
 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 
 

 

INTRODUCTION 

OPERATING SYSTEM 

UNIT I 

 An OS is a program that controls the execution of application programs and acts as an 

interface between applications and the computer hardware. 

    An OS act as an intermediary between user and hardware. 

 An operating system (OS) exploits the hardware resources of one or more processors to 

provide a set of services to system users. 

 The OS also manages secondary memory and I/O (input/output) devices on behalf of its 

users. 

HISTORY OF OPERATING SYSTEM 
 

The First Generation (1940's to early 1950's) 

 When electronic computers where first introduced in the 1940's they were created without 

any operating systems. 

 All programming was done in absolute machine language, often by wiring up plugboards to 

control the machine's basic functions. 

 During this generation computers were generally used to solve simple math calculations, 

operating systems were not necessarily needed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Second Generation (1955-1965) 

 The first operating system was introduced in the early 1950's, it was called GMOS and was 

created by General Motors for IBM's machine the 701. 

 Operating systems in the 1950's were called single-stream batch processing systems because 

the data was submitted in groups. 

 These new machines were called mainframes, and they were used by professional operators 

in large computer rooms. Since there was such as high price tag on these machines, only 

government agencies or large corporations were able to afford them. 

 
The Third Generation (1965-1980) 

 By  the  late  1960's  operating  systems  designers  were  able  to  develop  the  system  of 

multiprogramming in which a computer program will be able to perform multiple jobs at the 
same time. 

 The introduction of multiprogramming was a major part in the development of operating 

systems because it allowed a CPU to be busy nearly 100 percent of the time that it was in 

operation. 

 Another major development during the third generation was the phenomenal growth of 

minicomputers, starting with the DEC PDP-1 in 1961. The PDP-1 had only 4K of 18-bit 

http://www.informit.com/articles/article.aspx?p=24972
http://www.informit.com/articles/article.aspx?p=24972
http://www.informit.com/articles/article.aspx?p=24972
http://www.informit.com/articles/article.aspx?p=24972
http://www.informit.com/articles/article.aspx?p=24972
http://www.informit.com/articles/article.aspx?p=24972


 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 
words, but at $120,000 per machine (less than 5 percent of the price of a 7094), it sold like 

hotcakes. 

 These microcomputers help create a whole new industry and the development of more 

PDP's. These PDP's helped lead to the creation of personal computers which are created in 

the fourth generation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The Fourth Generation (1980-Present Day) 

    The  fourth  generation  of  operating  systems  saw  the  creation  of  personal  computing. 

Although these computers were very similar to the minicomputers developed in the third 

generation, personal computers cost a very small fraction of what minicomputers cost. 

 A personal computer was so affordable that it made it possible for a single individual could 

be able to own one for personal use while minicomputers where still at such a high price that 

only corporations could afford to have them. 

 One of the major factors in the creation of personal computing was the birth of Microsoft 

and the Windows operating system. 

 The windows Operating System was created in 1975 when Paul Allen and Bill Gates had a 

vision to take personal computing to the next level. 

 They introduced the MS-DOS in 1981 although it was effective it created much difficulty 

for people who tried to understand its cryptic commands. Windows went on to become the 

largest operating system used in techonology today with releases of Windows 95, Windows 

98, WIndows XP (Which is currently the most used operating system to this day), and their 

newest operating system Windows 7. 

    Along with Microsoft, Apple is the other major operating system created in the 1980's. 

Steve Jobs, co founder of Apple, created the Apple Macintosh which was a huge success 

due to the fact that it was so user friendly. 

 Windows development throughout the later years were influenced by the Macintosh and it 

created a strong competition between the two companies. 

 Today all of our electronic devices run off of operating systems, from our computers and 

smartphones, to ATM machines and motor vehicles. And as technology advances, so do 

operating systems. 

http://www.informit.com/articles/article.aspx?p=24972
http://www.informit.com/articles/article.aspx?p=24972
http://www.informit.com/articles/article.aspx?p=24972


 
 

 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
DIFFERENT KINDS OF OPERATING SYSTEM (OR) TYPES OF OPERATING 

SYSTEMS 
Following are some of the most widely used types of Operating system. 

1.   Simple Batch System 

2.   Multiprogramming Batch System 

3.   Multiprocessor System 

4.   Desktop System 

5.   Distributed Operating System 

6.   Clustered System 

7.   Realtime Operating System 

8.   Handheld System 

1.   Simple Batch Systems 
     In this type of system, there is no direct interaction between user and the computer. 

     The user has to submit a job (written on cards or tape) to a computer operator. 

     Then computer operator places a batch of several jobs on an input device. 

     Jobs are batched together by type of languages and requirement. 

     Then a special program, the monitor, manages the execution of each program in the batch. 

     The monitor is always in the main memory and available for execution. 

Advantages of Simple Batch Systems 

1.   No interaction between user and computer. 

2.   No mechanism to prioritise the processes. 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.   Multiprogramming Batch Systems 
     In this the operating system picks up and begins to execute one of the jobs from memory. 
     Once this job needs an I/O operation operating system switches to another job (CPU and 

OS always busy). 

     Jobs in the memory are always less than the number of jobs on disk(Job Pool). 

  If several jobs are ready to run at the same time, then the system chooses which one to run 

through the process of CPU Scheduling. 



 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

  In Non-multiprogrammed system, there are moments when CPU sits idle and does not do 

any work. 

     In Multiprogramming system, CPU will never be idle and keeps on processing. 

Time Sharing Systems are very similar to Multiprogramming batch systems. In fact time sharing 

systems are an extension of multiprogramming systems. 

In  Time  sharing  systems  the  prime  focus  is  on minimizing  the  response  time,  while  in 

multiprogramming the prime focus is to maximize the CPU usage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.   Multiprocessor Systems 

 A Multiprocessor system consists of several processors that share a common physical 

memory.  Multiprocessor  system  provides  higher  computing  power  and  speed.  In 

multiprocessor system all processors operate under single operating system. Multiplicity 

of the processors and how they do act together are transparent to the others. 

Advantages of Multiprocessor Systems 
1.   Enhanced performance 

2.   Execution  of  several  tasks  by  different  processors  concurrently,  increases  the  system's 

throughput without speeding up the execution of a single task. 

3.   If possible, system divides task into many subtasks and then these subtasks can be executed 

in parallel in different processors. Thereby speeding up the execution of single tasks. 

4. Desktop Systems 

 Earlier, CPUs and PCs lacked the features needed to protect an operating system from user 

programs.  PC  operating  systems  therefore  were  neither multiuser nor multitasking. 

However, the goals of these operating systems have changed with time; instead of 

maximizing  CPU  and  peripheral  utilization,  the  systems  opt  for  maximizing  user 

convenience and responsiveness. These systems are called Desktop Systems and include 

PCs running Microsoft Windows and the Apple Macintosh. Operating systems for these 

computers have benefited in several ways from the development of operating systems 

for mainframes. 

 Microcomputers were immediately able to adopt some of the technology developed for 

larger operating systems. On the other hand, the hardware costs for microcomputers are 

sufficiently low that individuals have sole use of the computer, and CPU utilization is no 

longer a prime concern. Thus, some of the design decisions made in operating systems for 

mainframes may not be appropriate for smaller systems. 



 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

5. Distributed Operating System 

 The motivation  behind  developing distributed  operating systems  is  the availability of 

powerful and inexpensive microprocessors and advances in communication technology. 

 These advancements in technology have made it possible to design and develop distributed 

systems comprising of many computers that are inter connected by communication 

networks. The main benefit of distributed systems is its low price/performance ratio. 

Advantages Distributed Operating System 
1.   As there are multiple systems involved, user at one site can utilize the resources of systems 

at other sites for resource-intensive tasks. 

2.   Fast processing. 

3.   Less load on the Host Machine. 

Types of Distributed Operating Systems 
Following are the two types of distributed operating systems used: 

1.   Client-Server Systems 

2.   Peer-to-Peer Systems 

 
Client-Server Systems 
Centralized systems today act as server systems to satisfy requests generated by client systems. 

The general structure of a client-server system is depicted in the figure below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Server Systems can be broadly categorized as: Compute Servers and File Servers. 

  Compute Server systems, provide an interface to which clients can send requests to 

perform an action, in response to which they execute the action and send back results to 

the client. 

  File Server systems, provide a file-system interface where clients can create, update, read, 

and delete files. 

 
Peer-to-Peer Systems 

    The growth of computer networks - especially the Internet and World Wide Web (WWW) 

– has had a profound influence on the recent development of operating systems. When PCs 

were introduced in the 1970s, they were designed for personal use and were generally 

considered standalone computers. With the beginning of widespread public use of the 

Internet  in  the  1990s  for  electronic  mail  and  FTP,  many  PCs  became  connected  to 

computer networks. 

 In  contrast  to  the Tightly  Coupled systems,  the  computer  networks  used  in  these 

applications consist of a collection of processors that do not share memory or a clock. 

Instead, each processor has its own local memory. The processors communicate with one 

another through various communication lines, such as high-speed buses or telephone lines. 



 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

These systems are usually referred to as loosely coupled systems ( or distributed systems). 

The general structure of a client-server system is depicted in the figure below: 
 
 
 
 
 
 
 
 
 
 
 
 

6. Clustered Systems 
     Like parallel systems, clustered systems gather together multiple CPUs to accomplish 

computational work. 

  Clustered systems differ from parallel systems, however, in that they are composed of two 

or more individual systems coupled together. 

  The definition of the term clustered is not concrete; the general accepted definition is that 

clustered computers share storage and are closely linked via LAN networking. 

     Clustering is usually performed to provide high availability. 

  A layer of cluster software runs on the cluster nodes. Each node can monitor one or more 

of the others. If the monitored machine fails, the monitoring machine can take ownership 

of its storage, and restart the application(s) that were running on the failed machine. The 

failed machine can remain down, but the users and clients of the application would only 

see a brief interruption of service. 

  Asymmetric Clustering - In this, one machine is in hot standby mode while the other is 

running the applications. The hot standby host (machine) does nothing but monitor the 

active server. If that server fails, the hot standby host becomes the active server. 

  Symmetric Clustering - In this, two or more hosts are running applications, and they are 

monitoring each other. This mode is obviously more efficient, as it uses all of the available 

hardware. 

  Parallel Clustering - Parallel clusters allow multiple hosts to access the same data on the 

shared storage. Because most operating systems lack support for this simultaneous data 

access by multiple hosts, parallel clusters are usually accomplished by special versions of 

software and special releases of applications. 

Clustered technology is rapidly changing. Clustered system's usage and it's features should expand 

greatly as Storage Area Networks(SANs). SANs allow easy attachment of multiple hosts to 

multiple storage units. Current clusters are usually limited to two or four hosts due to the 

complexity of connecting the hosts to shared storage. 

7. Real Time Operating System 

 It is defined as an operating system known to give maximum time for each of the critical 

operations that it performs, like OS calls and interrupt handling. 

 The  Real-Time  Operating  system  which  guarantees  the  maximum  time  for  critical 

operations and complete them on time are referred to as Hard Real-Time Operating 

Systems. 

 While the real-time operating systems that can only guarantee a maximum of the time, i.e. 

the critical task will get priority over other tasks, but no assurity of completeing it in a 

defined time. These systems are referred to as Soft Real-Time Operating Systems. 



 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

8. Handheld Systems 
Handheld    systems    include Personal    Digital    Assistants(PDAs),    such    as Palm- 

Pilots or Cellular Telephones with connectivity to a network such as the Internet. They are usually 

of limited size due to which most handheld devices have a small amount of memory, include slow 

processors, and feature small display screens. 

  Many handheld devices have between 512 KB and 8 MB of memory. As a result, the 

operating  system  and  applications  must  manage  memory  efficiently.  This  includes 

returning all allocated memory back to the memory manager once the memory is no longer 

being used. 

  Currently, many handheld devices do not use virtual memory techniques, thus forcing 

program developers to work within the confines of limited physical memory. 

  Processors for most handheld devices often run at a fraction of the speed of a processor in 

a PC. Faster processors require more power. To include a faster processor in a handheld 

device would require a larger battery that would have to be replaced more frequently. 

  The last issue confronting program designers for handheld devices is the small display 

screens typically available. One approach for displaying the content in web pages is web 

clipping, where only a small subset of a web page is delivered and displayed on the 

handheld device. 

Some handheld devices may use wireless technology such as BlueTooth, allowing remote access 

to e-mail and web browsing. Cellular telephones with connectivity to the Internet fall into this 

category. Their use continues to expand as network connections become more available and other 

options such as cameras and MP3 players, expand their utility. 

AN OPERATING SYSTEM CONCEPTS 

 An  Operating  System  (OS)  is  an  interface  between  a  computer  user  and  computer 

hardware. An operating system is a software which performs all the basic tasks like file 

management, memory management, process management, handling input and output, and 

controlling peripheral devices such as disk drives and printers. 

   Some popular Operating Systems include Linux Operating System, Windows Operating 

System, VMS, OS/400, AIX, z/OS, etc. 

Definition 
An operating system is a program that acts as an interface between the user and the 

computer hardware and controls the execution of all kinds of programs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Following are some of important functions of an operating System. 

     Memory Management 

     Processor Management 

     Device Management 

     File Management 

     Security 



 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

     Control over system performance 

     Job accounting 

     Error detecting aids 

     Coordination between other software and users 

Memory Management 
Memory  management  refers  to  management  of  Primary  Memory  or  Main  Memory.  Main 

memory is a large array of words or bytes where each word or byte has its own address. 

Main memory provides a fast storage that can be accessed directly by the CPU. For a program to 

be executed, it must in the main memory. An Operating System does the following activities for 

memory management − 

  Keeps tracks of primary memory, i.e., what part of it are in use by whom, what part are 

not in use. 

  In multiprogramming, the OS decides which process will get memory when and how 

much. 

    Allocates the memory when a process requests it to do so. 

    De-allocates the memory when a process no longer needs it or has been terminated. 

Processor Management 
In multiprogramming environment, the OS decides which process gets the processor when and 

for how much time. This function is called process scheduling. An Operating System does the 

following activities for processor management − 

  Keeps tracks of processor and status of process. The program responsible for this task is 

known as traffic controller. 

    Allocates the processor (CPU) to a process. 

    De-allocates processor when a process is no longer required. 

Device Management 

An Operating System manages device communication via their respective drivers. It does the 
following activities for device management − 

    Keeps  tracks  of  all  devices.  Program  responsible  for  this  task  is  known  as  the I/O 

controller. 

    Decides which process gets the device when and for how much time. 

    Allocates the device in the efficient way. 

    De-allocates devices. 

File Management 
A  file  system  is  normally organized  into  directories  for  easy  navigation  and  usage.  These 
directories may contain files and other directions. 

An Operating System does the following activities for file management − 

  Keeps track of information, location, uses, status etc. The collective facilities are often 

known as file system. 

    Decides who gets the resources. 

    Allocates the resources. 

    De-allocates the resources. 

Other Important Activities 
Following are some of the important activities that an Operating System performs − 

    Security − By means of password and similar other techniques, it prevents unauthorized 

access to programs and data. 

    Control over system performance − Recording delays between request for a service and 

response from the system. 

    Job accounting − Keeping track of time and resources used by various jobs and users. 



 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

  Error detecting aids − Production of dumps, traces, error messages, and other debugging 

and error detecting aids. 

  Coordination between other softwares and users − Coordination and assignment of 

compilers,  interpreters,  assemblers  and  other  software  to  the  various  users  of  the 

computer systems. 

SYSTEM CALLS 
System calls provide an interface to the services made available by an 

operating system. These calls are generally available as routines written in C and 

C++. 

For example, simple program to read data from one file and copy them to another file. 

 The first input that the program will need is the names of the two files: the input file 

and the output file. 

 Once the two file names have been obtained, the program must open the input file 

and create the output file. Each of these operations requires another system call. 

    Possible error conditions for each operation can require additional system calls. 

 When both files are set up, we enter a loop that reads from the input file (a system 

call) and writes to the output file (another system call). 

 Each read and write must return status information regarding various possible error 

conditions. 

 Finally, after the entire file is copied, the program may close both files (another system 

call),  write a message to the  console or window (more system calls), and  finally 

terminate normally (the final system call). 

This system-call sequence is shown in the Figure. Example system calls are shown here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Application developers design programs according to an application programming 

interface  (API).  The  API  specifies a  set of  functions  that  are  available  to  an  application 

programmer, including the parameters that are passed to each function and the return values the 

programmer can expect. 

 Three of the common APIs available to application 

programmers are 

    Windows API for Windows systems, 

    POSIX API for POSIX-based systems (virtually all versions of 

UNIX, Linux, and Mac OSX), 



 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

    Java API for programs that run on the Java virtual machine. 

 A programmer accesses an API via a library of code provided by 

the operating system. 

 An application programmer prefer programming according to an API 

rather than invoking actual system calls. One benefit concerns program 

portability. 

System call Implementation 

 The run-time support system provides a system call interface that serves as the link to 

system calls made available by the operating system. 

 The system-call interface intercepts function calls in the API and invokes the necessary 

system calls within the operating system. 

 A number is associated with each system call, and the system-call interface maintains 

a table indexed according to these numbers. 

 The system call interface then invokes the intended system call in the operating-system 

kernel and returns the status of the system call and any return values. 

 The caller need know nothing about how the system call is implemented or what it does 

during execution. Rather, the caller need only obey the API and understand what the 

operating system will do as a result of the execution of that system call. 

 Thus,  most  of  the  details  of  the  operating-system  interface  are  hidden  from  the 

programmer by the API and are managed by the run-time support library. 

 The relationship between an API, the system-call interface, and the operating system 

is shown in Figure, which illustrates how the operating system handles a user 

application invoking the open() system call. 

System calls – Parameter passing 

 System calls occur in different ways, depending on the computer in use. Often, more 

information is required than simply the identity of the desired system call. The exact 

type and amount of information vary according to the particular operating system 

and call. 

Three general methods are used to pass parameters to the operating system. 
The simplest approach is to pass the parameters in registers. 

If more parameters are present than registers, then   the parameters are generally stored in a 

block, or table, in memory, and the address of the block is passed as a parameter in a register 

(Figure). This is the approach taken by Linux and Solaris. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Passing parameters as Table 



 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

 Parameters also can be placed, or pushed, onto the stack by the 

program and popped off the stack by the operating system. 

Some operating systems prefer the block or stack method because those approaches 

do not limit the number or length of parameters being passed. 

Example System call 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TYPES OF SYSTEM CALLS 

System calls can be grouped roughly into six major categories. 
1  .  Process control 

2.    File manipulation 

3.    Device manipulation 

4.    Information maintenance, 

5.    Communications 

6.    Protection 

1. Process Control 

 A running program needs to be able to halt its execution either normally (end()) or 

abnormally (abort()). 

 If a system call is made to terminate the currently running program abnormally, or if 

the program runs into a problem and causes an error trap, a dump of memory is 

sometimes taken and an error message generated. 

 Under either normal or abnormal circumstances, the operating system must transfer 

control to the invoking command interpreter. The command interpreter then reads the 

next command. 

 In  an interactive system, the  command interpreter simply continues with  the next 

command; it is assumed that the user will issue an appropriate command to respond to 

any error. 

 In a GUI system, a pop-up window might alert the user to the error and ask for 

guidance. 

 In a batch system, the command interpreter usually terminates the entire job and 

continues with the next job. 

 A process or job executing one program may want to load() and execute() another 

program. 



 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

 If  more  programs  continue  concurrently,  a  new  job  or  process  created  is  to  be 

multiprogrammed. Often, there is a system call specifically for this purpose(create 

process() or submit job()). 

 If we create a new job or process, or perhaps even a set of jobs or processes, we 

should be able to control its execution. This control requires the ability to determine 

and reset the attributes of a job or process, including the job’s priority, its maximum 

allowable  execution  time,  and  so  on  (get  process  attributes()  and  set  process 

attributes()) 

 To terminate a job or process that we created (terminate process()) if  it is incorrect 

or is no longer needed. 

 Having created new jobs or processes, we need to wait for them to finish their 

execution. We may want to wait for a certain amount of time to pass (wait time()). 

    More probably, we will want to wait for a specific event to occur (wait event()). 

     The jobs or processes should then signal when that event has occurred (signal vent()). 

The system calls of Process control are 
    end, abort 

    load, execute 

    create process, terminate process 

    get process attributes, set process attributes 

    wait for time 

    wait event, signal event 

    allocate and free memory 

2. File Management 

• It is needed to create() and delete() files. Either system call requires the name of the 

file and perhaps some of the file’s attributes. 

•    Once the file is created, we need to open() it and to use it. 

• We may also read(), write(), or reposition() (rewind or skip to the end of the file, for 

example). 

•    Finally, we need to close() the file, indicating that we are no longer using it. 

• To determine the values of various attributes and to reset them if necessary, two system 

calls, get file attributes() and set file attributes(), are required. File attributes include 

the file name, file type, protection codes, accounting information, and so on. 

•    The system calls of File management are 

  create file, delete file 

  open, close 

  read, write, reposition 

  get file attributes, set file attributes 

3. Device Management 

 The various resources—main memory, disk drives, access to files, and so on, controlled 

by the operating system can be thought of as devices. 

 Some of these devices are physical devices (for example, disk drives), while others 

can be thought of as abstract or virtual devices (for example, files). 

 A system with multiple users may require us to first request() a device, to ensure 

exclusive use of it. 

    After we are finished with the device, we release() it. 

    We can read(), write(), and (possibly) reposition() the device. 

    The system calls of Device management are 

    request device, release device 



 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

    read, write, reposition 

   get device attributes, set device attributes 

    logically attach or detach devices 

4.  Information Maintenance 

 Many system calls exist simply for the purpose of transferring information between the 

user program and the operating system. 

 For example, most systems have a system call to return the current time() and date(). Other 

system  calls may return  information about  the  system,  such  as  the  number of current 

users, the version number of the operating system, the amount of free memory or disk 

space, and so on. 

 Another set of system calls is helpful in debugging a program. Many systems provide 

system calls to dump() memory. This provision is useful for debugging. 

 The operating system keeps information about all its processes, and system calls are used 

to access this information. Generally, calls are also used to reset the process information 

(get process attributes() and set process attributes 

           The system calls of Information maintenance 

    get time or date, set time or date 
    get system data, set system data 

    get process, file, or device attributes   set process, file, or device attributes 

5. Communication 
There are two common models of inter process communication: 

    message passing model and 

    shared-memory model. 

Message-passing model 

 The communicating processes exchange messages with one another to transfer 

information. 

 Messages can be exchanged between the processes either directly or indirectly through a 

common mailbox. 

    Before communication can take place, a connection must be opened. 

    They execute a wait for connection() call and are awakened when a connection is made. 

 The source client, and the receiving daemon server, then exchange messages by using 

read message() and write message() system calls. 

    The close connection() call terminates the communication. 

Shared-memory model 
The processes use shared memory create() and shared memory attach() system calls to 

create and gain access to regions of memory owned by other processes. 

The system calls of Communications 

    create, delete communication connection 

    send, receive messages 

    transfer status information 

    attach or detach remote devices 
 
 
 
 

6. Protection 



 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

 Protection provides a mechanism for controlling access to the resources provided by a 

computer system. 

 System calls providing protection include set permission() and get permission(), which 

manipulate the permission settings of resources such as files and disks. 

 The allow user() and deny user() system calls specify whether particular users can—or 

cannot— be allowed access to certain resources. 

 
OPERATING-SYSTEM STRUCTURE 

 
 A system as large and complex as a modern operating system must be engineered 

carefully if it is to function properly and be modified easily. 

 A common approach is to partition the task into small components, or modules, rather than 

have one monolithic system. Each of these modules should be a well-defined portion of 

the system, with carefully defined inputs, outputs, and functions. 

1. Simple Structure 

    Many operating systems do not have well-defined structures. 

 MS-DOS is an example of such a system. In MS-DOS, the interfaces and levels of 

functionality are not well separated. 

 Application programs are able to access the basic I/O routines to write directly to the 

display and disk drives. Such freedom leaves MS-DOS vulnerable to errant (or malicious) 

programs, causing entire system crashes when user programs fail. Of course, MS-DOS was 

also limited by the hardware of its era. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MS-DOS Layers 

 
 Another example of limited structuring is the original UNIX operating 

system. Like MS-DOS, UNIX initially was limited by hardware 

functionality. 

    It consists of two separable parts: o  Kernel and System programs. 

 The kernel is further separated into a series of interfaces and device 

drivers, which have been added and expanded over the years as UNIX has 

evolved. 

    The traditional UNIX operating system is layered to some extent, as shown in the Figure 



 
 

 
 

 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Everything below the system-call interface and above the physical hardware is the kernel. 

 The kernel provides the file system, CPU scheduling, memory management, and 

otheroperating-system functions through system calls. 

    Taken in sum, that is an enormous amount of functionality to be combined into one level. 

    This  monolithic  structure  was  difficult  to  implement  and  maintain.  It  had  a  distinct 

 performance advantage, however: there is very little overhead in the system 

call interface or in communication within the kernel. 

2. Layered Approach 
In layered approach, the operating system is broken into a number of layers (levels). The bottom 
layer (layer 0) is the hardware; the highest (layer N) is the user interface. This layering structure is 

depicted in Figure. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: A layered operating system. 

 
An operating-system layer is an implementation of an abstract object made up of 

data and the operations that can manipulate those data. 

 A typical operating-system layer—say, layer M—consists of data structures 

and a set of routines that can be invoked by higher-level layers. Layer M, in 

turn, can invoke operations on lower-level layers. 

    The main advantage of the layered approach is simplicity of construction and debugging. 



 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

    The layers are selected so that each uses functions (operations) and services of only lower- 

    level layers. 

 This approach simplifies debugging and system verification. Each layer hides the 

existence of certain data structures, operations, and hardware from higher-level layers. 

 The major difficulty with the layered approach involves appropriately defining the various 

layers. Because a layer can use only lower-level layers, careful planning is necessary. 

 A final problem with layered implementations is that they tend to be less 

efficient than other types. 

3 Microkernels 

 The microkernel approach structures the operating system by removing all nonessential 

components from the kernel and implementing them as system and user-level programs. 

The result is a smaller kernel. 

 Microkernels  provide  minimal  process  and  memory  management,  in  addition  to  a 

communication facility. The Figure illustrates the architecture of a typical microkernel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure- Architecture of a typical microkernel. 

 
  The  main  function  of  the  microkernel  is  to  provide  communication  between  the  client 

program and the various services that are also running in user space. 

  Communication is provided through message passing. For example, if the client program 

wishes to access a file, it must interact with the file server. The client program and service 

never interact directly. Rather, they communicate indirectly by exchanging messages with 

the microkernel. 

  One benefit of the microkernel approach is that it makes extending the operating system 

easier. 

  All new services are added to user space and consequently do not require modification of 

the kernel. When the kernel does have to be modified, the changes tend to be fewer, because 

the microkernel is a smaller kernel. The resulting operating system is easier to port from 

one hardware design to another. 

  The microkernel also provides more security and reliability, since most services are running as 

user—rather than kernel—processes.  If a service fails, the rest of the operating system 

remains untouched. 



 
 

 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 
 
 
 

4. Modules 

 The best current methodology for operating-system design involves using loadable 

kernel modules. 

 The kernel has a set of core components and links in additional services via modules, 

either at boot time or during run time. 

 The idea of the design is for the kernel to provide core services while other services are 

implemented dynamically, as the kernel is running. 

 Linking services dynamically is preferable to adding new features directly to the 

kernel, which would require recompiling the kernel every time a change was made. 

 Thus,   for   example,   we   might   build   CPU   scheduling   and   memory   management 

algorithms directly into the kernel and then add support for different file systems by way 

of loadable modules. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure- Solaris loadable modules 

The Solaris operating system structure, shown in Figure, is organized around a 

core kernel with seven types of loadable kernel modules: 

     Scheduling classes 

     File systems 

     Loadable system calls 

     Executable formats 

     STREAMS modules 

     Miscellaneous 

     Device and bus drivers 

Linux also uses loadable kernel modules, primarily for supporting device drivers and file systems. 

 
5 Hybrid Systems 

 
Very  few  operating  systems  adopt  a  single,  strictly  defined  structure.   Instead,  they 

combine different structures, resulting in hybrid systems that address performance, security, and 

usability issues. Three hybrid systems are as follows. 

     Apple Mac OS X operating system 

     Two most prominent mobile operating systems—iOS and Android. 

i) Mac OS X 

The Apple Mac OS X operating system uses a hybrid structure. 



 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 It  is  a  layered  system.  The  top  layers  include  the  Aqua  user  interface  and  a  set  of 

application environments and services. 

 The Cocoa environment specifies an API for the Objective-C programming language, 

which is used for writing Mac OS X applications. 

    Below   these   layers   is   the   kernel  environment,   which   consists  primarily  of  the 

Mach microkernel and the BSD UNIX kernel. 

 Mach  provides  memory  management;  support  for remote  procedure  calls  (RPCs)  and 

interprocess communication (IPC) facilities, including message passing; and thread 

scheduling. The BSD component provides a BSD command-line interface, support for 

networking and file systems, and an implementation of POSIX APIs, including Pthreads. 

 In addition to Mach and BSD, the kernel environment provides an I/O kit for development 

of device drivers and dynamically loadable modules 

ii)  iOS 

 iOS is a mobile operating system designed by Apple to run its smartphone, the iPhone, as 

well as its tablet computer, the iPad. 

 iOS is structured on the MacOS X operating system, with added functionality pertinent to 

mobile devices,but does not directly run Mac OS X applications. 

 Cocoa Touch is an API for Objective-C that provides several frameworks for developing 

applications that run on iOS devices. 

 Cocoa Touch provides support for hardware features unique to mobile devices, such as 

touch screens. 

     The media services layer provides services for graphics, audio, and video. 

 The  core  services  layer  provides  a  variety  of  features,  including  support  for  cloud 

computing and databases. 

 The bottom layer represents the core operating system, which is based 

on the kernel environment 

     The structure of iOS appears in Figure. 



 
 

UNIT I                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 
 

iii) Android 

 
 The Android operating system was designed by the Open Handset Alliance 

(led primarily  by  Google)  and  was  developed  for  Android  smartphones 

and tablet computers. 

 Android runs on a variety of mobile platforms and is open-sourced, partly 

explaining its rapid rise in popularity. 

 Android is similar to iOS in that it is a layered stack of software that provides 

a rich set of frameworks for developing mobile applications. 

     The structure of Android appears in Figure 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure - Architecture of Google’s Android 

 
 At the bottom of this software stack is the Linux kernel, although it has been modified by 

Google and is currently outside the normal distribution of Linux releases. Linux is used 

primarily for process, memory, and device-driver support for hardware and has been 

expanded to include power management. 

 The Android runtime environment includes a core set of libraries as well as the Dalvik 

virtual machine. Software designers for Android devices develop applications in the Java 

language.  The Java class files  are first compiled to Java bytecode  and then translated 

into  an  executable  file  that  runs  on  the  Dalvik  virtual  machine.  The  Dalvik  virtual 

machine  was  designed  for  Android  and  is  optimized  for  mobile  devices  with limited 

memory and CPU processing capabilities. 

 The   set   of   libraries   available   for   Android   applications   includes   frameworks   for 

developing web browsers (webkit), database support (SQLite), and multimedia. 

 The libc library is similar to the standard C library but is much smaller and has been 

designed for the slower CPUs that characterize mobile devices. 
 

 
 
 
 
 

-------------------END OF THE UNIT I------------------------- 



 
 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 
 

 

WHAT IS A PROCESS? 
UNIT II 

A process is a program in execution. Process is not as same as program code but a lot more 

than it. A process is an 'active' entity as opposed to program which is considered to be a 'passive' 

entity. Attributes held by process include hardware state, memory, CPU etc. 

Process memory is divided into four sections for efficient working: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  The Text section is made up of the compiled program code, read in from non-volatile 

storage when the program is launched. 

  The Data section is made up the global and static variables, allocated and initialized prior to 

executing the main. 

  The Heap is used for the dynamic memory allocation, and is managed via calls to new, 

delete, malloc, free, etc. 

  The Stack is used for local variables. Space on the stack is reserved for local variables when 

they are declared. 

 
PROCESS CONTROL BLOCK 

There is a Process Control Block for each process, enclosing all the information about the 

process. It is a data structure, which contains the following: 

     Process State: It can be running, waiting etc. 

     Process ID and the parent process ID. 

  CPU  registers  and  Program  Counter. Program  Counter holds  the  address  of  the  next 

instruction to be executed for that process. 

  CPU  Scheduling information:  Such  as  priority  information  and  pointers  to  scheduling 

queues. 

     Memory Management information: For example, page tables or segment tables. 

  Accounting information: The User and kernel CPU time consumed, account numbers, 

limits, etc. 

     I/O Status information: Devices allocated, open file tables, etc. 



 
 

 
 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PROCESS STATES 

State Diagram 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The process, from its creation to completion, passes through various states. The minimum 

number of states is five. The names of the states are not standardized although the process may 

be in one of the following states during execution. 

1. New 

 A program which is going to be picked up by the OS into the main memory is called a 

new process. 

2. Ready 

 Whenever a process is created, it directly enters in the ready state, in which, it waits for 

the CPU to be assigned. The OS picks the new processes from the secondary memory 

and put all of them in the main memory. 

 The processes which are ready for the execution and reside in the main memory are 

called ready state processes. There can be many processes present in the ready state. 

3. Running 

 One of the processes from the ready state will be chosen by the OS depending upon the 

scheduling algorithm. Hence, if we have only one CPU in our system, the number of 

running processes for a particular time will always be one. If we have n processors in 

the system then we can have n processes running simultaneously. 

4. Block or wait 

 From the Running state, a process can make the transition to the block or wait state 

depending upon the scheduling algorithm or the intrinsic behavior of the process. 



 
 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

 When a process waits for a certain resource to be assigned or for the input from the user 

then the OS move this process to the block or wait state and assigns the CPU to the other 

processes. 
5. Completion or termination 

 When a process finishes its execution, it comes in the termination state. All the context 

of the process (Process Control Block) will also be deleted the process will be 

terminated by the Operating system. 

6. Suspend ready 

 A process in the ready state, which is moved to secondary memory from the main 

memory due to lack of the resources (mainly primary memory) is called in the suspend 

ready state. 

 If the main memory is full and a higher priority process comes for the execution then the 

OS have to make the room for the process in the main memory by throwing the lower 

priority process out into the secondary memory. The suspend ready processes remain in 

the secondary memory until the main memory gets available. 

7. Suspend wait 

 Instead of removing the process from the ready queue, it's better to remove the blocked 

process which is waiting for some resources in the main memory. Since it is already waiting 

for some resource to get available hence it is better if it waits in the secondary memory and 

make room for the higher priority process. These processes complete their execution once 

the main memory gets available and their wait is finished. 

Different Process States 
Processes in the operating system can be in any of the following states: 

     NEW- The process is being created. 

     READY- The process is waiting to be assigned to a processor. 

     RUNNING- Instructions are being executed. 

  WAITING- The process is waiting for some event to occur(such as an I/O completion or 

reception of a signal). 

     TERMINATED- The process has finished execution. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WHAT IS PROCESS SCHEDULING? 

The act of determining which process is in the ready state, and should be moved to 
the running state is known as Process Scheduling. 

The prime aim of the process scheduling system is to keep the CPU busy all the time and to deliver 

minimum response time for all programs. For achieving this, the scheduler must apply appropriate 

rules for swapping processes IN and OUT of CPU. 

Scheduling fell into one of the two general categories: 



 
 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

     Non Pre-emptive Scheduling: When the currently executing process gives up the CPU 

voluntarily. 

  Pre-emptive Scheduling: When the operating system decides to favour another process, 

pre-empting the currently executing process. 

What are Scheduling Queues? 
     All processes, upon entering into the system, are stored in the Job Queue. 
     Processes in the Ready state are placed in the Ready Queue. 

  Processes waiting for a device to become available are placed in Device Queues. There are 

unique device queues available for each I/O device. 

A new process is initially put in the Ready queue. It waits in the ready queue until it is selected 

for execution(or dispatched). Once the process is assigned to the CPU and is executing, one of the 

following several events can occur: 

     The process could issue an I/O request, and then be placed in the I/O queue. 

     The process could create a new subprocess and wait for its termination. 

  The process could be removed forcibly from the CPU, as a result of an interrupt, and be put 

back in the ready queue. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the first two cases, the process eventually switches from the waiting state to the ready 

state, and is then put back in the ready queue. A process continues this cycle until it terminates, at 

which time it is removed from all queues and has its PCB and resources deallocated. 

 
Types of Schedulers 

There are three types of schedulers available: 

1.   Long Term Scheduler 

2.   Short Term Scheduler 

3.   Medium Term Scheduler 

Let's discuss about all the different types of Schedulers in detail: 

Long Term Scheduler 

 Long term scheduler runs less frequently. Long Term Schedulers decide which program 

must get into the job queue. From the job queue, the Job Processor, selects processes and 

loads them into the memory for execution. Primary aim of the Job Scheduler is to maintain a 

good degree of Multiprogramming. 



UNIT II OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 

 

 An optimal degree of Multiprogramming means the average rate of process creation is equal 

to the average departure rate of processes from the execution memory. 

Short Term Scheduler 

 This is also known as CPU Scheduler and runs very frequently. The primary aim of this 

scheduler is to enhance CPU performance and increase process execution rate. 

Medium Term Scheduler 

    This scheduler removes the processes from memory (and from active contention for the 

CPU), and thus reduces the degree of multiprogramming. At some later time, the process 

can be reintroduced into memory and its execution van be continued where it left off. This 

scheme is called swapping. The process is swapped out, and is later swapped in, by the 

medium term scheduler. 

 Swapping may be necessary to improve the process mix, or because a change in memory 

requirements has overcommitted available memory, requiring memory to be freed up. This 

complete process is descripted in the below diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Addition of Medium-term scheduling to the queueing diagram. 

 
What is Context Switch? 

1.   Switching the CPU to another process requires saving the state of the old process 

and loading the saved state for the new process. This task is known as a Context Switch. 

2.   The context of a process is represented in the Process Control Block(PCB) of a process; it 

includes the value of the CPU registers, the process state and memory-management 

information. When a context switch occurs, the Kernel saves the context of the old process 

in its PCB and loads the saved context of the new process scheduled to run. 

3.   Context switch time is pure overhead, because the system does no useful work while 

switching. Its speed varies from machine to machine, depending on the memory speed, the 

number of registers that must be copied, and the existence of special instructions(such as a 

single instruction to load or store all registers). Typical speeds range from 1 to 1000 

microseconds. 

Context Switching has become such a performance bottleneck that programmers are using new 

structures(threads) to avoid it whenever and wherever possible. 

OPERATIONS ON PROCESSES 

Process Creation 

    A process may create several new processes, during the course of execution. 



UNIT II OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 
 

 

 

 The creating process is called a parent process, whereas the new processes are called the 

children of that process. 

    When a process creates a new process, two possibilities exist  in terms of execution: 

i.   The parent continues to execute concurrently with its children. 
ii.   The parent waits until some or all of its children have terminated. 

    There are also two possibilities in terms of the address space of the new process: 

i.  The child process is a duplicate of the parent process. 

ii.   The child process has a program loaded into it. 

    In UNIX, each process is identified by its process identifier, which is a unique   integer. A 

new process is created by the fork system call. 

 
Process Termination 

 
 A process terminates when it finishes executing itsfinal statement and asks the operating 

system to delete it by using the exit system call. 

 
 At that point, the process may return data (output) to its parent process (via the wait system 

call). 

    A process can cause the termination of another process via an appropriate system call. 

 A parent may terminate the execution of one of its children for a variety of reasons, such as 

these: 

    The child has exceeded its usage of some of the resources that it has been allocated. 

    The task assigned to the child is no longer required. 

 The parent is exiting, and the operating system does not allow a child to continue if its 

parent terminates. On such systems, if a process terminates (either normally or abnormally), 

then all its children must also be terminated. This phenomenon, referred to as cascading 

termination, is normally initiated by the operating system. 

WHAT IS THREAD? 

 A thread is a flow of execution through the process code, with its own program counter 

that keeps track of which instruction to execute next, system registers which hold its 

current working variables, and a stack which contains the execution history. 

 A thread shares with its peer threads few information like code segment, data segment and 

open files. When one thread alters a code segment memory item, all other threads see that. 

 A  thread  is  also  called  a lightweight  process.  Threads  provide  a  way  to  improve 

application performance through parallelism. Threads represent a software approach to 

improving performance of operating system by reducing the overhead thread is equivalent 

to a classical process. 

 Each thread belongs to exactly one process and no thread can exist outside a process. Each 

thread represents a separate flow of control. Threads have been successfully used in 

implementing network servers and web server. They also provide a suitable foundation for 

parallel execution of applications on shared memory multiprocessors. The following figure 

shows the working of a single-threaded and a multithreaded process. 



UNIT II OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 
 

   
S.N. Process Thread 

 

1 
 

Process is heavy weight or 

resource intensive. 

 

Thread is light weight, taking lesser resources than a 

process. 

 

2 
 

Process switching needs 

interaction with operating 

system. 

 

Thread switching does not need to interact with operating 

system. 

 

3 
 

In multiple processing 

environments, each 

process executes the same 

code but has its own 

memory and file resources. 

 

All threads can share same set of open files, child 

processes. 

 

4 
 

If one process is blocked, 

then no other process can 

execute until the first 

process is unblocked. 

 

While one thread is blocked and waiting, a second thread 

in the same task can run. 

 

5 
 

Multiple processes without 

using threads use more 

resources. 

 

Multiple threaded processes use fewer resources. 

 

6 
 

In multiple processes each 

process operates 

independently of the 

 

One thread can read, write or change another thread's data. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Difference between Process and Thread 



UNIT II OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 
 

 

 
others. 

 

Advantages of Thread 

     Threads minimize the context switching time. 
     Use of threads provides concurrency within a process. 

     Efficient communication. 

     It is more economical to create and context switch threads. 

     Threads allow utilization of multiprocessor architectures to a greater scale and efficiency. 

Types of Thread 
Threads are implemented in following two ways − 

    User Level Threads − User managed threads. 

    Kernel Level Threads − Operating System managed threads acting on kernel, an operating 

system core. 

User Level Threads 

 In this case, the thread management kernel is not aware of the existence of threads. The 

thread library contains code for creating and destroying threads, for passing message and 

data between threads, for scheduling thread execution and for saving and restoring thread 

contexts. The application starts with a single thread. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Advantages 

     Thread switching does not require Kernel mode privileges. 
     User level thread can run on any operating system. 

     Scheduling can be application specific in the user level thread. 

     User level threads are fast to create and manage. 

Disadvantages 
     In a typical operating system, most system calls are blocking. 
     Multithreaded application cannot take advantage of multiprocessing. 



 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

Kernel Level Threads 

 In this case, thread management is done by the Kernel. There is no thread management 

code in the application area. Kernel threads are supported directly by the operating system. 

Any application can be programmed to be multithreaded. All of the threads within an 
application are supported within a single process. 

 The Kernel maintains context information for the process as a whole and for individuals 

threads within the process. Scheduling by the Kernel is done on a thread basis. The Kernel 

performs thread creation, scheduling and management in Kernel space. Kernel threads are 

generally slower to create and manage than the user threads. 

Advantages 
     Kernel can simultaneously schedule multiple threads from the same process on multiple 

processes. 

  If one thread in a process is blocked, the Kernel can schedule another thread of the same 

process. 

     Kernel routines themselves can be multithreaded. 

Disadvantages 
     Kernel threads are generally slower to create and manage than the user threads. 

  Transfer of control from one thread to another within the same process requires a mode 

switch to the Kernel. 

Multithreading Models 
     Some operating system provide a combined user level thread and  Kernel level thread 

facility. Solaris is a good example of this combined approach. In a combined system, 

multiple threads within the same application can run in parallel on multiple processors and 

a blocking system call need not block the entire process. Multithreading models are three 

types 

     Many to many relationship. 

     Many to one relationship. 

     One to one relationship. 

Many to Many Model 
     The many-to-many model multiplexes any number of user threads onto an equal or smaller 

number of kernel threads. 

  The  following  diagram  shows  the  many-to-many  threading  model  where  6  user  level 

threads are multiplexing with 6 kernel level threads. In this model, developers can create as 

many user threads as necessary and the corresponding Kernel threads can run in parallel on 

a multiprocessor machine. This model provides the best accuracy on concurrency and when 

a thread performs a blocking system call, the kernel can schedule another thread for 

execution. 



 

 
 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Many to One Model 
     Many-to-one model  maps  many user level  threads  to  one  Kernel-level  thread.  Thread 

management is done in user space by the thread library. When thread makes a blocking 

system call, the entire process will be blocked. Only one thread can access the Kernel at a 

time, so multiple threads are unable to run in parallel on multiprocessors. 

  If the user-level thread libraries are implemented in the operating system in such a way that 

the system does not support them, then the Kernel threads use the many-to-one relationship 

modes. 



UNIT II OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

One to One Model 

     There is one-to-one relationship of user-level thread to the kernel-level thread. This model 
provides more concurrency than the many-to-one model. It also allows another thread to 

run when a thread makes a blocking system call. It supports multiple threads to execute in 

parallel on microprocessors. 

  Disadvantage of this model is that creating user thread requires the corresponding Kernel 

thread. OS/2, windows NT and windows 2000 use one to one relationship model. 



UNIT II OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 
 

 

 
 
 
 
 
 
 
 

Difference between User-Level & Kernel-Level Thread 
 

S.N. 
 

User-Level Threads 
 

Kernel-Level Thread 

 

1 
 

User-level threads are faster to create and 

manage. 

 

Kernel-level threads are slower to 

create and manage. 

 

2 
 

Implementation is by a thread library at the user 

level. 

 

Operating system supports creation of 

Kernel threads. 

 

3 
 

User-level thread is generic and can run on any 

operating system. 

 

Kernel-level thread is specific to the 

operating system. 

 

4 
 

Multi-threaded applications cannot take 

advantage of multiprocessing. 

 

Kernel routines themselves can be 

multithreaded. 

 

THREAD LIBRARIES 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Thread libraries provide programmers with an API for creating and managing threads. 

  Thread libraries may be implemented either in user space or in kernel space. The former 

involves API functions implemented solely within user space, with no kernel support. The 

latter involves  system calls, and requires a kernel with thread library support. 

There are three main thread libraries in use today: 

 
1.   POSIX  Pthreads - may be provided as either a user or kernel library, as an extension to the 

POSIX standard. 

2.   Win32 threads - provided as a kernel-level library on Windows systems. 

3.   Java   threads  -   Since   Java   generally   runs   on   a   Java   Virtual   Machine,   the 

implementation of threads is based upon whatever OS and hardware the JVM is running on, 

i.e. either Pthreads or Win32 threads depending on the system. 

The following sections will demonstrate the use of threads in all three systems for calculating the 

sum of integers from 0 to N in a separate thread, and storing the result in a variable "sum". 

1. Pthreads 
     The POSIX standard ( IEEE 1003.1c ) defines  the specification for pThreads, not the 

implementation. 

  pThreads  are  available  on  Solaris,  Linux,  Mac  OSX,  Tru64,  and  via  public  domain 

shareware for Windows. 



UNIT II OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 
 

 

 

     Global variables are shared amongst all threads. 

     One thread can wait for the others to rejoin before continuing. 

 
     pThreads begin execution in a specified function, in this example the runner( ) function: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2. Java Threads 

     ALL Java programs use Threads - even "common" single-threaded ones. 

  The creation of new Threads requires Objects that implement the Runnable Interface, which 

means they contain a method "public void run( )" . Any descendant of the Thread class will 

naturally contain such a method. ( In practice the run( ) method must be overridden / 

provided for the thread to have any practical functionality. ) 

  Creating a Thread Object does not start the thread running - To do that the program must 

call the Thread's "start( )" method. Start( ) allocates and initializes memory for the Thread, 

and then calls the run( ) method. ( Programmers do not call run( ) directly. ) 

  Because Java does not support global variables, Threads must be passed a reference to a 

shared Object in order to share data, in this example the "Sum" Object. 

  Note that the JVM runs on top of a native OS, and that the JVM specification does not 

specify what model to use for mapping Java threads to kernel threads. This decision is JVM 

implementation dependant, and may be one-to-one, many-to-many, or many to one.. ( On a 

UNIX system the JVM normally uses PThreads and on a Windows system it normally uses 

windows threads. ) 

 
3. Windows Threads 

Similar to pThreads. Examine the code example to see the differences, which are mostly 

syntactic & nomenclature: 



 

 
 

 
 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTERPROCESS COMMUNICATION 
 

 

 Operating         systems         provide         the    means    for    cooperating    processes    to 

communicate with          each   other via     an  interprocess communication (PC) facility. 

 IPC       provides  a  mechanism  to  allow  processes  to  communicate  and  to synchronize 
their actions.IPC is best provided by a message passing system. 

 
Basic Structure: 

If  processes  P  and  Q  want  to  communicate,  they must  send  messages  to  and  receive 

messages from each other; a communication link must exist between them. 

Physical implementation of  the link  is  done through  a hardware bus  , network etc, 



 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

There are several methods for logically implementing a  link  and  the operations: 

1.       Direct or indirect communication 
2.       Symmetric or asymmetric communication 

3.       Automatic or explicit buffering 

4.       Send by copy or send by reference 

5.       Fixed-sized or variable-sized messages 

 
1. Naming 

 
Processes that want to communicate must have a way to refer to each other. 

They can use either direct or indirect communication. 

 
1.1. Direct Communication 

Each process that wants to communicate must explicitly name the recipient orsender of the 

communication. 

A communication link in this scheme has the following properties: 

 A     link     is          established     automatically     between     every     pair     of    processes 

that  want  to  communicate. The processes need to know only each other's identity to 

communicate. 

   A link is associated with exactly two processes. 

   Exactly one link exists between each pair of processes. 

There are two ways of addressing namely 

       Symmetry in addressing 

 
       Asymmetry in addressing 

 
In  symmetry in  addressing, the send  and  receive primitives   are defined as: 

  send(P, message)  Send a message to process P 

  receive(Q, message) Receive a message from Q 

In  asymmetry in  addressing ,  the       send  & receive primitives       are defined as: 

  send (p, message)  send a message to process p 

  receive(id, message) receive message from any process, 

 
id is set to the name of the process with which communication has taken place 

 
1.2. Indirect Communication 

With indirect communication, the messages are sent to and received from mailboxes,or ports. 

The send and receive primitives are defined as follows: 

       send (A, message) Send a message to mailbox A. 

       receive (A, message) Receive a message from mailbox A. 

A communication link has the following properties: 

 A link is established between a pair of processes only if both members of the pair have a 

shared mailbox. 

   A link may be associated with more than two processes. 

 A number of different links may exist between each pair of communicating processes, with 

each link corresponding to one mailbox 

 
1.3. Buffering 

A link has some capacity that determines the number of message that can reside in it 
temporarily. This property can be viewed as a queue of messages attached to the link. 



 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

There are three ways that such a queue can be implemented. 

1.   Zero capacity: Queue length of maximum is 0. No message is waiting in a queue. The 

sender must wait until the recipient receives the message. (Message system with no 

buffering) 

2.   Bounded capacity: The queue has finite length n. Thus at most n messages can reside in it. 

3.   Unbounded  capacity:  The  queue  has  potentially infinite  length.  Thus  any number  of 

messages can wait in it. The sender is never delayed. 

 
1.4 Synchronization 

Message passing may be either blocking or non-blocking. 
1.   Blocking Send - The sender blocks itself till the message sent by it is received by the 

receiver. 

2.   Non-blocking  Send  - The sender does  not  block  itself  after sending  the message but 

continues with its normal operation. 

3.   Blocking Receive- The receiver blocks itself until  it  receives the message. 

 
4.   Non-blocking Receive–The receiver does not block itself. 

 
There are two levels of communication 

      Low – level form of communication – eg. Socket 

      High – level form of communication – eg.RPC , RMI 
 

 
 

PROCESS SYNCHRONIZATION 

1. Background 
 

Producer code 
item nextProduced; 
while( true )  { 

 
 
 

 
/*  Produce  an  item  and  store  it  in  nextProduced  */  nextProduced  = 

makeNewItem( . . . ); 

/*  Wait  for  space  to  become  available  */  while(  (  (  in  +  1  )  % 

BUFFER_SIZE ) == out ) 

; /* Do nothing */ 

/*  And  then  store  the  item  and  repeat  the  loop.  */  buffer[  in  ]  = 

nextProduced; 

in = ( in + 1 ) % BUFFER_SIZE; 
 

} 

 
Consumer code 

 

item nextConsumed; 

while( true ) { 

 
 
 

/* Wait for an item to become available */ while( in == out ) 

; /* Do nothing */ 

/* Get the next available item */ nextConsumed = buffer[ out ]; 

out = ( out + 1 ) % BUFFER_SIZE; 

/* Consume the item in nextConsumed ( Do something with it ) */ 
 

} 



 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 

 The only problem with the above code is that the maximum number of items which can be 

placed into the buffer is BUFFER_SIZE - 1. One slot is unavailable because there always 

has to be a gap between the producer and the consumer. 

 We could try to overcome this deficiency by introducing a counter variable, as shown in the 

following code segments: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Unfortunately we have now introduced a new problem, because both the producer and the 

consumer are adjusting the value of the variable counter, which can lead to a condition 

known as a race condition. In this condition a piece of code may or may not work correctly, 

depending on which of two simultaneous processes executes first, and more importantly if 

one of the processes gets interrupted such that the other process runs between important 

steps of the first process. ( Bank balance example discussed in class. ) 

 The particular problem above comes from the producer executing "counter++" at the same 

time the consumer is executing "counter--". If one process gets part way through making the 

update and then the other process butts in, the value of counter can get left in an incorrect 

state. 

 But, you might say, "Each of those are single instructions - How can they get interrupted 

halfway through?" The answer is that although they are single instructions in C++, they are 

actually three steps each at the hardware level: 

(1)Fetch counter from memory into a register, 

(2)increment or decrement the register, and 

(3)Store  the  new  value  of  counter  back  to  memory.  If  the  instructions  from  the  two 

processes get interleaved, there could be serious problems, such as illustrated by the following: 



 

 
 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CRITICAL-SECTION PROBLEM 
The producer-consumer problem described above is a specific example of a more general 

situation known as the critical section problem. The general idea is that in a number of cooperating 

processes, each has a critical section of code, with the following conditions and terminologies: 

 Only one process in the group can be allowed to execute in their critical section at any one 

time. If one process is already executing their critical section and another process wishes to 

do so, then the second process must be made to wait until the first process has completed 

their critical section work. 

 The code preceding the critical section, and which controls access to the critical section, is 

termed the entry section. It acts like a carefully controlled locking door. 

 The code following the critical section is termed the exit section. It generally releases the 

lock on someone else's door, or at least lets the world know that they are no longer in their 

critical section. 

 The rest of the code not included in either the critical section or the entry or exit sections is 

termed the remainder section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A solution to the critical section problem must satisfy the following three conditions: 

1.     Mutual Exclusion - Only one process at a time can be executing in their critical section. 



 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

2. Progress - If no process is currently executing in their critical section, and one or more 

processes want to execute their critical section, then only the processes not in their 

remainder sections can participate in the decision, and the decision cannot be postponed 

indefinitely. ( i.e. processes cannot be blocked forever waiting to get into their critical 

sections. ) 

3. Bounded Waiting - There exists a limit as to how many other processes can get into 

their critical sections after a process requests entry into their critical section and before 

that request is granted. ( I.e. a process requesting entry into their critical section will get 

a turn eventually, and there is a limit as to how many other processes get to go first. ) 

 We assume that all processes proceed at a non-zero speed, but no assumptions can be made 

regarding the relative speed of one process versus another. 

 Kernel processes can also be subject to race conditions, which can be especially problematic 

when updating commonly shared kernel data structures such as open file tables or virtual 

memory management. Accordingly kernels can take on one of two forms: 

o Non-preemptive  kernels  do  not  allow  processes  to  be  interrupted  while  in 

kernel mode. This eliminates the possibility of kernel-mode race conditions, but 

requires kernel mode operations to complete very quickly, and can be problematic 

for real-time systems, because timing cannot be guaranteed. 

o Preemptive kernels allow for real-time operations, but must be carefully written to 

avoid race conditions. This can be especially tricky on SMP systems, in which 

multiple kernel processes may be running simultaneously on different processors. 

Mutex Locks 

 The hardware solutions presented above are often difficult for ordinary programmers to 

access, particularly on multi-processor machines, and particularly because they are often 

platform-dependent. 

 Therefore most systems  offer a software API equivalent called mutex  locks or simply 

mutexes. ( For mutual exclusion ) 

 The terminology when using mutexes is to acquire a lock prior to entering a critical section, 

and to release it when exiting. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Just as with hardware locks, the acquire step will block the process if the lock is in use by 

another process, and both the acquire and release operations are atomic. 

   Acquire  and  release  can  be implemented  as  shown here,  based  on  a  boolean  variable 

"available": 



 

 
 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 One problem with the implementation shown here, ( and in the hardware solutions presented 

earlier ), is the busy loop used to block processes in the acquire phase. These types of locks 

are referred to as spinlocks, because the CPU just sits and spins while blocking the process. 

 Spinlocks are wasteful of cpu cycles, and are a really bad idea on single-cpu single-threaded 

machines, because the spinlock blocks the entire computer, and doesn't allow any other 

process to release the lock. ( Until the scheduler kicks the spinning process off of the cpu. ) 

 On the other hand, spinlocks do not incur the overhead of a context switch, so they are 

effectively used on multi-threaded machines when it is expected that  the lock will be 

released after a short time. 

SEMAPHORES 

 

 A more robust alternative to simple mutexes is to use semaphores, which are integer 

variables for which only two (atomic ) operations are defined, the wait and signal 
operations, as shown in the following figure. 

 Note that not only must the variable-changing steps ( S-- and S++ ) be indivisible, it is 

also necessary that for the wait operation when the test proves false that there be no 

interruptions    before    S    gets    decremented.    It    IS    okay, 

however,forthebusylooptobe interruptedwhenthetesistrue,which   prevents   the   system 

from hanging forever. 



 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 

1. Semaphore Usage 
In practice, semaphores can take on one of two forms: 

o   Binary semaphores can take on one of two values, 0 or 1. They can be used to solve 

the critical section problem as described above, and can be used as mutexes on 

systems that do not provide a separate mutex mechanism.. The use of mutexes for 

this purpose is shown in Figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Semaphores can also be used to synchronize certain operations between processes. For example, 

suppose it is important that process P1 execute statement S1 before process P2 executes 

statement S2. 

First we create a semaphore named synch that is shared by the two processes, and initialize it to 

zero. 

Then in process P1 we insert the code: 

 
S1; 

 
signal( synch ); 

 
and in process P2 we insert the code: 

 
wait( synch ); S2; 

 
Because synch was initialized to 0, process P2 will block on the wait until after P1 executes 

the call to signal. 

 
2. Semaphore Implementation 

The big problem with semaphores as described above is the busy loop in the wait call, 
which  consumes  CPU cycles  without  doing any useful  work.  This  type of lock is  known as 

a spinlock, because the lock just sits there and spins while it waits. While this is generally a bad 

thing, it does have the advantage of not invoking context switches, and so it is sometimes used in 

multi-processing systems when the wait time is expected to be short - One thread spins on one 

processor while another completes their critical section on another processor. 

An alternative approach is to block a process when it is forced to wait for an available 

semaphore, and swap it out of the CPU. In this implementation each semaphore needs to maintain a 

list of processes that are blocked waiting for it, so that one of the processes can be woken up and 

swapped back in when the semaphore becomes available. (Whether it gets swapped back into the 

CPU immediately or whether it needs to hang out in the ready queue for a while is a scheduling 

problem.) 



 

 
 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

The new definition of a semaphore and the corresponding wait and signal operations are 

shown as follows: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Deadlocks and Starvation 

 
One important problem that can arise when using semaphores to block processes waiting for 

a limited resource is the problem of deadlocks, which occur when multiple processes are blocked, 

each waiting for a resource that can only be freed by one of the other ( blocked ) processes, as 

illustrated in the following example. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Another problem to consider is that of starvation, in which one or more processes get 

blocked forever, and never get a chance to take their turn in the critical section. For example, in the 

semaphores above, we did not specify the algorithms for adding processes to the waiting queue in 

the semaphore in the wait( ) call, or selecting one to be removed from the queue in the signal( ) call. 



 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

If the method chosen is a FIFO queue, then every process will eventually get their turn, but if a 

LIFO queue is implemented instead, then the first process to start waiting could starve. 

MONITORS 
Semaphores   can   be   very   useful   for   solving   concurrency   problems,   but   only 

if programmers  use  them  properly.  If  even  one  process  fails  to  abide  by  the  proper  use 

of semaphores, either accidentally or deliberately, then the whole system breaks down. (And since 

concurrency problems are by definition rare events, the problem code may easily go unnoticed 

and/or be heinous to debug.) 

For this reason a higher-level language construct has been developed, called monitors. 

 
Monitor Usage 

 
A monitor is essentially a class, in which all data is private, and with the special restriction 

that  only  one  method  within  any  given  monitor  object  may be  active  at  the  same  time.  An 

additional restriction is that monitor methods may only access the shared data within the monitor 

and any data passed to them as parameters. I.e. they cannot access any data external to the monitor. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  In order to fully realize the potential of monitors, we need to introduce one additional new 

data type, known as a condition. 

 A variable of type condition has only two legal operations, wait and signal. I.e. if X was 
defined as type condition, then legal operations would be X.wait( ) and X.signal( ) 

 The wait operation blocks a process until some other process calls signal, and adds the 

blocked process onto a list associated with that condition. 

   The  signal  process  does  nothing  if  there  are  no  processes  waiting  on  that  condition. 

Otherwise it wakes up exactly one process from the condition's list of waiting processes. 
(Contrast this with counting semaphores, which always affect the semaphore on a signal 

call.) 



 

 
 

 
 

UNIT II                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Signal and wait - When process P issues the signal to wake up process Q, P then waits, either for Q 

to leave the monitor or on some other condition. 

Signal and continue - When P issues the signal, Q waits, either for P to exit the monitor or 

for some other condition. 

There  are  arguments  for  and  against  either  choice.  Concurrent  Pascal  offers  a  third 

alternative - The signal call causes the signaling process to immediately exit the monitor, so that the 

waiting process can then wake up and proceed. 

Implementing a Monitor Using Semaphores 
One possible implementation of a monitor uses a semaphore "mutex" to control mutual 

exclusionary access to the monitor, and a counting semaphore "next" on which processes can 

suspend themselves after they are already "inside" the monitor ( in conjunction with condition 

variables, see below. ) The integer next_count keeps track of how many processes are waiting in the 

next queue. Externally accessible monitor processes are then implemented as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Condition variables can be implemented using semaphores as  well. For a condition x, 

semaphore "x_sem" and an integer "x_count" are introduced, both initialized to zero. The 

wait and signal methods are then implemented as follows. ( This approach to the condition 

implements the signal-and-wait option described above for ensuring that only one process at 

time is active inside the monitor. ) 
 
 
 
 

-------------------- END OF THE UNIT II-------------------- 



 
 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

CPU SCHEDULING 
  CPU scheduling is a process which allows one process to use the CPU while the execution of 

another process is on hold(in waiting state) due to unavailability of any resource like I/O etc, 

thereby making full use of CPU. The aim of CPU scheduling is to make the system efficient, fast 

and fair. 

  Whenever the CPU becomes idle, the operating system must select one of the processes in 

the ready queue to be executed. The selection process is carried out by the short-term scheduler 

(or CPU scheduler). The scheduler selects from among the processes in memory that are ready to 

execute, and allocates the CPU to one of them. 

Basic Concepts 

Almost all programs have some alternating cycle of CPU number crunching and waiting for I/O 

of some kind. ( Even a simple fetch from memory takes a long time relative to CPU speeds. ) 

  In a simple system running a single process, the time spent waiting for I/O is wasted, and those 

CPU cycles are lost forever. 

  A scheduling system allows one process to use the CPU while another is waiting for I/O, thereby 

making full use of otherwise lost CPU cycles. 

  The challenge is to make the overall system as "efficient" and "fair" as possible, subject to 

varying and often dynamic conditions, and where "efficient" and "fair" are somewhat subjective 

terms, often subject to shifting priority policies. 
 

 

CPU-I/O Burst Cycle 
 

 
 

 

below: 

Almost all processes alternate between two states in a continuing cycle, as shown in Figure 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  A CPU burst of performing calculations, and An I/O burst, waiting for data transfer in or out of 

the system. 



 
 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

  CPU bursts vary from process to process, and from program to program, but an extensive study 

shows frequency patterns similar to that shown in Figure 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CPU Scheduler 
 

 

  Whenever the CPU becomes idle, it is the job of the CPU Scheduler ( a.k.a. the short-term 

scheduler ) to select another process from the ready queue to run next. 

  The storage structure for the ready queue and the algorithm used to select the next process 

are not necessarily a FIFO queue. There are several alternatives to choose from, as well as 

numerous adjustable parameters for each algorithm. 
 

 

Preemptive Scheduling 

CPU scheduling decisions take place under one of four conditions: 

1.     When a process switches from the running state to the waiting state, such as for an I/O 

request or invocation of the wait( ) system call. 

2. When  a process  switches  from  the running state to  the ready state,  for example in 

response to an interrupt. 

3.     When a process switches from the waiting state to the ready state, say at completion of 

I/O or a return from wait( ). 

4.     When a process terminates. 

  For conditions 1 and 4 there is no choice - A new process must be selected. 

  For conditions 2 and 3 there is a choice - To either continue running the current process, or select 

a different one. 

  If scheduling takes place only under conditions 1 and 4, the system is said to be non-preemptive, 

or cooperative. Under these conditions, once a process starts running it keeps running, until it 

either voluntarily blocks or until it finishes. Otherwise the system is said to be preemptive. 

  Windows used non-preemptive scheduling up to Windows 3.x, and started using pre-emptive 

scheduling with Win95. Macs used non-preemptive prior to OSX, and pre-emptive since then. 

Note that pre-emptive scheduling is only possible on hardware that supports a timer interrupt. 



 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

  Note that pre-emptive scheduling can cause problems when two processes share data, because 

one process may get interrupted in the middle of updating shared data structures. 

  Preemption can also be a problem if the kernel is busy implementing a system call (e.g. updating 

critical kernel data structures) when the preemption occurs. Most modern UNIX deal with this 

problem by making the process wait until the system call has either completed or blocked before 

allowing the preemption Unfortunately this solution is problematic for real-time systems, as real- 

time response can no longer be guaranteed. 

  Some critical  sections of code protect  themselves  from  concurrency problems  by disabling 

interrupts before entering the critical section and re-enabling interrupts on exiting the section. 

Needless to say, this should only be done in rare situations, and only on very short pieces of code 

that will finish quickly, (usually just a few machine instructions.) 
 

 

Dispatcher 
 

 

  The dispatcher is the module that gives control of the CPU to the process selected by the 

scheduler. This function involves: 

   Switching context. 

   Switching to user mode. 

   Jumping to the proper location in the newly loaded program. 

  The dispatcher needs to be as fast as possible, as it is run on every context switch. The time 

consumed by the dispatcher is known as dispatch latency. 
 

 

Scheduling Algorithms 
 

 

  The following subsections will explain several common scheduling strategies, looking at only a 

single CPU burst each for a small number of processes. Obviously real systems have to deal with 

a lot more simultaneous processes executing their CPU-I/O burst cycles. There are different 

types of scheduling algorithm 

  First-Come First-Serve Scheduling,(FCFS) 

  Shortest-Job-First Scheduling, (SJF) 

  Priority Scheduling (PS) 

  Round Robin Scheduling (RRS) 

  Multilevel Queue Scheduling (MQS) 

  Multilevel Feedback-Queue Scheduling (MFQS) 
 
 

 
First-Come First-Serve Scheduling, FCFS 

 

 

 FCFS is very simple - Just a FIFO queue, like customers waiting in line at the bank or the post 

office or at a copying machine. 

 Unfortunately, however, FCFS can yield some very long average wait times, particularly if the 

first process to get there takes a long time. For example, consider the following three processes: 



 
 

 
 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 In the first Gantt chart below, process P1 arrives first. The average waiting time for the three 

processes is ( 0 + 24 + 27 ) / 3 = 17.0 ms. 

    In the second Gantt chart below, the same three processes have an average wait time of ( 0 + 3 + 

6 ) / 3 = 3.0 ms. The total run time for the three bursts is the same, but in the second case two of 

the three finish much quicker, and the other process is only delayed by a short amount. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shortest-Job-First Scheduling, SJF 
 

 

  The idea behind the SJF algorithm is to pick the quickest fastest little job that needs to be done, 

get it out of the way first, and then pick the next smallest fastest job to do next. 

  Technically this algorithm picks a process based on the next shortest CPU burst, not the overall 

process time. 

  For example, the Gantt chart below is based upon the following CPU burst times, ( and the 

assumption that all jobs arrive at the same time. ) 



 
 

 
 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the case above the average wait time is ( 0 + 3 + 9 + 16 ) / 4 = 7.0 ms, ( as opposed to 10.25 ms for 

FCFS for the same processes. ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  SJF can be either preemptive or non-preemptive. Preemption occurs when a new process arrives 

in the ready queue that has a predicted burst time shorter than the time remaining in the process 

whose burst  is  currently on  the CPU. Preemptive SJF is  sometimes  referred  to  as shortest 

remaining time first scheduling. 

  For example, the following Gantt chart is based upon the following data: 



 
 

 
 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  The average wait time in this case is 
 

 

((5 - 3 ) + ( 10 - 1 ) + ( 17 - 2 ) ) / 4 = 26 / 4 = 6.5 ms. 
 

 

( As opposed to 7.75 ms for non-preemptive SJF or 8.75 for FCFS. ) 
 

 

Priority Scheduling 
 

 

 Priority scheduling is a more general case of SJF, in which each job is assigned a priority and the 

job with the highest priority gets scheduled first. (SJF uses the inverse of the next expected burst 

time as its priority - The smaller the expected burst, the higher the priority. ) 

 Note that in practice, priorities are implemented using integers within a fixed range, but there is 

no agreed-upon convention as to whether "high" priorities use large numbers or small numbers. 

 For example, the following Gantt chart is based upon these process burst times and priorities, 

and yields an average waiting time of 8.2 ms: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Priorities can be assigned either internally or externally. Internal priorities are assigned by the 

OS using criteria such as average burst time, ratio of CPU to I/O activity, system resource use, 



UNIT III OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 
 

 
 

and other factors available to the kernel. External priorities are assigned by users, based on the 

importance of the job, fees paid, politics, etc. 
 

 

Round Robin Scheduling 
 

 

 Round robin scheduling is similar to FCFS scheduling, except that CPU bursts are assigned with 

limits called time quantum. 

 When a process is given the CPU, a timer is set for whatever value has been set for a time 

quantum. 

 If the process finishes its burst before the time quantum timer expires, then it is swapped out of 

the CPU just like the normal FCFS algorithm. 

 If the timer goes off first, then the process is swapped out of the CPU and moved to the back end 

of the ready queue. 

 The ready queue is maintained as a circular queue, so when all processes have had a turn, then 

the scheduler gives the first process another turn, and so on. 

 RR scheduling can give the effect of all processors sharing the CPU equally, although the 

average  wait  time  can  be  longer  than  with  other  scheduling  algorithms.  In  the  following 

example the average wait time is 5.66 ms. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The performance of RR is sensitive to the time quantum selected. If the quantum is large enough, 

then RR reduces to the FCFS algorithm; If it is very small, then each process gets 1/nth of the 

processor time and share the CPU equally. 

 BUT, a real system invokes overhead for every context switch, and the smaller the time quantum 

the more context switches there are. ( See Figure 5.4 below. ) Most modern systems use time 

quantum between 10 and 100 milliseconds, and context switch times on the order of 10 

microseconds, so the overhead is small relative to the time quantum. 

 In general, turnaround time is minimized if most processes finish their next cpu burst within one 

time quantum. For example, with three processes of 10 ms bursts each, the average turnaround 

time for 1 ms quantum is 29, and for 10 ms quantum it reduces to 20. 

 However, if it is made too large, then RR just degenerates to FCFS. A rule of thumb is that 80% 

of CPU bursts should be smaller than the time quantum. 



UNIT III OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 
 

 
 

Multilevel Queue Scheduling 

  When processes can be readily categorized, then multiple separate queues can be established, 

each implementing whatever scheduling algorithm is most appropriate for that type of job, 

and/or with different parametric adjustments. 

  Scheduling must also be done between queues, that is scheduling one queue to get time relative 

to other queues. Two common options are strict priority ( no job in a lower priority queue runs 

until all higher priority queues are empty ) and round-robin ( each queue gets a time slice in turn, 

possibly of different sizes. ) 

  Note that under this algorithm jobs cannot switch from queue to queue - Once they are assigned 

a queue, that is their queue until they finish 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multilevel Feedback-Queue Scheduling 
 

 

  Multilevel feedback queue scheduling is similar to the ordinary multilevel queue scheduling 

described above, except jobs may be moved from one queue to another for a variety of reasons: 

 If the characteristics of a job change between CPU-intensive and I/O intensive, then it 

may be appropriate to switch a job from one queue to another. 

 Aging can also be incorporated, so that a job that has waited for a long time can get 

bumped up into a higher priority queue for a while. 
 

 

  Some of the parameters which define one of these systems include: 

    The number of queues. 

    The scheduling algorithm for each queue. 

 The methods used to upgrade or demote processes from one queue to another. ( Which 

may be different. ) 

    The method used to determine which queue a process enters initially. 



UNIT III OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MEMORY MANAGEMENT 
 

Memory management is the functionality of an operating system which handles or manages 

primary  memory  and  moves  processes  back  and  forth  between  main  memory  and  disk  during 

execution. Memory management keeps track of each and every memory location, regardless of either it 

is allocated to some process or it is free. It checks how much memory is to be allocated to processes. It 

decides which process will get memory at what time. It tracks whenever some memory gets freed or 

unallocated and correspondingly it updates the status. 
 

The basic concepts related to Memory Management. 

 
Process Address Space 

 
    The process address space is the set of logical addresses that a process references in its code. 

For example, when 32-bit addressing is in use, addresses can range from 0 to 0x7fffffff; that is, 

2^31 possible numbers, for a total theoretical size of 2 gigabytes. 

  The operating system takes care of mapping the logical addresses to physical addresses at the 

time of memory allocation to the program. There are three types of addresses used in a program 

before and after memory is allocated − 
 

 

S.N. 
 

Memory Addresses & Description 

 

1 
 

Symbolic addresses 
 

The addresses used in a source code. The variable names, constants, and instruction labels are 

the basic elements of the symbolic address space. 

 

2 
 

Relative addresses 
 

At the time of compilation, a compiler converts symbolic addresses into relative addresses. 

 

3 
 

Physical addresses 
 

The  loader  generates  these  addresses  at  the  time  when  a  program  is  loaded  into  main 

memory. 



UNIT III OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 

 

  Virtual and physical addresses are the same in compile-time and load-time address-binding 

schemes. Virtual and physical addresses differ in execution-time address-binding scheme. 

  The set of all logical addresses generated by a program is referred to as a logical address space. 

The set of all physical addresses corresponding to these logical addresses is referred to as 

a physical address space. 

  The runtime mapping from virtual to physical address is done by the memory management unit 

(MMU)  which  is  a  hardware  device.  MMU  uses  following  mechanism  to  convert  virtual 

address to physical address. 
 

  The value in the base register is added to every address generated by a user process, 

which is treated as offset at the time it is sent to memory. For example, if the base 

register value is 10000, then an attempt by the user to use address location 100 will be 

dynamically reallocated to location 10100. 
 

  The  user  program  deals  with  virtual  addresses;  it  never  sees  the  real  physical 

addresses. 

 
Static vs Dynamic Loading 

 
  The choice between Static or Dynamic Loading is to be made at the time of computer program 

being developed. If you have to load your program statically, then at the time of compilation, 

the complete programs will be compiled and linked without leaving any external program or 

module  dependency.  The  linker  combines  the  object  program  with  other  necessary object 

modules into an absolute program, which also includes logical addresses. 

  If you are writing a Dynamically loaded program, then your compiler will compile the program 

and  for  all  the  modules  which  you  want  to  include  dynamically,  only  references  will  be 

provided and rest of the work will be done at the time of execution. 

  At the time of loading, with static loading, the absolute program (and data) is loaded into 

memory in order for execution to start. 

  If you are using dynamic loading, dynamic routines of the library are stored on a disk in 

relocatable form and are loaded into memory only when they are needed by the program. 

 
Static vs Dynamic Linking 

 
  As explained above, when static linking is used, the linker combines all other modules needed 

by a program into a single executable program to avoid any runtime dependency. 

  When dynamic linking is used, it is not required to link the actual module or library with the 

program, rather a reference to the dynamic module is provided at the time of compilation and 

linking. Dynamic Link Libraries (DLL) in Windows and Shared Objects in Unix are good 

examples of dynamic libraries. 

 
Swapping 

 
  Swapping is a mechanism in which a process can be swapped temporarily out of main memory 

(or move) to secondary storage (disk) and make that memory available to other processes. At 

some  later  time,  the  system  swaps  back  the  process  from  the  secondary storage  to  main 

memory. 

  Though performance is usually affected by swapping process but it helps in running multiple 

and big processes in parallel and that's the reason Swapping is also known as a technique for 

memory compaction. 



UNIT III OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  The total time taken by swapping process includes the time it takes to move the entire process to 

a secondary disk and then to copy the process back to memory, as well as the time the process 

takes to regain main memory. 

  Let us assume that the user process is of size 2048KB and on a standard hard disk where 

swapping will take place has a data transfer rate around 1 MB per second. The actual transfer of 
the 1000K process to or from memory will take 

 

2048KB / 1024KB per second 

= 2 seconds 

= 2000 milliseconds 
 

  Now considering in and out time, it will take complete 4000 milliseconds plus other overhead 

where the process competes to regain main memory. 

 
Memory Allocation 

 
Main memory usually has two partitions − 

 

    Low Memory − Operating system resides in this memory. 



UNIT III OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 

 

    High Memory − User processes are held in high memory. 
 

Operating system uses the following memory allocation mechanism. 
 

 

S.N. 
 

Memory Allocation & Description 

 

1 
 

Single-partition allocation 
 

In this type of allocation, relocation-register scheme is used to protect user processes from 

each other, and from changing operating-system code and data. Relocation register contains 

value of smallest physical address whereas limit register contains range of logical addresses. 

Each logical address must be less than the limit register. 

 

2 
 

Multiple-partition allocation 
 

In this type of allocation, main memory is divided into a number of fixed-sized partitions 

where each partition should contain only one process. When a partition is free, a process is 

selected from the input queue and is loaded into the free partition. When the process 

terminates, the partition becomes available for another process. 

 

FRAGMENTATION 

 
  As processes are loaded and removed from memory, the free memory space is broken into little 

pieces. It happens after sometimes that processes cannot be allocated to memory blocks 

considering their small size and memory blocks remains unused. This problem is known as 

Fragmentation. 
 

Fragmentation is of two types − 
 

 

S.N. 
 

Fragmentation & Description 

 

1 
 

External fragmentation 
 

Total memory space is enough to satisfy a request or to reside a process in it, but it is not 

contiguous, so it cannot be used. 

 

2 
 

Internal fragmentation 
 

Memory block assigned to process is bigger. Some portion of memory is left unused, as it 

cannot be used by another process. 

 

The following diagram  shows how fragmentation can cause waste of memory and a compaction 

technique can be used to create more free memory out of fragmented memory − 



UNIT III OPERATING SYSTEM 
G.SAKTHIVEL M.Sc.,M.C.A.M.Phil.,B.Ed.,SET.,(Ph.D) 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  External fragmentation can be reduced by compaction or shuffle memory contents to place all 

free memory together in one large block. To make compaction feasible, relocation should be 

dynamic. 

  The internal fragmentation can be reduced by effectively assigning the smallest partition but 

large enough for the process. 

 
PAGING 

 
  A computer can address more memory than the amount physically installed on the system. This 

extra memory is actually called virtual memory and it is a section of a hard that's set up to 

emulate the computer's RAM. Paging technique plays an important role in implementing virtual 

memory. 

  Paging is a memory management technique in which process address space is broken into 

blocks of the same size called pages (size is power of 2, between 512 bytes and 8192 bytes). 

The size of the process is measured in the number of pages. 

  Similarly,  main  memory  is  divided  into  small  fixed-sized  blocks  of  (physical)  memory 

called frames and the size of a frame is kept the same as that of a page to have optimum 

utilization of the main memory and to avoid external fragmentation. 



 

 
 

 
 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Address Translation 

 
  Page address is called logical address and represented by page number and the offset. 

 

Logical Address = Page number + page offset 
 

  Frame address is called physical address and represented by a frame number and the offset. 
 

Physical Address = Frame number + page offset 
 

  A data structure called page map table is used to keep track of the relation between a page of a 

process to a frame in physical memory. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  When the system allocates a frame to any page, it translates this logical address into a physical 

address and create entry into the page table to be used throughout execution of the program. 

  When a process is to be executed, its corresponding pages are loaded into any available memory 

frames. Suppose you have a program of 8Kb but your memory can accommodate only 5Kb at a 

given point in time, then the paging concept will come into picture. When a computer runs out 



 

 
 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

of RAM, the operating system (OS) will move idle or unwanted pages of memory to secondary 

memory to  free up  RAM  for other processes  and  brings  them  back  when  needed  by the 

program. 

  This  process  continues  during  the  whole  execution  of  the  program  where  the  OS  keeps 

removing idle pages from the main memory and write them onto the secondary memory and 

bring them back when required by the program. 

 
Advantages and Disadvantages of Paging 

 
Here is a list of advantages and disadvantages of paging − 

 

    Paging reduces external fragmentation, but still suffer from internal fragmentation. 
 

    Paging is simple to implement and assumed as an efficient memory management technique. 
 

    Due to equal size of the pages and frames, swapping becomes very easy. 
 

    Page table requires extra memory space, so may not be good for a system having small RAM. 

 
SEGMENTATION 

 
  Segmentation is a memory management technique in which each job is divided into several 

segments of different sizes, one for each module that contains pieces that perform related 

functions. Each segment is actually a different logical address space of the program. 

  When  a  process  is  to  be  executed,  its  corresponding  segmentation  are  loaded  into  non- 

contiguous  memory though  every segment  is  loaded  into  a  contiguous  block  of  available 

memory. 

  Segmentation memory management works very similar to paging but here segments are of 

variable-length where as in paging pages are of fixed size. 

  A program segment contains the program's main function, utility functions, data structures, and 

so on. The operating system maintains a segment map table for every process and a list of free 

memory blocks along with segment numbers, their size and corresponding memory locations in 

main memory. For each segment, the table stores the starting address of the segment and the 

length of the segment. A reference to a memory location includes a value that identifies a 

segment and an offset. 



 

 
 

 
  
 

 
 

 
  

 

 
 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

Segmentation with paging 
 

 

  The IBM OS/ 2.32 bit version is an operating system running on top of the Intel 386 architecture. 

The 386 user segmentation with paging for memory management. The maximum number of 

segments per process is 16 KB, and each segment can be as large as 4 gigabytes. 

  The local-address space of a process is divided into two partitions. 

1.   The first partition consists of up to 8 KB segments that are private to that process. 

2.   The second partition consists of up to 8KB segments that are shared among all the 

processes. 

  Information about the first partition is kept in the local descriptor table (LDT), information about 

the second partition is kept in the global descriptor table (GDT). 
 

 

  Each entry in the LDT and GDT consist of 8 bytes, with detailed information about a particular 

segment including the base location and length of the segment. 

  The logical address is a pair (selector, offset) where the selector is a16-bit number: 
 

 
 
 
 
 
 
 

  Where s designates the segment number, g indicates whether the segment is in the GDT or LDT, 

and p deals with protection. 
 

 

The offset is a 32-bit number specifying the location of the byte within the segment in question. 

The base  and  limit  information  about  the segment  in  question  are  used  to generate a linear- 

address. 

  First, the limit is used to check for address validity. If the address is not valid, a memory fault is 

generated, resulting in a trap to the operating system. If it is valid, then the value of the offset is 

added to the value of the base, resulting in a 32-bit linear address. This address is then translated 

into a physical address. 

The  linear  address  is  divided  into  a  page  number  consisting  of  20  bits,  and  a page   offset 

consisting of 12 bits. Since we page the page table, the page number is further divided into a 10- 

bit page directory pointer and a 10-bit page table pointer. The logical address is as follows. 
 

 
 
 
 
 
 

To improve the efficiency of physical memory use. Intel 386 page tables can be swapped to disk. 

In this case, an invalid bit is used in the page directory entry to indicate whether the table to 

which the entry is pointing is in memory or on disk. 

If the table is on disk, the operating system can use the other 31 bits to specify the disk location of 

the table; the table then can be brought into memory on demand. 



 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A computer can address more memory than the amount physically installed on the system. This extra 

memory is actually called virtual memory and it is a section of a hard disk that's set up to emulate the 

computer's RAM. 
 

The main visible advantage of this scheme is that programs can be larger than physical memory. 

Virtual memory serves two purposes. First, it allows us to extend the use of physical memory by using 

disk. Second, it allows us to have memory protection, because each virtual address is translated to a 

physical address. 
 

Following are the situations, when entire program is not required to be loaded fully in main memory. 
 

  User written error handling routines  are used  only when  an  error occurred  in  the data or 

computation. 
 

    Certain options and features of a program may be used rarely. 
 

  Many tables are assigned a fixed amount of address space even though only a small amount of 

the table is actually used. 
 

    The ability to execute a program that is only partially in memory would counter many benefits. 
 

    Less number of I/O would be needed to load or swap each user program into memory. 
 

    A program would no longer be constrained by the amount of physical memory that is available. 
 

  Each user program could take less physical memory, more programs could be run the same 

time, with a corresponding increase in CPU utilization and throughput. 
 

Modern microprocessors intended for general-purpose use, a memory management unit, or MMU, is 

built into the hardware. The MMU's job is to translate virtual addresses into physical addresses. A basic 

example is given below − 



 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Virtual  memory is  commonly implemented  by  demand  paging.  It  can  also  be  implemented  in  a 

segmentation system. Demand segmentation can also be used to provide virtual memory. 

 
Demand Paging 

 
A demand paging system is quite similar to a paging system with swapping where processes reside in 

secondary memory and pages are loaded only on demand, not in advance. When a context switch 

occurs, the operating system does not copy any of the old program’s pages out to the disk or any of the 

new program’s pages into the main memory Instead, it just begins executing the new program after 

loading the first page and fetches that program’s pages as they are referenced. 



 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

While executing a program, if the program references a page which is not available in the main 

memory because it was swapped out a little ago, the processor treats this invalid memory reference as 

a page fault and transfers control from the program to the operating system to demand the page back 

into the memory. 

 
Advantages 

 
Following are the advantages of Demand Paging − 

 
     Large virtual memory. 

     More efficient use of memory. 

     There is no limit on degree of multiprogramming. 

Disadvantages 

  Number of tables and the amount of processor overhead for handling page interrupts are greater 

than in the case of the simple paged management techniques. 
 

PAGE REPLACEMENT 
 

 

  If no frames are free, we could find  one that  is not currently being used & free it. 



 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

  We can free a frame by writing its contents to swap space & changing the page table to indicate 

that the page is no longer in memory. 

  Then we can use that  freed frame to  hold the  page for which the process faulted. 

Basic Page Replacement 
 

 

1.   Find the location of the desired page on disk 

2.   Find a free frame 

-    If there is a free frame , then use it. 

-    If there is no free frame, use a page replacement algorithm to select a victim frame 

-    Write the victim  page to  the disk, change the page & frame tables accordingly. 

3.   Read the desired page into the (new) free frame. Update the page and frame tables. 

4.   Restart the process 

Modify (dirty) bit: 

  It indicates that any word or byte in the page is modified. 

  When we select a page for replacement, we examine its modify bit. 

  If the bit is set, we know that the page has been modified & in this case we must write 

that page to the disk. 

  If the bit is not set, then if the copy of the page on the disk has not been overwritten, then 

we can avoid writing the memory page on the disk as it is already there. 

Page Replacement Algorithms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.   FIFO Page Replacement 

2.   Optimal Page Replacement 

3.   LRU Page Replacement 

4.   LRU Approximation Page Replacement 

5.   Counting-Based Page Replacement 

 We evaluate an algorithm by running it on a particular string of memory references & computing 

the number of page faults. The string of memory reference is called a reference string. The 

algorithm that provides less number of page faults is termed to be a good one. 

  As the number of available frames increases , the number of page faults decreases. This is shown 

in the following graph: 

(a) FIFO page replacement algorithm 



 

 
 

 
 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Replace the oldest page. 

  This algorithm associates with each  page ,the time when that  page was brought in. 

Example: 

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 

No.of available frames = 3 (3 pages can be in memory at a time per process) 
 
 
 
 
 
 
 
 
 
 
 
 

 

Drawback: 

 FIFO page replacement algorithm =s  performance is not always good. 

 To illustrate this, consider the following example: 

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 

If No.of available frames -= 3 then the no.of page faults =9 

If No.of available frames =4 then the no.of page faults =10 

 Here the no. of page faults increases when the no.of frames increases .This is called as 

Belady’s Anomaly. 

(b) Optimal page replacement algorithm 

Replace the page that will not be used for the longest period of time. 
 

 

Example: 
 

 
 
 
 
 
 
 
 
 
 

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 

No.of available frames = 3 



 

 
 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

Drawback: 

 It is difficult to implement as it requires future knowledge of the reference string. 

(c) LRU (Least Recently Used) page replacement algorithm 

Replace the page that has not been used for the longest period of time. 

Example: 

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 

No.of available frames = 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
LRU page replacement can be implemented using 

1. Counters 

  Every page table entry has a time-of-use field and a clock or counter is associated with the CPU. 

  The counter or clock  is incremented for every memory reference. 

  Each time a page is referenced , copy the counter into the time-of-use field. 

  When  a page needs  to  be replaced,  replace  the  page with  the smallest counter value. 

2.   Stack 

Keep a stack of page numbers 

Whenever a page is referenced, remove the page from the stack and put it on top of the stack. 
 
 
 
 
 
 
 
 
 
 
 
 

 
When a page needs to be replaced, replace the page that is at the bottom of the stack.(LRU page). 

Use of A Stack to Record The Most Recent Page References 

(d) LRU Approximation Page Replacement 

Reference bit 

·    With each page associate a reference bit, initially set to  0 

·    When page is referenced, the bit is set to 1 

  When a page needs to be replaced, replace the page whose reference bit is 0 

  The order of use is not known , but we know which pages were used and which were not used. 

(i)   Additional Reference Bits Algorithm 



 

UNIT III                                                                            OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

  Keep an 8-bit byte for each page in a table in memory. 

  At regular intervals , a timer interrupt transfers control to OS. 

  The OS shifts reference bit for each page into higher- order bit shifting the other bits right 1 bit 

and discarding the lower-order bit. 

Example: 

1.   If reference bit is 00000000 then the page has not been used for 8 time periods. 

2.   If reference bit is 11111111 then the page has been used atleast once each time period. 

3.   If the reference bit of page 1 is 11000100 and page 2 is 01110111 then page 2 is the LRU page. 

(ii)   Second Chance Algorithm 

 Basic algorithm is FIFO 

 When a page has been selected , check its reference bit. 

·    If 0 proceed to replace the page 

·    If 1 give the page a second chance and move on to the next FIFO page. 

  When a page gets a second chance, its reference bit is cleared and arrival time is reset to current 

time. 

  Hence a second chance page will not  be replaced until  all other pages are replaced. 

(iii)     Enhanced Second Chance Algorithm 

  Consider both reference bit and modify bit 

  There are four possible classes 

1.   (0,0) – neither recently used nor modified  Best page to replace 

2.   (0,1) – not recently used but modified page has to be written out before replacement. 

3.   (1,0) - recently used but not modified page may be used again 

4.   (1,1) – recently used and modified page may be used again and page has to be written 

to disk. 

(e) Counting-Based Page Replacement 

  Keep a counter of the number of references that have been made to each page 

•    Least Frequently Used (LFU )Algorithm: replaces page with smallest count 

•    Most Frequently Used  (MFU )Algorithm: replaces page with largest count 

  It is based on the argument that the page with the smallest count was probably just brought in 

and has yet to be used. 
 

 
 

------------------------END OF UNIT III------------------------------- 



 
 

 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

UNIT IV 

DEADLOCK 
 

 

Definition: A process requests resources. If the resources are not available at that time ,the process 

enters a wait state. Waiting processes may never change state again because the resources they have 

requested are held by other waiting processes. This situation is called a deadlock. 

A   process must request  a resource before using it,  and must release resource after using it. 

1. Request: If the request cannot be granted immediately then the requesting process must wait 

until it can acquire the resource. 

2. Use: The process can operate on the resource 

3. Release: The process releases the resource. 
 

 

1. Deadlock Characterization 

Four Necessary conditions for a deadlock 

1. Mutual exclusion: At least one resource must be held in a non sharable mode. That is only one 

process at a time can use the resource. If another process requests that resource, the requesting 

process must be delayed until the resource has been released. 

2. Hold   and   wait: A   process   must   be   holding   at   least   one   resource   and   waiting   to 

acquire additional resources that are currently being held by other processes. 

3. No preemption: Resources cannot be preempted. 

4. Circular wait: P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is 

held by P2...Pn-1. 
 

2. Resource-Allocation Graph 

It is a Directed Graph  with a set of vertices V and set of edges E. 

V is partitioned into two types: 

1.  nodes P = {p1, p2,..pn} 

2.  Resource type R ={R1,R2,...Rm} 

Pi  -->Rj - request => request edge 
 

 

  Rj-->Pi - allocated => assignment edge. Pi  is denoted  as  a circle  and   Rj  as  a square. 

  Rj may have more than one instance represented as a dot with in the square. 

  Sets P,R and E. P = {P1,P2,P3} R = {R1,R2,R3,R4} 

  E= {P1->R1, P2->R3, R1->P2, R2->P1, R3->P3 } 



 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

 
Resource instances 

One instance of resource type R1,Two instance of resource type R2,One instance of resource 

type R3,Three instances of resource type R4. 

Process states 

  Process P1 is holding an instance of resource type R2, and is waiting for an instance of resource 

type R1.Resource Allocation Graph with a deadlock 

  Process P2 is holding an instance of R1 and R2 and is waiting for an instance of resource type 

R3.Process P3 is holding an instance of R3. 

    P1->R1->P2->R3->P3->R2->P1 

    P2->R3->P3->R2->P2 
 

 

Methods for handling Deadlocks 

1. Deadlock Prevention 

2. Deadlock Avoidance 

3. Deadlock Detection and Recovery 
 

 

3. Deadlock  Prevention: 

  This   ensures that the system never enters the deadlock state. 

  Deadlock prevention is a set of methods for ensuring that at least one of the necessary conditions 

cannot hold. 

  By ensuring that at least one of these conditions cannot hold, we can prevent the occurrence of a 

deadlock. 
 

 

Denying Mutual exclusion 

  Mutual exclusion condition must hold for non-sharable resources. 

  Printer cannot be shared simultaneously shared by prevent processes. 

  sharable resource - example Read-only files. 

 If several processes attempt to open a read-only file at the same time, they can be granted 

simultaneous access to the file. 

 A process never needs to wait for a sharable resource. 
 

 

Denying Hold and wait 

  Whenever a process requests a resource, it does not hold any other resource. 

  One technique that can be used requires each process to request and be allocated 

  all its resources before it begins execution. 

  Another technique is before it can request any additional resources, it must release all the 

resources that it is currently allocated. 

These techniques have two main disadvantages : 

 First, resource utilization may be low, since many of the resources may be allocated but unused 

for a long time. 

    We must request all  resources at  the beginning for both  protocols. 

    starvation is possible. 
 

 

Denying No preemption 



 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

 
  If  a  Process is holding  some  resources  and requests another       resource  that cannot be 

immediately allocated to it. (that is the process must         wait), then all resources currently 

being held are preempted. (ALLOW PREEMPTION) 

  These resources are implicitly released. 

  The process will be restarted only when it can regain its old resources. 
 

 

Denying Circular wait 
 

 

  Impose a total ordering of all resource types and allow each process to request for resources in an 

increasing order of enumeration. 

Let  R = {R1,R2,...Rm} be the set of resource types. 

  Assign to each resource type a unique integer number. 

  If the set of resource types R includes tapedrives, disk drives and printers. 

F(tapedrive)=1, 

F(diskdrive)=5, 

F(Printer)=12. 

  Each  process  can  request  resources   only in  an   increasing order  of enumeration. 
 

 

4. Deadlock Avoidance: 

  Deadlock avoidance   request   that   the OS be given in advance additional information 

concerning which  resources a  process  will request    and   useduring its life time. 

  With this information it can be decided for each request whether or not the process should wait. 

  To decide whether the current request can be satisfied or must be delayed, a system must 

consider the resources currently available, the resources currently allocated to each process and 

future requests and releases of each process. 

Safe State 

  A state is safe if the system can allocate resources to each process in some order and still avoid a 

dead lock. 

  A deadlock is an unsafe state. 

  Not all unsafe states are dead locks 

  An unsafe state may lead to a dead lock 

Two algorithms are used for deadlock avoidance namely; 

1. Resource Allocation Graph Algorithm - single instance of a resource type. 

2. Banker’s Algorithm – several instances of a resource type. 
 

 

Resource allocation graph algorithm 

Claim edge - Claim edge Pi---> Rj indicates that process Pi may request resource Rj at some time, 

represented by a dashed directed edge. 

    When process Pi request resource Rj, the claim edge Pi -> Rj is converted to a request edge. 

 Similarly, when a resource Rj is released by Pi the assignment edge Rj -> Pi is reconverted to a 

claim edge Pi -> Rj 



 
 

 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 
 

 
Banker's algorithm 

Available: indicates the number of available resources of each type. 

Max: Max[i, j]=k  then process Pi  may request  at  most k  instances of resource type Rj 

Allocation : Allocation[i. j]=k, then process Pi is currently allocated K instances of resource type Rj 

Need : if Need[i, j]=k then process Pi may need K more instances of resource type Rj Need [i, j]=Max[i, 

j]-Allocation[i, j] 

Safety algorithm 

1   Initialize work := available and Finish [i]:=false for i=1,2,3 .. n 

2   Find an i such that both 

Finish[i]=false b. Needi<= Work 

if no such i exists, goto step 4 

3. work :=work+ allocation i; Finish[i]:=true 

goto step 2 

4. If finish[i]=true for all i, then the system is in a safe state 
 

 

Resource Request Algorithm 

Let Requesti be the request from process Pi for resources. 
 

 

1. If  Requesti<=  Needi  goto  step2,  otherwise  raise  an  error  condition,  since  the  process  has 

exceeded its maximum claim. 

2. If  Requesti  <=  Available,  goto  step3,  otherwise  Pi  must  wait,  since  the  resources  are  not 

available. 

3. Available := Availabe-Requesti; 

Allocationi := Allocationi + Requesti 

Needi := Needi - Requesti; 

Now apply the safety algorithm to check whether this new state is safe or not. 

If it is safe then the request from process Pi can be granted. 
 

 

5. Deadlock Detection 

(i)          Single instance of each resource type 

ResourceAllocation Graph 



 
 

 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ii)  Several  Instance of a resource type 

Available    : Number   of      available     resources  of each type 

Allocation   : number     of      resources    of  each  type currently allocated toeach process 

Request : Current request of each process 

If Request [i,j]=k, then process Pi is requesting K more instances of resource type Rj. 

1. Initialize work := available 

Finish[i]=false, otherwise finish [i]:=true 

2. Find an index i such that both 

a. Finish[i]=false 

b. Requesti<=work 

if no such i exists go to step4. 

3. Work:=work+allocationi 

Finish[i]:=true goto step2 

4. If finish[i]=false 

then process Pi is deadlocked 
 

 

6. Deadlock Recovery 

1. Process Termination 

  Abort all deadlocked processes. 

  Abort  one deadlocked  process  at  a time until  the  deadlock cycle is eliminated. 

After  each  process  is  aborted  ,  a  deadlock  detection  algorithm must be invoked to determine where 

any process is still dead locked. 

2. Resource Preemption 

Preemptive  some  resources  from  process  and  give  these  resources  to other processes until 

the deadlock cycle is broken. 

a.   Selecting a victim: which resources and  which process are to  be preempted. 

b.   Rollback: if we preempt a resource from a process it cannot continue with its normal 

execution. It is missing some needed resource. we must rollback the process to some safe 

state, and restart it from that state. 

c.   Starvation : How can we guarantee that resources will not always be preempted from the 

same process. 



 
 

 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

MULTIPROCESSOR OPERATING SYSTEM 
 

Multiprocessor Operating System refers to the use of two or more central processing units 

(CPU) within a single computer system. These multiple CPUs are in a close communication sharing the 

computer bus, memory and other peripheral devices. These systems are referred as tightly coupled 

systems. 
 

These types of systems are used when very high speed is required to process a large volume of 

data. These systems are generally used in environment like satellite control, weather forecasting etc. The 

basic organization of multiprocessing system is shown in fig. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Multiprocessing  system  is  based  on  the  symmetric  multiprocessing  model,  in  which  each 

processor runs an identical copy of operating system and these copies communicate with each 

other. In this system processor is assigned a specific task. 
 

  A master processor controls the system. This scheme defines a master-slave relationship. These 

systems can save money in compare to single processor systems because the processors can 

share peripherals, power supplies and other devices. 
 

  The main advantage of multiprocessor system is to get more work done in a shorter period of 

time. Moreover, multiprocessor systems prove more reliable in the situations of failure of one 

processor. In this situation, the system with multiprocessor will not halt the system; it will only 

slow it down. 
 

  In order to employ multiprocessing operating system effectively, the computer system must have 

the followings: 
 

1.  Motherboard  Support: A  motherboard  capable  of  handling  multiple  processors.  This  means 

additional sockets or slots for the extra chips and a chipset capable of handling the multiprocessing 

arrangement 
 

2. Processor Support: processors those are capable of being used in a multiprocessing system. 

http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system


 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

  The whole task of multiprocessing is managed by the operating system, which allocates different 

tasks to be performed by the various processors in the system. 
 

  Applications designed for the use in multiprocessing are said to be threaded, which means that 

they are broken into smaller routines that can be run independently. This allows the operating 

system to let these threads run on more than one processor simultaneously, which is 

multiprocessing that results in improved performance. 
 

  Multiprocessor system supports the processes to run in parallel. Parallel processing is the ability 

of the CPU to simultaneously process incoming jobs. This becomes most important in computer 

system, as the CPU divides and conquers the jobs. Generally the parallel processing is used in 

the fields like artificial intelligence and expert system, image processing, weather forecasting 

etc. 
 

  In a multiprocessor system, the dynamically sharing of resources among the various processors 

may cause therefore, a potential bottleneck. There are three main sources of contention that can 

be found in a multiprocessor operating system: 
 

   Locking system: In order to provide safe access to the resources shared among multiple 

processors, they need to be protected by locking scheme. The purpose of a locking is to 

serialize accesses to the protected resource by multiple processors. Undisciplined use of 

locking can severely degrade the performance of system. This form of contention can be 

reduced by using locking scheme, avoiding long critical sections, replacing locks with 

lock-free algorithms, or, whenever possible, avoiding sharing altogether. 
 

   Shared data: The continuous accesses to the shared data items by multiple processors 

(with   one   or   more   of   them   with   data   write)   are   serialized   by   the   cache 

coherence protocol.  Even  in  a  moderate-scale  system,  serialization  delays  can  have 

significant impact on the system performance. In addition, bursts of cache coherence 

traffic saturate the memory bus or the interconnection network, which also slows down 

the entire system. This form of contention can be eliminated by either avoiding sharing 

or, when this is not possible, by using replication techniques to reduce the rate of write 

accesses to the shared data. 
 

   False  sharing: This  form  of  contention  arises  when  unrelated  data  items  used  by 

different processors are located next to each other in the memory and, therefore, share a 

single cache line: The effect of false sharing is the same as that of regular sharing 

bouncing of the cache line among several processors. Fortunately, once it is identified, 

false sharing can be easily eliminated by setting the memory layout of non-shared data. 
 

   Apart from eliminating bottlenecks in the system, a multiprocessor operating system 

developer should provide support for efficiently running user applications on the 

multiprocessor. Some of the aspects of such support include mechanisms for task 

placement and migration across processors, physical memory placement insuring most 

of the memory pages used by an application is located in the local memory, and scalable 

multiprocessor synchronization primitives. 
 
Multi-Processor Systems 

 

 

 Much of the discussion in this course has considered the operating system to be running on a 

time-shared uni-processor ... and this perspective is adequate to fully understand most of those 

topics. But increasingly many modern computer systems are now multi-processor: 

 Multiple general purpose CPUs (as opposed to GPUs) that are capable of running unrelated 

programs or threads (unlike SIMD array processors) and (to some degree) share memory and I/O 

devices. 

http://ecomputernotes.com/computernetworkingnotes/computer-network/protocol


 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

These systems  are interesting because they are  independent  enough  to  encounter many of the 

problems associated with distributed computing ... but (because they share memory and I/O devices) do 

things that push the distributed systems envelope. As people develop applications to exploit these 

platforms, it is important that they understand the issues they present. 

 
Why Build Multi-Processor Systems 

 
  We continue to find applications that require ever more computing power. Sometimes these 

problems can be solved by horizontally scaled systems (e.g. thousands of web servers). But some 

problems demand, not more computers, but faster computers. Consider a single huge database, 

that each year, must handle twice as many operations as it served the previous year. Distributed 

locking, for so many parallel transactions on a single database, could be prohibitively expensive. 

The (seemingly also prohibitively expensive) alternative would be to buy a bigger computer 

every year. 

  Long ago it was possible to make computers faster by shrinking the gates, speeding up the clock, 

and improving the cooling. But eventually we reach a point of dimmisnishing returns where 

physics (the speed of light, information theory, thermodynamics) makes it ever more difficult to 

build faster CPUs. Recently, most of our improvements in processing speed have come from: 

 
    smarter pipe-lining and increasingly parallel and speculative execution 

 putting more cores per chip, more chips per board, and more boards per computer 

system. 

 
  But it is reasonable to ask whether or not 16x3B instructions per second is actually equivalent to 

48B instructions per second? The answer (see Amdahl's Law) depends on whether or not your 

application can be divided into 16 or more parallely executable sub-tasks. Fortunately, modern 

operating systems tend to run large numbers of processes, and expensive computations are 

increasingly designed to be executable in multiple parallel threads.. 

  For  these  reasons,  multi-processor  is  the  dominant  architecture  for  powerful  servers  and 

desktops. And, as the dominant architecture, operating systems must do a good job of exploiting 

them. 

 
Multi-Processor Hardware 

 
The  above  general  defintion  covers  a  wide  range  of  architectures,  that  actually  have  very 

different characteristics. And so it is useful, to overview the most prominent architectures. 

 
Hyper-Threading 

 
o CPUs are much faster than memory. A 2.5GHz CPU might be able to execute more than 

5  Billion  instructions  for  second.  Unfortunately,  80ns  memory  can  only  deliver  12 
Million fetches or stores per second. This is almost a 1000x mis-match in performance. 

The CPU has multiple levels of cache to ensure that we seldom have to go to memory, 

but even so, the CPU spends a great deal of time waiting for memory. 

  The idea of hyper-threading is to give each core two sets of general registers, and the ability to 

run two independent threads. When one of those threads is blocked (waiting for memory) the 

other thread can be using the execution engine. Think of this as non-preemptive time-sharing at 

the micro-code level. It is comon for a pair of hyper-threads to get 1.2-1.8 times the instructions 

per second that a single thread would have gotten on the same core. It is theoretically possible to 

https://en.m.wikipedia.org/wiki/Amdahl%27s_law


 
 

 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

get 2x hyper-threading, but a thread might run out of L1 cache for a long time without blocking, 

or perhaps both hyper-threads are bocked waiting for memory. 

  From a performance point-of-view, it is important to understand that both hyper-threads are 

running in the same core, and so sharing the same L1 and L2 cache. Thus hyper-threads that use 

the same address space will exhibit better locality, and hence run much better than hyper-threads 

that use different address spaces. 

 
Symmetric Multi-Processors 

 
A Symmetric Multi-Processor has some number of cores, all connected to the same memory and 

I/O  busses.  Unlike  hyper-threads  these  cores  are  completely  independent  execution  engines,  and 

(modulo limitations on memory and bus throughput) N cores should be able to execute N times as many 

instructions per second as a single core. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cache Coherence 
 

 

  As mentioned previously, much of processor performance is a result of caching. In most SMP 

systems,   each   processor   has   its   own   L1/L2   caches.   This   creates   a   potential cache- 

coherency problem if (for instance) processor 1 updates a memory location whose contents have 

been cached by processor 2. Program execution based on stale cache entries would result in 

incorrect results, and so must be prevented. 

  There are a few general approaches to maintaining cache coherency (ensuring that there are no 

disagreements about the current contents of any cache line), and most SMP systems with per- 

processor caching incorporate some Cache Coherency Mechanism to address this issue. 

 
Cache Coherent Non-Uniform Memory Architectures 

 
It is not feasible to create fast memory controllers that can provide concurrent access to large 

numbers of cores, and eventually memory bandwidth becomes the bottleneck that prevents scaling to 

larger numbers of CPUs. A Non-Uniform Memory Architecture addresses this problem by giving each 

node or CPU its own high-speed local memory, and interconnecting all of the memory busses with a 

slower but more scalable network. 

https://en.wikipedia.org/wiki/Cache_coherence#Coherency_mechanisms


 
 

 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Operations to local memory may be several times faster than operations to remote memory, and 

the maximum throughput of the scalable network may be a small fraction of the per-node local 

memory bandwidth. Such an architecture might provide nearly linear scaling to much larger 

numbers of processors, but only if we can ensure that most of the memory references are local. 

  The Operating System might be able to deal with the different memory access speeds by trying 

allocate memory for each process from the CPU on which that process is running. But there will 

still be situations where multiple CPUs need to access the same memory. 

  To ensure correct execution, we must maintain coherency between all of the per-node/per-CPU 

caches. This means that, in addition to servicing remote memory read and write requests, the 

scalable network that interconnects the nodes must also provide cache coherency. Such 

architectures are called Cache Coherent Non-Uniform Memory Architectures (CC-NUMA), and 

the implementing networks are called Scalable Coherent Interconnects. The best known Scalable 

Coherent     Interconnects     are     probably     Intel's Quick     Path     Interconnect (QPI),     and 

AMD's HyperTransport. 

 
Power Management 

 
  The memory and cache interconnections are probably the most interesting part of a multi- 

processor system, but power management is another very important feature. A multi-core system 

can consume a huge amount of power ... and most of the time it does not need most of the cores. 

  Many multi-processor systems include mechanisms to slow (or stop) the clocks on unneeded 

cores, which dramatically reduces system power consumption. This is not a slow process, like a 

sleep and reboot. A core can be returned to full speed very quickly. 

 
Multi-Processor Operating Systems 

 
  To exploit a multi-processor system, the operating system must be able to concurrently manage 

multiple threads/processes on each of the available CPU cores. One of the earliest approaches 

was to run the operating system on one core, and applications on all of the others. This works 

reasonably for a small number of cores, but as the number of cores increases, the OS becomes the 

primary throughput bottleneck. Scaling to larger numbers of cores requires the operating system 

itself to run on multiple cores. Running efficiently on multiple cores requires the operating 

https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect
https://en.wikipedia.org/wiki/HyperTransport


 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

system to carefully choose which threads/processes to run on which cores and what resources to 

allocate to them. 

  When we looked at distributed systems, we saw (e.g. Deutsch's Seven Falacies) that the mere fact 

that a network is capable of distributing every operation to an arbitrary node does not make doing 

so a good idea. It will be seen that the same caveat applies to multi-processor systems. 

 
Scheduling 

 
  If there are threads (or processes) to run, we would like to keep all of the cores busy. If there are not 

threads (or processes) to run, we would like to put as many cores as possible into low power mode. 

It is tempting to think that we can just run each thread/process on the next core that becomes 

available (due to a process blocking or getting a time-slice-end). But some cores may be able to run 

some threads (or processes) far more efficiently than others. 

 
  dispatching a thread from the same process as the previous thread (to occupy that core) may be 

much less expensive because re-loading the page table (and flushing all cached TLB entries) is a 

very expensive operation. 

  a thread in the same process may run more efficiently because shared code and data may exploit 

already existing L1/L2 cache entries. 

  threads   that   are   designed   to   run   concurrently   (e.g.   parallel   producer   and   consumer 

communicating through shared memory) should be run on distinct cores. 

 
  Thus, the choice of when to run which thread in which core is not an arbitrary one. The scheduler 

must consider what process was last running in each core. It may make more sense to leave one 

core  idle,  and  delay  executing  some  thread  until  its  preferred  core  becomes  available.  The 

operating system will try to make intelligent decisions, but if the developers understand how work 

can best be allocated among multi-processor cores, they can advise the operating system with 

operations like sched_setaffinity(2) and pthead_setaffinity_np(3). 

 
Synchronization 

 
  Sharing data between processes is relatively rare in user mode code. But the operating system is 

full of shared data (process table entries, file descriptors, scheduling and I/O queues, etc). In a 

uni-processor,  the  primary  causes  of  race  conditions  are  preemptive  scheduling  and  I/O 

interrupts.  Both  of  these  problems  can  be  managed  by disabling  (selected)  interrupts  while 

executing critical sections ... and many operating systems simply declare that preemptions cannot 

occur while executing in the operating system. 

  These techniques cease to be effective once the operating system is running on multiple CPUs in 

a multi-processor  system.  Disabling interrupts  cannot  prevent  another  core from  performing 

operations on a single global object (e.g. I-node). Thus multi-processor operating systems require 

some other means to ensure the integrity global data structures. Early multi-processor operating 

systems tried to create a single, global, kernel lock ... to ensure that only one process at a time 

could be executing in the operating system. But this is essentially equivalent to running the 

operating system on a single CPU. As the number of cores increases, the (single threaded) 

operating system becomes the scalability bottleneck. 

  The Solution to this problem is finer grained locking. And as the number of cores increased, the 

granularity required to achieve high parallelism became ever finer. Depending on the particular 

shared resource and operations, different synchronizations may have to be achieved with different 

mechanisms (e.g. compare and swap, spin-locks, interrupt disables, try-locks, or blocking 

mutexes). Moreover for every resource (and combination of resources) we need a plan to prevent 

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing


 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

deadlock. Changing complex code that involves related updates to numerous data structures to 

implement fine-grained locking is difficult to do (often requiring significant design changes) and 

relatively  brittle  (as  maintainers  make  changes  that  fail  to  honor  all  of  the  complex 

synchronization rules). 

  If a decision is made to transition the operating system to finer grained locking, it becomes much 

more difficult for third party developers to build add-ons (e.g. device drivers and file systems) 

that will work with the finer grained locking schemes in the hosting operating system. 

 
Because of this complexity, there are relatively few operating systems that are able to efficiently 

scale to large numbers of multi-processor cores. Most operating systems have chosen simplicity and 

maintainability over scalability. 

 
Device I/O 

 
If an I/O operation is to be initiated, does it matter which CPU initiates it? When an I/O interrupt comes 

in to a multi-processor system, which processor should be interrupted? There are a few reasons we 

might want to choose carefully which cores handle which I/O operations: 

 
  as with scheduling, sending all operations for a particular device to a particular core may result 

in more L1/L2 cache hits and more efficient execution. 

     syncrhonization  between  the  synchronous  (resulting  from  system  calls)  and  asynchronous 

(resulting from interrupts) portions of a device driver if they are all executing in the same CPU. 

  each  CPU has  a limited  I/O throughput,  and  we may want  to  balance activity among the 

available cores. 

  some CPUs may be bus-wise closer to some I/O devices, so that operations go more quickly 

initiated from some cores. 

 
Many multi-processor architectures have interrupt controllers that are configurable for which interrupts 

should be delivered to which processors. 

 
Non-Uniform Memory Architectures 

 
  CC-NUMA is only viable if we can ensure that the vast majority of all memory references can 

be satisfied from local memory. Doing this turns out to create a lot of complexity for the 

operating system. 

  When we were discussing uni-processor memory allocation, we observed that significant savings 

could be achieved if we shared a single copy of a (read only) load module among all processes 

that were running that program. This ceases to be true when those processes are running on 

distinct NUMA nodes. Code and other read-only data should be have a separate copy (in local 

memory) on each NUMA node. The cost (in terms of wasted memory) is neglibile in comparison 

performance gains from making all code references local. 

  When  a  program  calls fork(2) to  create  a  new  process, exec(2) to  run  a  new  program, 

or sbrk(2) to expand its address space, the required memory should always be allocated from the 

node-local memory pool. This creates a very strong affinity between processes and NUMA 

nodes. If it is necessary to migrate a process to a new NUMA node, all of its allocated code and 

data segments should be copied into local memory on the target node. 

  As noted above, the operating system is full of data structures that are shared among many cores. 
How can we reduce the number or cost of remote memory references associated with those 

shared data structures? If the updates are few, sparse and random, there may be little we can do 

to optimize them ... but their costs will not be high. When more intensive use of shared data 

structures is required, there are two general appoaches: 



 
 

 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

1.   move the data to the computation 

o lock the data structure. 

o copy it into local memory. 

o update the global pointer to reflect its new location. 

o free the old (remote) copy. 

o perform all subsequent operations on the (now) local copy. 
2.   move the computation to the data 

o look up the node that owns the resource in question. 

o send a message requesting it to perform the required operations. 

o await a response. 

 
In practice, both of these techniques are used ... the choice determined by the particulars of the resource 

and its access. 

As  with  fine-grained  synchronization  of  kernel  data  structures,  this  turns  out  to  be  extremely 

complicated. Relatively few operating systems have been willing to pay this cost, and so (again) most 

opt for simplicity and maintainability over performance and scalability. 
 

Multiprocessor and Multicomputer 
 
Multiprocessor: 

  A Multiprocessor is a computer system with two or more central processing units (CPUs) share 

full access to a common RAM. The main objective of using a multiprocessor is to boost the 

system’s execution speed, with other objectives being fault tolerance and application matching. 

  There are two types of multiprocessors, one is called shared memory multiprocessor and another 

is distributed memory multiprocessor. In shared memory multiprocessors, all the CPUs shares the 

common memory but in a distributed memory multiprocessor, every CPU has its own private 

memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Applications of Multiprocessor – 

1.   As a uniprocessor, such as single instruction, single data stream (SISD). 
2.   As a multiprocessor, such as single instruction, multiple data stream (SIMD), which is usually 

used for vector processing. 

3.   Multiple series of instructions in a single perspective, such as multiple instruction, single data 

stream (MISD), which is used for describing hyper-threading or pipelined processors. 



 
 

 
 

UNIT IV                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.,M.Phil.,B.Ed., 

 

 

4.   Inside a single system for executing multiple, individual series of instructions in multiple 

perspectives, such as multiple instruction, multiple data stream (MIMD). 

Benefits of using a Multiprocessor – 
1.    Enhanced performance. 
2.    Multiple applications. 

3.    Multi-tasking inside an application. 

4.    High throughput and responsiveness. 

5.    Hardware sharing among CPUs. 

2.Multicomputer: 
A multicomputer system is a computer system with multiple processors that are connected together 

to solve a problem. Each processor has its own memory and it is accessible by that particular processor 

and those processors can communicate with each other via an interconnection network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

As the multicomputer is capable of messages passing between the processors, it is possible to divide the 

task between the processors to complete the task. Hence, a multicomputer can be used for distributed 

computing. It is cost effective and easier to build a multicomputer than a multiprocessor. 
 

Difference between multiprocessor and Multicomputer: 

1.    Multiprocessor is a system with two or more central processing units (CPUs) that is capable of 
performing multiple tasks where as a multicomputer is a system with multiple processors that are 

attached via an interconnection network to perform a computation task. 

2. A multiprocessor system is a single computer that operates with multiple CPUs where as a 

multicomputer system is a cluster of computers that operate as a singular computer. 

3.    Construction of multicomputer is easier and cost effective than a multiprocessor. 

4. In  multiprocessor  system,  program  tends  to  be  easier  where  as  in  multicomputer  system, 

program tends to be more difficult. 

5.    Multiprocessor supports parallel computing, Multicomputer supports distributed computing. 
 

 
 

--------------------------END OF THE  UNIT IV------------------------- 

https://www.geeksforgeeks.org/computer-organization-microcomputer-system/


 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 
 

 

PRINCIPLES OF I/O SOFTWARE 
UNIT V 

 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Goals of the I/O Software 
  A key concept in the design of I/O software is known as device independence. It means that I/O 

devices should be accessible to programs without specifying the device in advance. 

  Uniform Naming, simply be a string or an integer and not depend on the device in any way. In 

UNIX, all disks can be integrated in the file-system hierarchy in arbitrary ways so the user need 

not be aware of which name corresponds to which device. 

  Error Handling: If the controller discovers a read error, it should try to correct the error itself if 

it can. If it cannot, then the device driver should handle it, perhaps by just trying to read the 

block again. In many cases, error recovery can be done transparently at a low level without the 

upper levels even knowing about the error. 

  Synchronous (blocking) and Asynchronous (interrupt-driven) transfers: Most physical I/O 

is asynchronous, however, some very high-performance applications need to control all the 

details of the I/O, so some operating systems make asynchronous I/O available to them. 

  Buffering: Often data that come off a device cannot be stored directly in their final destination. 
  Sharable and Dedicated devices: Some I/O devices, such as disks, can be used by many users 

at the same time. No problems are caused by multiple users having open files on the same disk 

at the same time. Other devices, such as printers, have to be dedicated to a single user until that 

user is finished. Then another user can have the printer. Introducing dedicated (unshared) 

devices also introduces a variety of problems, such as deadlocks. Again, the operating system 

must be able to handle both shared and dedicated devices in a way that avoids problems. 

Programmed I/O 
This  is  one  of  the  three  fundamentally  different  ways  that  I/O  can  be  performed.  The 
programmed I/O was the most simple type of I/O technique for the exchanges of data or any 

types of communication between the processor and the external devices. With programmed I/O, 

data  are  exchanged  between  the  processor  and  the  I/O  module.  The  processor  executes  a 

program that gives it direct control of the I/O operation, including sensing device status, sending 

a read or write command, and transferring the data. When the processor issues a command to the 

I/O module, it must wait until the I/O operation is complete. If the processor is faster than the I/O 

module, this is wasteful of processor time. The overall operation of the programmed I/O can be 

summaries as follow: 

   The processor is executing a program and encounters an instruction relating to I/O operation. 



 
 

 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

   The processor then executes that instruction by issuing a command to the appropriate I/O 

module. 

 The I/O module will perform the requested action based on the I/O command issued by the 

processor (READ/WRITE) and set the appropriate bits in the I/O status register. 

 The processor will periodically check the status of the I/O module until it find that the operation 

is complete. 

Programmed I/O Mode: Input Data Transfer 
Each input is read after first testing whether the device is ready with the 
input (a state reflected by a bit in a status register). 

The program waits for the ready status by repeatedly testing the status bit 

and till all targeted bytes are read from the input device. 

   The program is 

in busy (non-waiting) state only after the device gets ready else in wait 

state. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Programmed I/O Mode: Output Data Transfer 
     Each output written after first testing whether the device is ready to accept the byte at its 

output register or output buffer is empty. 

  The program waits for the ready status by repeatedly testing the status bit(s) and till all 

the targeted bytes are written to the device. 

     The program in busy (non-waiting) state only after the device gets ready else wait state. 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

Programmed I/O Commands 

  To execute an I/O-related instruction, the processor issues an address, specifying the particular I/O 

module and external device, and an I/O command. There are four types of I/O commands that an 

I/O module may receive when it is addressed by a processor: 

     Control 

     Test 

     Read 

     Write 
 
 
 
 
 
 
 
 
 

 

Advantages of Programmed I/O 
  Simple to implement 
  Very little hardware support 

Disadvantages of Programmed I/O 
     Busy waiting 
     Ties up CPU for long period with no useful work 

Interrupt-Driven I/O 
 

  Interrupt driven I/O is an alternative scheme dealing with I/O. Interrupt I/O is a way of 

controlling input/output activity whereby a peripheral or terminal that needs to make or 

receive a data transfer sends a signal. This will cause a program interrupt to be set. At a time 

appropriate to the priority level of the I/O interrupt. Relative to the total interrupt system, the 

processors enter an interrupt service routine. 

Interrupt I/O Inputs 

  For input, the device interrupts the CPU when new data has arrived and is ready to be 

retrieved by the system processor. The actual actions to perform depend on whether the 

device uses I/O ports or memory mapping. 

Interrupt I/O Outputs 
 

  For output, the device delivers an interrupt either when it is ready to accept new data or to 

acknowledge a successful data transfer. Memory-mapped and DMA-capable devices usually 

generate interrupts to tell the system they are done with the buffer. 

Operations in Interrupt I/O 
    CPU issues read command. 
    I/O module gets data from peripheral whilst CPU does other work. 

    I/O module interrupts CPU. 

    CPU requests data. 

    I/O module transfers data. 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advantages of Interrupt-Driven I/O 
     Its faster than Programmed I/O. 
     Efficient too. 

Disadvantages of Interrupt-Driven I/O 
     It can be tricky to write if using a low level language. 
     It can be tough to get various pieces to work well together. 

I/O Using DMA 
 

  Direct Memory Access is a technique for transferring data within main memory and external 

device without passing it through the CPU. 

  DMA is a way to improve processor activity and I/O transfer rate by taking-over the job of 

transferring data from processor, and letting the processor to do other tasks. 

 This technique overcomes the drawbacks of other two I/O techniques which are the time 

consuming process when issuing a command for data transfer and tie-up the processor in data 

transfer while the data processing is neglected. It is more efficient to use DMA method when 

large volume of data has to be transferred. 

 For DMA to be implemented, processor has to share its' system bus with the DMA module. 

Therefore, the DMA module must use the bus only when the processor does not need it, or it 

must force the processor to suspend operation temporarily. 

Operations of Direct Memory Access 
     Read or Write Command 
     Control Lines Communication 

     Data Lines Communication 



 
 

 
 

 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Advantages of DMA 

  Speed: no waiting due to much shorter execution path and no rotation delay. 

 
PRINCIPLES OF I/O HARDWARE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I/O Devices 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 
I/O devices can be roughly divided into two categories: block devices and character 

 

devices. 

     Block Devices 
It stores information in fixed-size blocks, each one with its own address. Common block 
sizes range from 512 to 65,536 bytes. 

Examples are hard disks, Blu-ray discs, and USB sticks. 

     Character Device 
It delivers or accepts a stream of characters, without regard to any block structure. Not 
addressable and does not have any seek operation. 

Examples are printers, network interfaces, mice, and most other devices that are not disk- 

like can be seen as character devices. 

     Doesn't Really Fit 

Some devices don't fit into this division: For instance, clocks aren't block addressable, 
nor do they accept character streams. All they do is cause interrupts... at timed intervals. 

Memory-mapped screens do not fit this division either. 

Device Controllers 
    The electronic component of  I/O units is called the device controller or adapter. Operating 

systems use device drivers to handle all I/O devices. There is a device controller and a device 

driver for each device to communicate with the operating system. A device controller may be 

able to handle multiple devices. As an interface its main task is to convert serial bit stream to 

block of bytes, and perform error correction as necessary. 

     Cathode Ray Tube (CRT) Controller 
Older version of monitors that were bulky, power hungry and fragile!! CRT monitors fire a beam 
of electrons onto a fluorescent screen. Using magnetic fields, the system is able to bend the beam 

and draw pixels on the screen. 

The first "laptops" weighed about 12 kilos. 

     LCD Controller 
This works as a bit serial device at low level. It reads bytes containing the characters to be 
displayed from memory and generates the signals to modify the polarization of the backlight for 

the corresponding pixels in order to write them on screen. 

The presence of the controller means that the OS programmer does not need to explicitly 

program the electrial field of the screen! 

 
Memory-Mapped I/O 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  The controller has registers (similar to CPU registers, but for the device) and the OS can write 

these registers to "give orders" to the device (e.g., "shut down" or "accept data") or read its state 

(e.g., "are you busy tonight?"). 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

  CPU interaction with the control registers and device data buffers either through dedicated port 

allocation or using device memory to map them all. CPU can communicate with the control 

registers and the device data buffers in three ways. 

  Seperate I/O and Memory Space: Each control register is assigned an I/O port number. 

We use special I/O instructions like: 

IN REG, PORT 

OUT PORT, REG 

IN and MOV are quite different instructions! 

  Memory Mapped I/O: Same address space is shared by memory and I/O devices. The 

device is connected directly to certain main memory locations so that I/O device can 

transfer block of data to/from memory without going through CPU. 

  Hybrid: Memory-mapped data buffers and separate I/O ports for the control registers. 

(Pentium) 

  Strengths of MM I/O: 

 
Special I/O instructions require the OS to 

resort to assembly code: IN and OUT cannot be executed in C or C++. 

Memory-mapped I/O allows C to simply write to memory. 

Control registers are mapped to memory as well. 

       Weaknesses of MM I/O: 
Memory-caching a device I/O register is disastrous. 
We never detect when the device has changed state! 

To fix this requires selective disabling of caching. 

oAll memory modules and all devices must examine each memory reference to see if it is 

for them. 

If there is a high-speed memory bus (as is typical nowadays) then the I/O devices 
won't see the memory addresses on the high-speed bus. 

To fix this, we might send all requests to memory and see if they fail, then send them 

to I/O devices. 

Or, we can "snoop" on memory requests and send appropriate ones to I/O controllers. 

But they may be slow! 

Or we can assign some range of addresses as "not real" memory. But these would not 

to be assigned at boot time: no dynamic loading of devices! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) Single Bus Architecture                         (b) Dual Bus Architecture 



 
 

 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

Direct Memory Access 
  To reduce the overhead of interrupts, DMA hardware bypasses CPU to transfer 

data directly between I/O device and memory. DMA module itself controls 

exchange of data between main memory and the I/O device. CPU is only involved 

at the beginning and end of the transfer and interrupted only after entire block has 

been transferred, rather than a byte at a time. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Direct Memory Access Controller 
  DMA controller (DMAC) manages the data transfers and arbitrates access to 

the system bus. It contains several registers that can be written and read by the 

CPU. These include a memory address register, a byte count register, and one 

or more control registers. 

 
Working of DMA 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  First the CPU programs the DMA controller by setting its registers so it 

knows what to transfer where 



 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

o  Alongside, DMAC issues a command to the disk controller telling it to read data from the 

disk into its internal buffer and verify the checksum. When valid data are in the disk 

controller's buffer, DMA can begin. 

oThe DMA controller initiates the transfer by issuing a read request over the bus to the disk 

controller 

o The write to memory is another standard bus cycle 

o When the write is complete, the disk controller sends an acknowledgement        signal to the 
DMA controller, also over the bus 

o The DMA controller then increments the memory address to use and decrements the byte 

count. If the byte count is still greater than 0, steps 2 through 4 are repeated until the count 

reaches 0. At that time, the DMA controller interrupts the CPU to let it know that the 

transfer is now complete 

o DMA controllers vary considerably in their sophistication. The simplest ones handle one 
transfer at a time, whereas sophisticated DMAC have multiple sets of registers internally, 

one for each channel. Word transfer may be set up to use a round-robin algorithm, or it may 

have a priority scheme design to favor some devices over others. Many buses can operate in 

two  modes: word-at-a-time  mode and block  mode.  Some  DMA  controllers  can  also 

operate in either mode. In word-at-a-time mode, the DMA controller requests the transfer of 

one word and gets it. If the CPU also wants the bus, it has to wait. The mechanism is 

called cycle stealing because the device controller sneaks in and steals an occasional bus 

cycle  from  the  CPU  once  in  a  while,  delaying  it  slightly.  In  block  mode,  the  DMA 

controller tells the device to acquire the bus, issue a series of transfers, then release the bus. 

This form of operation is called burst mode. It is more efficient than cycle stealing because 

acquiring the bus takes time and multiple words can be transferred for the price of one bus 

acquisition. The down side to burst mode is that it can block the CPU and other devices for 

a substantial period if a long burst is being transferred. 
 

 

DISK SCHEDULING AND MANAGEMENT 
 
 

 
1. Disk scheduling 

 

 

1.1 FCFS Scheduling 

1.2 
 

 

1.2 SSTF (shortest-seek-time-first)Scheduling 
 

 

 Service all the requests close to the current head position, before moving the head far away to 

service other requests. That is selects the request with the minimum seek time from the current 



 
 

 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

head position. 
 
 
 
 
 

1.3 SCAN Scheduling 
 

 

 The disk head starts at one end of the disk, and moves toward the other end, servicing requests as 

it reaches each cylinder, until it gets to the other end of the disk. At the other end, the direction 

of head movement is reversed, and servicing continues. The head continuously scans back and 

forth across the disk. 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 

 
Elevator algorithm: 

 Sometimes the SCAN algorithm is called as the elevator algorithm, since the disk arm 

behaves just like an elevator in a building, first servicing all the requests going up, and 

then reversing to service requests the other way. 
 

 

1.4 C-SCAN Scheduling 
 

 

Variant of SCAN designed to provide a more uniform wait time. It moves the head from one end of the 

disk to the other, servicing requests along the way. When the head reaches the other end, however, it 

immediately returns to the beginning of the disk, without servicing any requests on the return trip. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.5 LOOK Scheduling 
 

 

Both SCAN and C-SCAN move the disk arm across the full width of the disk. In this, the arm goes only 

as far as the final request in each direction. Then, it reverses direction immediately, without going all the 

way to the end of the disk. 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Disk Management 

 
Disk Formatting: 

 
Low-level formatting or physical formatting: 

 
  Before a disk can store data, the sector is divided into various partitions. This process is called 

low-level formatting or physical formatting. It fills the disk with a special data structure for each 

sector. 

   The data structure for a sector consists of 

    Header, 

    Data area (usually 512 bytes in size), and 

    Trailer. 

 The header and trailer contain information used by the disk controller, such as a sector number 

and an error-correcting code (ECC). 

  This formatting enables the manufacturer to Test the disk and 
  To initialize the mapping from logical block numbers 

To use a disk to hold files, the operating system still needs to record its own data structures on the 

disk. It does so in two steps. 

1.   The first step is Partition the disk into one or more groups of cylinders. Among the partitions, 

one partition can hold a copy of the OS‘s executable code, while another holds user files. 

2.   The second step is logical formatting .The operating system stores the initial file-system data 

structures onto the disk. These data structures may include maps of free and allocated space 

and an initial empty directory. 

 
Boot Block: 

 
  For a computer to start running-for instance, when it is powered up or rebooted-it needs to have 

an initial program to run. This initial progr am is called bootstrap program & it should be simple. 

It initializes all aspects of the system, from CPU registers to device controllers and the contents 

of main memory, and then starts the operating system. 



 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

 To do its job, the bootstrap program 

 Finds the operating system kernel on disk, 

 Loads that kernel into memory, and 

 Jumps to an initial address to begin the operating-system execution. 

 
Advantages: 

 
o ROM needs no initialization. 
o It is at a fixed location that the processor can start executing when powered up or reset. 

 
  It cannot be infected by a computer virus. Since, ROM is read only. 

  The full bootstrap program is stored in a partition called the boot blocks, at a fixed location on the 

disk. A disk that has a boot partition is called a boot disk or system disk. 

  The code in the boot ROM instructs the disk controller to read the boot blocks into memory and then 

starts executing that code. 

  Bootstrap loader: load the entire operating system from a non-fixed location on disk, and to start the 

operating system running. 

 
Bad Blocks: 

 
    The disk with defected sector is called as bad block. 

    Depending on the disk and controller in use, these blocks are handled in a variety of ways; 

 
Method 1: “Handled manually 

 If blocks go bad during normal operation, a special program must be run manually to search for 
the bad blocks and to lock them away as before. Data that resided on the bad blocks usually are 

lost. 

 
Method 2: “sector sparing or forwarding” 

 
 The controller maintains a list of bad blocks on the disk. Then the controller can be told to 

replace each bad sector logically with one of the spare sectors. This scheme is known as sector 

sparing or forwarding. 

 
A typical bad-sector transaction might be as follows: 

 
    The oper ating system tries to read logical block 87. 

    The controller calculates the ECC and finds that the sector is bad. 

    It reports this finding to the operating system. 

 The next time that the system is rebooted, a special command is run to tell the controller 

to replace the bad sector with a spare. 

 After that, whenever the system requests logical block 87, the request is translated into 

the replacement sector's address by the controller. 

Method 3: “sector slipping” 
For an example, suppose that logical block 17 becomes defective, and the first available spare 

follows sector 202. Then, sector slipping would remap all the sectors from 17 to 202,moving them all 

down one spot. That is, sector 202 would be copied into the spare, then sector 201 into 202, and then 

200 into 201, and so on, until sector 18 is copied into sector 19. Slipping the sectors in this way frees up 

the space of sector 18, so sector 17 can be mapped to it. 



 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

FILE SYSTEM STORAGE 

 
1 File Concept 

 
    A file is a named collection of related information that is recorded on secondary storage. 

 From a user’s perspective, a file is the smallest allotment of logical secondary storage; that is, 

data cannot be written to secondary storage unless they are within a file. 
Examples of files: 

    A text file is a sequence of characters organized into lines (and possibly pages). 

 A source file is a sequence of subroutines and functions, each of which is further organized as 

declarations followed by executable statements. An object file is a sequence of bytes organized 

into blocks understandable by the system’s linker. An executable file is a series of code sections 

that the loader can bring into memory and execute. 

 
2 File Attributes 

 
o Name: The symbolic file name is the only information kept in human readable form. 
o Identifier: This unique tag, usually a number identifies the file within the file system. It is the 

non-human readable name for the file. 

o Type: This information is needed for those systems that support different types. 
o Location: This information is a pointer to a device and to the location of the file on that 

device. 

o Size: The  current  size  of  the  file  (in  bytes,  words  or  blocks)and  possibly the maximum 

allowed size are included in this attribute. 

o Protection: Access-control information determines who can do reading, writing, executing 

and so on. 

o Time,  date  and  user  identification:  This  information  may  be  kept  for creation,  last 

modification and last use. These data can be useful for protection, security and usage 

monitoring. 

 
3 File Operations 

 
o Creating a file 
o Reading a file 
o Repositioning within a file 
o Deleting a file 
o Truncating a file 

 

 
 

4 File Types 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
DIRECTORY STRUCTURE: 

 
There are five directory structures. They are 

 
    Single-level directory 

    Two-level directory 

    Tree-Structured directory 

    Acyclic Graph directory 

    General Graph directory 

 
1. Single – Level Directory 

 
    The simplest directory structure is the single- level directory. 

    All files are contained in the same directory. 

 
Disadvantage: 

When the number of files increases or when the system has more than one user, since all files are 
in the same directory, they must have unique names. 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

Directory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2. Two – Level Directory 

 In the two level directory structures, each user has her own user file directory (UFD). 

 When a user job starts or a user logs in, the system’s master file directory (MFD) is searched. 

The          MFD is indexed by user name or account number, and each entry points to the UFD 

for that user. 

 When a user refers to a particular file, only his own UFD is searched. 

 Thus, different users may have files with the same name. 

 Although the two – level directory structure solves the name-collision problem 

 
Disadvantage: 

 
Users cannot create their own sub-directories. 

 
3. Tree – Structured Directory 

 
  A tree is the most common directory structure. 

  The tree has a root directory. Every file in the system has a unique path name. 

  A path name is the path from the root, through all the subdirectories to a specified file. 

  A directory (or sub directory) contains a set of files or sub directories. 

     A directory is simply another file. But it is treated in a special way. 

    All directories have the same internal format. 

    One bit  in each directory entry defines the entry as a file (0) or as  a subdirectory (1). 

    Special system calls are used to create and delete directories. 

    Path names can be of two types: absolute path names or relative path names. 

 An absolute path name begins at the root and follows a path down to the specified file, giving 

the directory names on the path. 

    A relative path name defines a path from the current directory. 

 
4. Acyclic Graph Directory. 

 
    An acyclic graph is a graph with no cycles. 

    To implement shared files and subdirectories this directory structure is used. 

 An acyclic – graph directory structure is more flexible than is a simple tree structure, but it is 

also more complex. In a system where sharing is implemented by symbolic link, this situation is 



 
 

 
 

 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

somewhat easier to handle. The deletion of a link does not need to affect the original file; only 

the link is removed. 

    Another approach to deletion is to preserve the file until all references to it  are deleted. 

 To  implement  this  approach,  we must  have  some mechanism  for determining that 

the last  reference to the file has been deleted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FILE SYSTEM IMPLEMENTATION 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

File system implementation defines how files and directories are stored, how disk space is 

managed, and how to make everything work efficiently and reliably. 

 
File-System Layout 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

File Systems are stored on disks. The above figure depicts a possible File-System Layout. 
     MBR: Master Boot Record is used to boot the computer 
  Partition Table: Partition table is present  at the end of MBR. This table gives the 

starting and ending addresses of each partition. 

     Boot Block: When the computer is booted, the BIOS reads in and executes the MBR. 

The first thing the MBR program does is locate the active partition, read in its first block, 

which is called the boot block, and execute it. The program in the boot block loads the 

operating system contained in that partition. Every partition contains a boot block at the 

beginning though it does not contain a bootable operating system. 

  Super Block: It contains all the key parameters about the file system and is read into 

memory when the computer is booted or the file system is first touched. 

 
Implementing Files 

   Contiguous Allocation: 
Each file is stored as a contiguous run of disk blocks. 
Example: On a disk with 1KB blocks, a 50KB file would be allocated 50 consecutive blocks. 

With 2KB blocks it would be 25 consecutive blocks. 

Each file begins at the start of a new block, so that if file A is occupying 3½ blocks, some space 

is wasted at the end of the last block.\ 

   Advantages: 
- Simple to implement. 
- The read performance is excellent because the entire file can be read from the disk in a 

single operation. 

       Drawbacks: 
Over the course of time the disk becomes fragmented. 

     Linked List Allocation: 
The second method for storing files is to keep each one as a linked list of disk blocks. 
The first word of each block is used as a pointer to the next one. The rest of the block is 

for data. Unlike Contiguous allocation no space is lost in disk fragmentation. 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Random access of a file is very slow. 

     Linked-List Allocation Using a Table in Memory: 
The disadvantage of linked list can be overcome by taking the pointer word from each 
disk block and putting it in a table in memory. Such a table in main memory is called a 

FAT (File Allocation Table). Using FAT random access can be made much easier. 

The primary disadvantage of this method is that the entire table must be in memory all 

the time to make it work. 

  I-nodes: I-node is a data structure which is used to identify which block belongs to 

which file. It contains the attributes and disk addresses of the file's blocks. Unlike the in- 

memory table the i-node need to be in memory only when the corresponding file is open. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Implementing Directories 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

The main function of the directory system is to map the ASCII name of the file onto the 

information needed to locate the data. A directory can be designed in two ways. 

  In  a  simple  design  a  directory  consists  of  a  list  of  fixed-size  entries,one  per  file, 

containing a (fixed-length) file name, a structure of the file attributes, and one or more 

disk addresses telling where the disk blocks are. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  For systems that use i-nodes, another possibility for storing the attributes is in the i- 

nodes, rather than in the directory entries. In that case, the directory entry can be shorter: 

just a file name and an i-node number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shared Files 
 When several users are working together sharing of files takes place.  In  such a case it is 

convenient for a file to appear simultaneously in different directories belonging to different 

users. Sharing files is convenient but also introduces problems like if the original file or the 

shared file are appended with new features then it will not be updated in both the copies of the 

file, it is updated only at its original location. This way the purpose of file sharing is defeated. 

This problem can be solved by two ways: 

 
     i-node 

     Symbolic linking 

 
Log-Structured File Systems 

A log-structured filesystem is a file system in which data and metadata are written sequentially 
to a circular buffer, called a log. 



UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

  The idea that drove the LFS design is that as CPU's and RAM's are getting faster and 

larger in the future, most disk accesses will be writes, so the read-ahead mechanism used 

in  some file systems  to  fetch blocks  before they are needed  no  longer gains  much 

performance. 

  Using LFS all writes are initially buffered in memory, and periodically all the buffered 

writes are written to the disk in a single segment, at the end of the log. Opening a file 

now consists of using the map to locate the i-node for the file. Once the i-node has been 

located,  the  addresses  of  the  blocks  can  be  found  from  it.  All  of  the  blocks  will 

themselves be in segments, somewhere in the log. 

  Since eventually the log will occupy the entire disk, at which time no new segments can 

be written to the log. To deal with this problem, LFS has a cleaner thread that spends its 

time scanning the log circularly to compact it. In this the disk is a big circular buffer, 

with the writer thread adding new segments to the front and the cleaner thread removing 

old ones from the back. 

     While Log-Structured File Systems are a good idea they are not widely used. 

 
Journaling File Systems 
  The basic idea here is to keep a log of what the file system is going to do before it does it, so that 

if the system crashes before it can do its planned work, upon rebooting the system can look in the 

log to see what was going on at the time of the crash and finish the job. Such file systems, called 

journaling file systems, are actually in use. 

Operations that take place for removing a file: 

     Remove the file from its directory 

     Release the i-node to the pool of free i-nodes 

     Return all the disk blocks to the pool of free disk blocks 

  The functioning of Journaling file system is such that it first writes a log entry listing the three 

actions to be completed. The log entry is then written to disk. Only after the log entry has been 

written, the various operations begin. After the operations are completed successfully, the log 

entry is erased. If the system now crashes upon recovery the file system can check the log to see 

if any operations were pending. If so, all of them can be rerun (multiple times in the event of 

repeated crashes) until the file is correctly removed. 

Crash recovery can be made fast and secure when log operations are idempotent. 
 

 
 

Virtual File Systems 

  An operating system can have multiple file systems in it. Virtual File Systems are used to 

integrate multiple file systems into an orderly structure. The key idea is to abstract out that part 

of the file system that is common to all file systems and put that code in a separate layer that 

calls     the     underlying     concrete     file     system     to     actually     manage     the     data. 

Structure of Virtual File Systems in UNIX system: 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 The VFS also has a 'lower' interface to the concrete file systems, which is labeled VFS 

interface. This interface consists of several dozen function calls that the VFS can make to 

each file system to get work done. VFS has two distinct interfaces: the upper one to the user 

processes       and       the       lower       one       to       the       concrete       file       systems 

VFS supports remote file systems using the NFS (Network File System) protocol. 
 

 
 

FILE SYSTEM MANAGEMENT AND OPTIMIZATION 
 
 
 
 
 
 
 
 
 
 

 

Disk-Space Management 

 Since all the files are normally stored on disk one of the main concerns of file system is 

management of disk space. 

Block Size 

    The main question that arises while storing files in a fixed-size blocks is the size of the block. 

If the block is too large space gets wasted and if the block is too small time gets waste. So, to 
choose a correct block size some information about the file-size distribution is required. 

Performance and space-utilization are always in conflict. 

Keeping track of free blocks 
After a block size has been finalized the next issue that needs to be catered is how to keep track 
of the free blocks. In order to keep track there are two methods that are widely used: 

  Using a linked list: Using a linked list of disk blocks with each block holding as many 

free disk block numbers as will fit. 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Bitmap: A disk with n blocks has a bitmap with n bits. Free blocks are represented using 

1's and allocated blocks as 0's as seen below in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Disk quotas 

 Multiuser operating systems often provide a mechanism for enforcing disk quotas. A system 

administrator assigns each user a maximum allotment of files and blocks and the operating 

system makes sure that the users do not exceed their quotas. Quotas are kept track of on a 

per-user basis in a quota table. 

File-system Backups 

o If a computer's file system is irrevocably lost, whether due to hardware or software 
restoring  all  the  information  will  be  difficult,  time  consuming  and  in  many  cases 

impossible.     So     it     is     adviced     to     always     have     file-system     backups. 

Backing up files is time consuming and as well occupies large amount of space, so doing 

it efficiently and convenietly is important. Below are few points to be considered before 

creating backups for files. 
     Is it requied to backup the entire file system or only a part of it. 
  Backing up files that haven't been changed from previous backup leads to incremental 

dumps. So it's better to take a backup of only those files which have changed from the 

time of previous backup. But recovery gets complicated in such cases. 



 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

  Since there is immense amount of data, it is generally desired to compress the data before 

taking a backup for the same. 

  It is difficult to perform a backup on an active file-system since the backup may be 

inconsistent. 

     Making backups introduces many security issues 

There are two ways for dumping a disk to the backup disk: 

  Physical dump: In this way dump starts at block 0 of the disk, writes all the disk blocks 

onto thee    output    disk    in    order    and    stops    after    copying    the    last    one. 

Advantages: Simplicity                          and                          great                           speed. 

Disadvantages: inability  to  skip  selected  directories,  make  incremental  dumps,  and 

restore individual files upon request 

  Logical dump: In this way the dump starts at one or more specified directories and 

recursively dump all files and directories found that have been changed since some given 

base date. This is the most commonly used way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o The above figure depicts a popular algorithm used in many UNIX systems wherein 

squares depict directories and circles depict files. This algorith dumps all the files and 

directories that have been modified and also the ones on the path to a modified file or 

directory.  The  dump  algorithm  maintains  a  bitmap  indexed  by i-node  number  with 

several bits per i-node. Bits will be set and cleared in this map as the algorithm proceeds. 

Although logical dumping is straightforward, there are few issues associated with it. 

 
  Since the free block list is not a file, it is not dumped and hence it must be reconstructed 

from scratch after all the dumps have been restored 

  If a file is linked to two or more directories, it is important that the file is restored only 

one time and that all the directories that are supposed to point to it do so 

     UNIX files may contain holes 

     Special files, named pipes and all other files that are not real should never be dumped. 

File-system Consistency 

o To deal with inconsistent file systems, most computers have a utility program that checks 
file-system consistency. For example, UNIX has fsck and Windows has sfc. This utility 

can  be  run whenever the system  is  booted. The utility programs  perform  two  kind 

consistency checks. 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

  Blocks: To check block consistency the program builds two tables, each one containing a 

counter for each block, initially set to 0. If the file system is consistent, each block will 

have a 1 either in the first table or in the second table as you can see in the figure below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     In case if both the tables have 0 in it that may be because the block is missing and 

hence will be reported as a missing block. The two other situations are if a block is seen 

more than once in free list and same data block is present in two or more files. 

     In addition to checking to see that each block is properly accounted for, the file- 

system checker also checks the directory system. It too uses a table of counters but per file- 

size  rather  than  per  block.  These  counts  start  at  1  when  a  file  is  created  and  are 

incremented each time a (hard) link is made to the file. In a consistent file system, both 

counts will agree 

File-system Performance 

o Since the access to disk is much slower than access to memory, many file systems have 
been designed with various optimizations to improve performance as described below. 

Caching 

o The most common technique used to reduce disk access time is the block cache or buffer 
cache. Cache can be defined as a collection of items of the same type stored in a hidden 

or inaccessible place. The most common algorithm for cache works in such a way that if 

a disk access is initiated, the cache is checked first to see if the disk block is present. If 

yes then the read request can be satisfied without a disk access else the disk block is 

copied to cache first and then the read request is processed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The above figure depicts how to quickly determine if a block is present in a cache or not. For 

doing so a hash table can be implemented and look up the result in a hash table. 



 
 

 
 

UNIT V                                                                             OPERATING SYSTEM 
S.RAMADASS, M.C.A.M.Phil.,B.Ed., 

 

 

Block Read Ahead 

o Another technique to improve file-system performance is to try to get blocks into the 
cache before they are needed to increase the hit rate. This works only when files are read 

sequentially. When a file system is asked for block 'k' in the file it does that and then also 

checks before hand if 'k+1' is available if not it schedules a read for the block k+1 

thinking that it might be of use later. 

Reducing disk arm motion 

o Another way to increase file-system performance is by reducing the disk-arm motion by 
putting blocks that are likely to be accessed in sequence close to each other,preferably in 

the same cylinder. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

o In the above figure all the i-nodes are near the start of the disk, so the average distance 

between an inode and its blocks will be half the number of cylinders, requiring long 

seeks. But to increase the performance the placement of i-nodes can be modified as 

below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Defragmenting Disks 

o Due to continuous creation and removal of files the disks get badly fragmented with files 
and holes all over the place. As a consequence, when a new file is created, the blocks 

used for it may be spread all over the disk, giving poor performance. The performance 

can be restored by moving files around to make them contiguous and to put all (or at least 

most) of the free space in one or more large contiguous regions on the disk 

 
…………………   END OF THE UNIT V    ……………………. 


