to establish any con

path. However, the fully connected crossbar networks have a cost O(N
which
log)

may be prohibitive for large N. Most recirculating networks have cost O(N op
or lower. which is definitely more cost-effective for large N.

Multistage networks Many stages of interconnected switches form a altistage SIMD network. Multistage networks are described by three characterizing
tures: the switch box, the network topology, and the control structure. Mann
switch boxes are used in a multistage network. Each box is essentially an inte
change device with two inputs and two outputs, as depicted in Figure S
Illustrated are four states of a switch box: straight, exchange. upper broadcast, and
lower broadcast. A two-function switch box can assume either the straight or te
exchange states. A four-function switch box can be in any one of the four legi
mate states.

A multistage network is capable of connecting an arbitrary input terminal
to an arbitrary output terminal. Multistage networks can be one-sided or two
sided. The one-sided networks, sometimes called full switches, have input-outpu
ports on the same side. The two-sided multistage networks, which usually have an
input side and an output side, can be divided into three classes: blocking, T*
arrangeable, and nonblocking.

In blocking networks, simultaneous connections of more than one term
pair may result in confiicts in the use of network communication links. Examp of a blocking network are the data manipulator, Omega. fip. n cube, and bu

seline

AND ALOORrTns rOR ARAY PROCEOLS3 37

Switch
box

Straight

Exchange b

Upper
broadcast

eseseeee Lower
broadcast

and its for intercoanection stntes.
Fgure 5.6 A two-by-two switching box

Same of these networks will be introduced in subsequent sections. Figure 5.7a
shows the interconnection pattern in the baseline network.

A network is called a rearrangeable network if it can perform all possible
connections between inputs and outputs by rearranging its existing connections

so that a connection path for a new input-output pair can always be established.
A well-defined network, the Benes network, shown in Figure 5.76, belongs to this
cass. The Benes rearrangeable network topology has been extensively studied for
Use in synchronous data permutation and in asynchronous interprocessor com-
munication.

A network which cán haFdle all possible connections without blocking is
called a nonblocking network. Two cases have been considered in the literature
la the first case, the Clos network, shown in Figure 5.7c, a one-to-one connection
ade between an input and an output. The other case considers one-to-many
coRDections. Here, a generalized connection network topology is generated to

338 cOMPUTER ARCHITECTURE AND PARALLEL PROCESSING

()8 x 8 baseline network

(6) 8 x 8 Benes network

NXm TXr mxn

E
Figure 5.7 Several maltste
interconnection networks

(c) Clos network

pass any of multiple mappings of inputs onto outputs. The crossbar switch network can connect every input port to a free output port without blocking. Generally, a multistage network consists of n stages where N =25thea ber of input and output lines. Therefore, each stage may use N/2 switch boles The interconnection patterns from stage to stage determine the network topo Each stage is connected to the next stage by at least N paths. The network deu proportional to the number n of stages in a network. The cost of a size N muius network is proportional to N log, N. The control structure of a networr mines how the states of the switch boxes will be set. Two types of control su
ucturd

STRUCTURES AND ALGORITHMS FOR ARRAY PROCESsORS 33

nal to set all switch boxes in the sanme age control 1

thesrol Signals to set up the states of all n stages of switch boxes. it requires n

construction. The individual stage control uses the same

n a network
339

itch boxes in the same stage. In other words, all boxes

e usad

ge must be set to assume that same state. Therefore, it requires n

aontrol signa

els
Of

conirol
signa

Another control soer COontrol philosophy is to apply individual box control.
ch boxes.

A separate Anal is used to set the state of each switch box. This offers higher flexibility rol sithe
lis

connecting paths, but requires n/2 control signals, which will
etting up the

ncrease the comple
requires

This orol. A sSen

complexity of the control circuitry. A compromise se partial stage control, in whichi +1 control signmals are

A

used
compromise

at stage
ouse P Various network topologies and control structures of both recirculating

subsequent sections

iS n-1.
Various netw

is" and multistage inter-PE communication networks are described in

S22
Mesh-Connected Iliac Network

gingles
essor with N = 64 PEs. Each PE, is allowed to send data to any one of PE 1»

le-stage recirculating network has been implemented in the Illiac-IV array
proceoand PE,-, Where r = N (for the case of the Illiac-IV,T = /64A =

PE-
$ characterize

erized by the following four routing functions:
ulation step through the network. Formally, the Illiac network

R,) = (i + 1) mod N

R-() = (i - 1) mod N

R.) = (i + r) mod N (5.5)

R-i) = (i - r)mod N

shere 0 < iS N - 1. In practice, N is commonly a perfect square, such as N = 64

dr = 8 in the lliac-IV network.
A reduced Iliac network is illustrated in Figure 5.8a for N = 16 and r = 4

The real Iliac network has a similar structure except larger in size. All the index

arihmetic in Eq. 5.5 is modulo N. Comparing with the formal model shown in

Figure 5.5, we observe that the outputs of IS, are connected to the inputs of OS

lonr j = i+ 1, i - 1, i+ r, and i - r. On the other hand, OS, gets its inputs from

S Sori = j - 1.j + 1,j - r, and j + r, respectively

tach PE, in Figure 5.8 is directly connected to its four nearest neighbors in

UE mesh network. In terms of permutation cycles, we can express the above

OUng functions as follows: Horizontally, all the PEs of all rows form a linear

Ciar list as governed by the following two permutations, each with a singie

rder N The permutation cycles (a b c)(d e) stand for the permutation

,C~a and d~e, e -d in a circular fashion within each pair of

arentheses

R. = (0 1 2 N-1) (5.6)

R-, = (N-1 . 21 0)

340 cOMPUTER ARCHITECTURE AND PARALLEL PROCESSING

b

h12 14 15s

b

(a)The mesh connections

PE%
PES PE

PE4
PE

PE
PE

PE
PE

PE
PE

PEo
PE

PE PE
PE

Figure 5.8 An lNac network with
N-16 PEs.

(b)The mesh redrawn

STRUCTURES AND ALGORITHMS FOR ARRAY PROCESSORS 341

Verticaly
tations,.

e distancer shiftin 4istance r shifting operations are characterized by the following each with r cycles of order r each:

r-s

wo permutatie

R.,| (i itr i+2r i+N-
i=0

R=i+N-r i+2r itr i)
i=0

(5.7)

ork of N = 16 andr = V16 4, the shift by a distance of
the following two permutations, each with four cycles of order

Eor
the

example

network

fied by the followi

pur I8

speciied by.

our each:

R. = (0 4 8 12X1 S9 13X2 6 10 14X3 7 11 15)

R (12 8 4 0X13 9 5 IX14 10 6 2X15 11 7 3)

t
should be noted that whe Le noted that when either the R1 or R-, routing function is executed

ais
sho

routed
as. described in Eq. 5.6 only if all PEs in the cycle are active. When

R, or R-, is executed, data are permuted as described in
if PE where 0 s k Sr-1are active for each i. The shifting opera-

a cycle will be suspended if any PE required in the cycle is disabled. For

or more among PE ,PEs, PE9, and PEj3 is disabled by masking.

the routh

ton 1.

example, the cycle (1 5 9 9 13) in the above permutation R, will not be executed

Iliac network is only a partially connected network. Figure 5.8b shows
The

eleven PEs in three steps.. In general, it takes I steps (recirculations) to route data lour PES can be reached from any PE in one step, seven PEs in two steps, and the
connectivit

of the example liac network with N = 16. This graph shows that

fom PE, to any other PEj in an lliac network of size N where I is upper-bounded

by

IsN-

Without a loss of generality, we illustrate the cases when PE, is a source node

Figure S.8. PE,, PE,, PEj2. or PEjs iS reachable in one step from PEg. In two

sieps, the network can route data from PE, to PE2, PE3, PEs, PEg, PE11, PE13,
or PE 4. In the worst case of three routing steps, the following eight routing

scquences take place in the network:

(5.8)

0 R 1 R 2 R6 04 8 *7

0 1217 o 12 8 7

012 8 9 0 15 11 10

0 13 9 o 15 14 10

342 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

In the Illiac-IV computer, at most seven (V64 -1) steps are needed

data from any one PE to another PE. Of course, if we increase the conOte
to

in Figure 5.8, the upper bound g1ven in Eq. 5.8 can be lowered. We shallvity

work is
strongly connected (i.e., with 15 outgoing links per node in Figure 5.8), the

bound on recirculation steps can be reduced to one at the expense of significan

strate this by other nietwork types in subsequent sections. When the net
gure 5.8), the upper nse of significan ntly

increased hardware in the crossbar network.

5.4 ASSOCIATIVE ARRAY PROCESSING

Two SIMD computers, the Goodyear Aerospace STARAN and the Parallel
Element Processing Ensemble (PEPE), have been built around an associative

memory (AM) instead of using the conventional random-access memory (RAM).
The fundamental distinction between AM and RAM is that AM is content.

STRUCTURES AND ALGORITHMs FOR ARRAY PROCESSORS 375

allowing parallel access of multipBe memory words, whereas the
add

ddressable, allo

AM must be sequenti sequentially accessed by specifying the word addresses. The inherent in associative memory has a great impact on the architecture of paral naralle nrocessors, a special class ol SIMD array processors which update
associa

with the
associative memories.

nand various parallel processing functions that can be performed on an

this section, we describe the functional organization of an associative array
proce

associataanizations. Finally, we identify the major searching applications of

associati

processor. We classify associative processors based on associative- memory organizat

sociative memories and associative processors. Associative processors have only as special-purpose computers lor dedicated applications in the past.
been built

s4.1 Associative Memory Organizations
Dafa stored in an associative memory are addressed by their contents. In this
sense, associative memories have been known as content-addressable memorv. narallel search memory, and multiaccess memory. The major advantage of associa- tive memory over RAM IS its capability of periorming parallel search and parallel comparison operations. These are frequently needed in many important applica. tions, such as the storage and retrieval of rapidly changing databases, radar- signal tracking, image processing, computer vision, and artificial intelligence. The major shortcoming of associative memory 1s its much increased hardware
cost. Presently, the cost of associative memory is much higher than that of RAMs. The structure of a basic AM is modeled in Figure 5.32. The associative
memory array consists of n words with m bits per word. Each bit cell in the n x m
array consists of a fiip-flop associated with some comparison logic gates for pattern match and read-write control. This logic-in-memory structure allows parallel read or parallel write in the memory array. A bit slice is a vertical column of bit cells of all the words at the same position. We denote the jth bit cell of the ith word as B, for 1sianand I Sj < m. The ith word is denoted as:

W = (B,,Ba B) for i = 1, 2,...,n
and the jth bit slice is denoted as

B (B,,B2j B,) for i = 1,2,. m
Each bit cell B can be written in, read out, or compared with an external interrogating signal. The parallel search operations involve both comparison and masking and are executed according to the organization of the associative memory. There are a number of registers and counters in the associative memory. The comparand register C =(C1. C2, ..., Cm) is used to hold the key operand beng Searched for or being compared with. The masking register M = (M1, M2,, Mm) is used to enable or disable the bit slices to be involved in the parallel comparison operations across al the words in the associative memory. The indicator registerl = (1,l2, ..., I,) and one or more temporary registers T= (T, T2, T) are used to hold the current and previous match patterns,

376 cOMPUTER ARCHITECTURE AND PARALLEL PROCESSIN

Comperand register

M Masking register

B, (bit slice)

|W, (word)
n words

Indicator Temporary
register m bits/word

Isisnand 1 sjsm

The B, cell

Figure 5.32 An associative memory array and working registers.

respectively. Each of these registers can be set, reset, or loaded from an external

source with any desired binary patterns. The counters are used to keep track of the

i andj index values. There are also some match detection circuits and priority logic,

which are peripheral to the memory array and are used to perform some vector

boolean operations among the bit slices and indicator patterns.

The search key in the C register is first masked by the bit pattern in the M

register. This masking operation selects the effective fields of bit slices to be in

volved. Parallel comparisons of the masked key word with all words in the associa-

tive memory are performed by sending the proper interrogating signals to all the

bit slices involved. All the involved bit slices are compared in parallel or in a

sequential order, depending on the associative memory organization. It is possibe |

that multiple words in the associative memory will match the search pattern

Therefore, the associative memory may be required to tag all the matched words

The indicator and temporary registers are mainly

terrogation mechanism, read and write drives, and matching logic within a typica

bit cell are depicted in Figure 5.33. The interrogating signals are associated wiu

each bit slice, and the read-write drives are associated with each word. I neto

sed for this purpose. The in

STRUCTURES AND ALGORITHMS FOR ARRAY PROCESSORS 377

Information
Interrogation

information
Mask stored

0

0 0

0 0 0

Mask = 0 means that no comparison is

performed at that bit position for all words.

Interrogatel Interrogate 0

Write
input

Clear

Wrile

drive

Read

drive
R

B

From

other Word
bits output
the word

Readout

e S.5 The schematic logic design of a typical cell in an associative memory

378 cOMPUTER ARCHITECTURE AND PARALLEL PROCESSING

1aniza,

two types of comparison readouts: the bit-cell readout and the word ra
readoy The two types of readout are needed in two different assoCiative memory orpa

paralle
In practice, most associative memories have the capability of word

tions.

the operations; that is, all words in the associative memory array are involved

operatio
i

encountered in RAMs. Based on how bit slices are involved in the oDer

we consider below two different associative memory organizations:

parallel search operations. This differs drastically from the word serial op

On

The bit parallel organization In a bit parallel organization, the comparison pros

proces
periormed in a parallel-by-word and parallel-by-bit

fashion. All bit slices whi

are not masked off by the masking pattern are involved in the comparison pror which

In this "ganization, word-match tags for all words are used (Figure 5.34a)
is invol cross point in the array is a bit cell. Essentially, the entire array of cells is i

in a search operation.

Bit serial organization The memory organization in Figure S.54b operates wi

one bit slice at a time across all the words. The particular bit slice is selected h

extra logic and control unit. The bit-cell readouts will be used in subseo

bil-slice operations. The associative processor
STARAN has, the bit serial memo

organization and the PEPE has been installed with the bit parallel organization

The associative memories are used mainly for search and retrieval of non

numeric information. The bit serial organization requires less hardware but i

slower in speed. The bit parallel organization requires additional word-match

detection logic but is faster in speed. We present below an example to illustrate the

search operation in a bit parallel associative memory. Bit serial associative

memory will be presented in Section 5.4.3 with various associative search and

retrieval algorithms.

with
y an

nory

Example 5.8 Consider a student-file search in a bit parallel associative mem.

ory, as illustrated in Figure 5.35. The query needs to search all students whose

age is not younger than 21 but is younger than 31. This requires performing the
not-less-than search and the less-than search on the age field of the file. Two
matching patterns are used in the two subsequent searches. The masking
pattern selects the age field. The lower-bound 21 is loaded into the C register

as the first key word. Parallel comparisons are performed on all student records
(words) in the file. Initially, the indicator register is cleared to be zero.

After the first search, those students who are not younger than 21 are
marked with a l in the indicator register, one bit per each student word. This
matching vector is then transferred to one of the Tregisters. Then the upper-
bound 31 is loaded into Cas the second matching key. After the second search,
a new matching vector is sent to the I register. A bitwise ANDing operation
is then performed between the I and Tregisters with the resulting vector re
siding in the I register as the final output of the search process. The whole
search process requires only two accesses of the associative memory. An output
circuit (shown in Figure 5.34) is used to control the reading out of the result.

STRUCTURES AND ALGORITHMS FOR ARRAY PROCESSORS 379

Interrogating bit drives

Word-match tag
network 1

12

2n Word-match tag
network 2

n Word-match tag
networkm

m2
ml

ALU Output circuit

(a) Bit-parallel organization

Control Bit column select logic
unit

Interrogating bit drives

12 Word
logic

2122 2n Word
logic 2

mi m2
mn Word

logic m

Output circuit ALU

(b) Bit-serial orgahization Figure 5.34 Associative memory orgars
tions.

380 cOMPUTER
ARCHITECTURE

AND PARALLEL PROCESSING

Query: Search for those students whose ages are in the range (21 2

21 0
First matchingy

acing te Secon maic
0

31 0
C

00...0 1..1 00..0
M 00.. .0

I

25 3
EE Ford

19 0 CE Nixon

28 4 ME Smith

33 Math Jones

21 2 EE

Physics 31 Brown

Chem. 20 2 Peterson

Name Sex Dept. Age Class

Result afite Result

after the first seart

second

search

Figure 5.35 An associative memory used for the storage and retrieval of a student fle.

