
1

UNIT-I

 DEFINITIONS FOR DIGITAL SIGNALS

Analog versus Digital

 Electronic circuits and systems can be conveniently divided into two broad categories

generally referred to as analog and digital.

 Analog circuits, designed for use with small signals, can be made to work in a linear

fashion. An operational amplifier (op amp) connected as an amplifier with a voltage gain

of 10 is an analog circuit.

 The output voltage for this circuit will be faithfully amplified version of any signal

presented at its input till saturation is reached. This is linear operation.

 Digital circuits are generally used with large signals and are considered nonlinear.

 Any quantity that changes with time either can be represented as an analog signal or it can

be treated as a digital signal.

 For example, place a container of water at room temperature on a stove and apply heat.

The measurable quantity of interest here is the change in water temperature. The

temperature is recorded continuously, and it changes smoothly from 20°C to 80°C.

 While being heated, the water temperature passes through every possible value between

20°C and 80°C. This is an example signal of an analog.

 In this case, the recorded temperature is not continuous. Rather, it jumps from point to point,

and there are only a finite number of values between 20°C and 80°C say, at an increment of

1°C like 20°C, 21 °C, 22°C, and so on. There are exactly 11 values in this case.

 When a quantity is recorded as a series of distinct (discrete) points, it is said to be sampled.

This is an example of a digital signal.

2

 Digital signals represent only a finite number of discrete values, Digital circuits and systems

can used be to process both analog signals and digital signals.

 Binary System

 Digital electronics today involves circuits that have exactly two possible states. A system

having only two states is said to be binary (bi means "two").

 The binary number system has exactly two symbols----0 and 1.The binary number system is

used in digital electronics. Electronic circuit can be described in terms of its voltage levels.

 Digital circuit, there are only two The more positive voltage is the high (HJ level, and the

other is the low (L) level. This is immediately related to the binary number system by

assigning L = 0 and H = 1.

 Many functions performed by digital circuits are logical operations, and thus the terms

true(T)

and false (F) are often used. Choosing H = 1 = T and L = 0 = F is called positive logic.

 The majority of digital systems utilize positive logic. Note it that is also possible to construct

a negative logic system by choosing H =.O = F and L = l = T.

 Today the majority of digital circuit families utilize a single +5 Vdc power supply, and the

two voltage levels used are +5 Vdc and O Vdc. Here is a summary of the two binary states

(levels) in this positive logic system.

+5 V de = H = I = T

0Vdc =L=0=F

 You can no doubt see how to extend these definitions to include terms such as on-off go-no go,

yes-no, and so on.

 A lamp or a light-emitting diode (LED) is frequently used to indicate digital signal. On

(illuminated) represents 1, and off(extinguished) represents 0.

3

 As an example, the four LEDs in Fig. 1.2 are indicating the binary number 0101, which is

equivalent to decimal 5.

 Ideal Digital Signals

 The voltage levels in an ideal digital circuit will have values of either + 5 V de or O V de.

Furthermore, when the voltages change (switch) between values, they do so in zero time

 DIGITAL WAVEFORMS

 The ideal digital signal represented in Fig. 1.3 has two precise voltage levels-+ 5 V de and OV de.

Furthermore, the signal switches from one level to the other in zero time. In reality, modern

digital circuits can produce signals that approach, but do not quite attain, this ideal behavior.

 Voltage levels

 First of all, the output voltage level of any digital circuit depends somewhat on its load, as

illustrated in Fig. 1.4a below. When V0 is high, the voltage should be +5 Vdc.

 In this case, the digital circuit must act as a current source to deliver the current 1 to the load.

However, the circuit may not be capable of delivering the necessary current 1 while maintaining

+5 V de.

 To account for this, it is agreed that any output voltage close to +5 Vdc within a certain range will

be considered high. This is illustrated in Fig. 1.4c, where any output voltage level between +5 V

de and V H,min is defined as H = 1 = T. The term V B,min stands for the minimum value of the

output voltage when high.

 As we will see, one popular transistor-transistor logic (TTL) family of digital circuits allows V0

H,min = +3.5 Vdc. In this case, any voltage level between +5 Vdc and +3.5 Vdc is H= 1.

 In Fig. 1.4b. is low, and the digital circuit must act as a current sink. That is, it must be capable

of accepting a current from the load and delivering it to ground. In this situation, ~, should be 0

Vdc, but the

4

and V0 L,max' is defined as L = 0 = F. The term V0 L,max stands for the maximum value of the

output voltage when low.

 Again, the popular TTL family mentioned above allows V0 L,max = +0.1 Vdc. Thus, any

voltage level between +0.1 Vdc and O Vdc is L = 0.

Switching Time

 If the digital circuit were ideal, it would change from high to low, or from low to high, in

zero time.

 Thus, the output voltage would never have a value in the forbidden range. In reality, it does,

in fact, require a finite amount of time for V to make the transition (switch) between levels.

 The time required for V0 , to make the transition from its high level to its low level is

defined as fall time t,.

 For ease of measurement, it is customary to measure fall time using 0.9H and 1. IL .

 The time required for V0 to make the transition from its low level to its high level is defined

as rise time t,..Again, rise time is measured between 1.1 L and 0.9H.

5

 Period and Frequency

 There are many occasions where a symmetrical digital signal will be used (clock and

counter circuits for instance). The period T of this waveform is shown: This is the time

over which the signal repeats itself.

 A rectangular waveform such as this can be produced by adding together an infinite (or at

least a large number) of sinusoidal waveforms of different frequencies and amplitudes.

 Even though this digital signal is not sinusoidal, it is convenient to define the frequency

as/= 1/T. As an example, if the period of this square wave is I µs, then its frequency is

found as

 A symmetrical signal is frequently used as the basis for timing all operations in a digital

system. As such, it is called the clock signal.

 The electronic circuit used to generate this square wave is referred to as the system clock.

 A system clock is simply an oscillator circuit having a very precise frequency. Frequency

stability is provided by using a crystal as the frequency-determining element.

6

 Duty Cycle

 Duty cycle is a convenient measure of how symmetrical or how unsymmetrical a

waveform is. For the waveform there are two possible definitions for duty cycle.

 The first definition is the fraction of time the signal is high, and the second is the fraction

of time the signal is low. Either definition is acceptable, provided you clearly define which

you are using. To express as a percentage, simply multiply by 100.

 Note that the duty cycle for a syletrical wave

 DIGITAL LOGIC

 Generating Logic Levels

 The digital voltage levels described in Fig. 1.4 can be produced using switches on the next

page. The switch is down and V0 = L = 0 = 0 V de. When the switch is up, as V0 = H = 1 =

+5 V de.

 A switch is easy to use and easy to understand, but it must be operated by hand.

 A relay is a switch that is actuated by applying a voltage Vi to a coil. The coil current

develops a magnetic field that moves the switch an n from one contact to the other.

 This is indicated with the dashed line drawn between the coil and the relay arm.

 For this particular relay, V0 = L = 0 Vdc when v; = 0 V de. Applying a voltage v; will

actuate the relay, and then V0 = H = +5 V de. This relay could of course be connected so

that its output is low when actuated.

 Switches and relays were useful in the construction of early machines used for calculation

and/or logic operations.

 In fact, they are still used to a limited extent in modem computer systems where humans

must interact with a system. For instance, on-off power switches, reset, start-stop, and

load-unload are functions that might require human initiation.

7

 On the other hand, modem computers are capable of performing billions of switching

operations every second! Switches and relays are clearly not capable of this performance,

and they have therefore been replaced by transistors (bipolar and/or MOSFET).

8

 The Buffer

 In order to deliver the necessary load current 1 in digital IC called a buffer might be

used. A buffer can be thought of as an electronic switch.

 The switch is actuated by the input voltage v;. Its operation is similar to the relay.

When v; is low, the switch is down, and V0 is low. On the other hand, when v; is

high, the switch moves up and V0 is high.

 Operation of this IC is summarized by using the truth table, or table of combinations.

There are only two possible input voltage levels (L and JI), and the truth table shows

the value of V0 in each case.

 Since the buffer is capable of delivering additional current to a load, it is often

 called a buffer amplifier.

9

 The traditional amplifier symbol (a triangle) shown in Fig. l.8c is used on

schematic diagrams. If you're interested in an actual IC buffer, look in the standard

TTL logic family. The 5407 or 7407 is a 14-pin IC that contains six buffers.

The Tri-State Buffer

 At the input of a digital system, there may be more than one input signal of interest.

Generally speaking, however, it will be necessary to connect only one signal at a

time, and thus there is a requirement to connect or disconnect (switch) input signals

electronically.

 Similarly, the output of a digital system may need to be directed to more than one

destination, one at a time.

 The logic circuit is a simple buffer with an additional switch controlled by an input

labeled G. When G is low, this switch is open and the output is "disconnected" from

the buffer. When G is high, the switch is closed and the output follows the input.

 That is, the circuit behaves as an ordinary buffer amplifier. In effect, the control

signal G connects the buffer to the load or disconnects the buffer from the load.

 When G is high, is either high or low (two states). However, when G is low, the

output is in effect an open circuit (a third state).

 Since there are three possible states for V0, this circuit is called a tri-state bzttfer.

(Tri stands for "three", and thus the term three-state buffer is often used.)

10

The Inverter

 One of the most basic operations in a digital system is inversion, or negation. This

requires a circuit that will invert a digital level. This logic circuit is called an

inverter, or sometimes a NOT circuit.

 The switch arrangement in is an inverter. When the input to this circuit is low, the

switch remains up and the output is high.

 When the input is high, the switch moves down and the output is low. The truth

table for the inverter. Ob Clearly the output is the negative, or the inverse, of the

input.

 When the inverter is used as a logic circuit, His often defined as the "true" state,

while L is defined as the "false" state. In this sense, the inverter will always provide

at its output a signal that is the inverse, or complement, of the signal at its input.

 It is thus called a negation or NOT circuit. This makes sense, since there are only

two possible states, and therefore NOT H must be L and NOT L must be H.

 The inverse complement or of a signal is shown by writing a bar above the symbol.

For instance, the complement of A is written as ̅or A' and this is read as "A bar" A

logic expression for the inverter.

The Tri-state Inverter

 A tri-state inverter is easy to construct, that when G is low, the inverter to is

connected the output. When G is high, the enable switch opens, and the output is

disconnected from the inverter.

11

 The standard logic symbol for this tri-state inverter is given in Fig. 1.11 c. The

inverting amplifier symbol indicates that V0, is the inverse of v; (the small circle is at

the amplifier output).

The AND Gate

 An AND gate is a digital circuit having two or more inputs and a single output. The

inputs to this gate are labeled V1, V2, V,, ... Vn, (there are n inputs), and the output is labeled

V0.

 The operation of an AND gate can be expressed in a number of different, but

equivalent, ways. For instance.

12

 A model for an AND gate having 2 inputs. This gate can be used to make "logical"

decisions; for example, "If V1 and V2, then V0,." As a result, it is referred to as a

digital logic circuit, as are all AND gates.

 From the model, it is seen that V1 = H closes the upper switch, and V2 = H closes the

lower switch. Clearly, V0 = H only when both V1 and V2 are high. This can be

expressed in the form of a logic equation written as

The OR Gate

 An OR gate is also a digital circuit having 2 or more inputs and a single

output as indicated in

 A model for an OR gate having 2 inputs is shown in Fig. 1.15a. This gate can be

used to make "logical"decisions; for example, "If V1 or V2, then V0." As a result, it is

referred to as a digital logic circuit, as are all OR gates.

 From the model, it is seen that V1 = H closes the upper switch, and V2 = H closes the

lower switch. Clearly, V: = H if either V1 or V2 is high. This can be expressed in the

form of a "logic" equation written as

13

 The operation is summarized in the truth table in Fig. 1.15b. The symbol for a 2-

input OR gate is shown in Fig. 1.15c. Thus, OR is a logic operation which is realized

here through gate a logic gate.

 MOVING AND STORING DIGITAL INFORMATION

Memory Elements

 A digital memory element is a device or perhaps a circuit that will maintain a

desired logic level at its output till it is changed by changing the input condition.

 The switch is placed such that its output is low, and it will remain low without any

further action.

 Thus, it will ''remember" that V0 = L. Since L = 0 = 0 Vdc, the switch can be thought

of as "holding" or "storing" a logic 0. In Fig. I. 7b, V0 = H, and it will remain high

without any further action. The switch remembers that V0 = H.

 In this case, the switch is holding or storing a logic 1, since H = I = +5 V de. It is

easy to see that this switch can be used to store a digital level, and it will remember

the stored level indefinitely.

 The simplest electronic circuit used as a memory element is called a flip:flop. Since

a flip-flop is constructed using transistors, its operation depends upon de supply

voltage(s).

14

 The flip-flop can be used to store a logic level (high or low), and it will retain a

stored level indefinitely provided the de supply voltage is maintained. An

interruption in the de supply voltage will result in loss of the stored logic level.

 When power is first applied to a flip-flop (turning the system on first thing in the

morning), it will store either a high or a low. This is a "random" result, and it must

be accounted for in any digital system. Generally, a signal such as MASTER

RESET or power-on reset will be used to initialize all storage elements.

 The two inputs are SET and RESET, and the output is A. The output labeled A is

simply the inverse of A. Here's how it works:

1. When SET= Hand RESET = L, the flip-flop is set, and A = H.

2. When SET = L and RESET = H, the flip-flop is reset, and A = L.

3. Holding SET= Land RESET= L disables the flip-flop and its output

 remains unchanged.

4. Applying SET= Hand RESET= Hat the same time is not allowed, since this is a

 request to set and reset at the same time-an impossible request!

 To summarize, the flip-flop is SET, it stores a high (a logic 1). When it is RESET, it

stores a low (a logic 0).

 A simple flip-flop such as this is often called a latch, since its operation is similar to

a switch. A 7475 is an IC in the TTL family that contains four similar flip-flops.

Registers

 A group of flip-flops can be connected together to store more than a single logic

level. For instance, the four flip-flops can be used to store four logic levels.

15

 As such, they could be used to store any of the ten binary numbers given in Table.

As an example, if A is SET, B is RESET, C is SET, and D is RESET, this will store

the binary number DCBA = LHLH = 0101, which is equivalent to decimal 5.

 When we speak of decimal numbers, in each position a number is called a decimal

digit, or simply a digit. For example, the decimal number 847 has three digits.

 When we speak of binary numbers, each position in the number is called a binary

digit, or bit. (The term "binary digit!" has been shortened to "bit.")

 For example, the binary number 0101 is composed of four bits; It is a 4-bit binary

number. The four flip-flops can be used to store any 4-bit binary number.

 A group of flip-flops used to store a binary number is called a register, or sometimes

a storage register. The register is a 4-bit register.

 There are eight flip-flops in an 8-bit register, and so on. In the TTL family, the 7

4198 is an 8-bit register. Clearly a register can be used to store decimal numbers in

their binary equivalent form.

 In general, binary numbers such as this are referred to as data. A register is a

fundamental building block in a microprocessor or digital computer, and you can

now see the beginnings of how these systems are used for computation.

 The register in Fig. 1.18a has 8 inputs, 1 through 8, and 8 outputs, a through h. It is

constructed using eight flip-flops and some additional electronic circuits.

16

 A binary number is stored in this register by applying the appropriate level (high or

low) at each input simultaneously. Thus one bit is "shifted" into each flip-flop in the

register.

 The binary number is said to be shifted into the register in parallel, since all bits are

entered at the same time. In this case, binary the number (or data) is entered in one

single operation.

 Once a number is stored in this register, it appears immediately at the 8 outputs, a

through h. A 74198 is an example of an 8-bit parallel register.

 The register in Fig. 1.18b has a single input and a single output. It is also constructed

using eight flip-flops and some additional electronic circuits.

 It will store an 8-bit binary number, but the number must be entered into the register

one bit at a time at the input. It thus requires eight operations to store an 8-bit

number. This is how it is done.

 The first bit of the binary number is entered in flip-flop A at the input. The second

bit is

 then entered into flip-flop A, and at the same time the first bit in flip-flop A is

passed along (shifted) to flip-flop B.

 When the third bit enters A, the bit in A goes to B and the bit in B goes to C. This

shift right process is repeated, and after eight operations, the 8-bit number will be

stored in the register. Since the bits are entered one after the other in a serial fashion,

this is called a serial register.

 For a stored number to be extracted from this register, the bits must he shifted

through the flip-flops from left to right.

17

 The stored number will then appear at the output, one bit at a time. It requires eight

operations, or eight right shifts, to extract the stored number.

 A 74164 TTL is an example of an 8-bit serial register (this particular IC

 also provides parallel outputs).

Transferring Digital Data

 A register is used to enter data (binary numbers) into a microprocessor or computer.

A register is also used to extract data from a computer and direct it to an external

destination are Wire cables generally the means for connecting systems.

 If a parallel register is used, the data is said to be shifted in parallel. The connector in

this case must have one pin for each bit, and the cable must have at least one wire for

each bit.

 An 8-bit register requires a cable having at least 8 wires, a 16-bit register must have

at least 16 wires, and so on.

 Data are also transferred (shifted) between registers within a digital system. Instead

of drawing all 8 (or16 or 32) wires on a schematic, it is common practice to use an

arrow between the registers.

 The number 8 in parentheses means that there are eight wires. In this case, there are

eight connections used to transfer 8 bits of data in parallel from register A to register

B. The eight wires represented by this arrow are called a data bus.

 The double arrow shown in Fig. 1.19b means 16 bits of data can be shifted in

parallel from A to B or from B to A. This is a 16-bit bidirectional data bus.

18

 On the other hand, data can be shifted serially into or out of a serial register, and

only one wire (connection) is required for the data.

 Clearly, parallel operation will transfer data into or out of a computer system much

more rapidly than serial operation.

 The price paid for this gain in speed is an increase complexity, in in terms of both

the electronic circuits and the increased number of connections (wires in the cable).

 The computer connector where data is entered or extracted is frequently called a

port. Nearly all computer systems have available both a serial port and a parallel

port.

Magnetic and Optical Memory

 Any memory element must be capable of storing or retaining only two logic levels,

and there are numerous devices with the appropriate electronic circuits used for this

purpose.

 One of the most common systems for memory makes use of the fact that a magnetic

material can be magnetized with two different orientations.

 Thus, magnetizing spots on a strip of magnetic tape, or on a hard disk with a

magnetic coating, or on a magnetic floppy disk are well known used and widely

memory systems.

DIGITAL OPERATIONS

Counters

 It was mentioned previously that counting is an operation easily performed by a

digital circuit.

 A digital circuit designed to keep track of a number of events, or to count, is called a

counter: The counter is constructed using a number of flip-flops (n) and additional

electronic circuits.

 It is similar to a storage register, since it is capable of storing a binary number. The

input to this counter is the rectangular waveform labeled clock. Each time the clock

signal changes state from low to high, the counter will add one (1) to the number

stored in its flip-flops.

19

 In other words, this counter will count the number of clock transitions from low to

high. A clock having a small circle (bubble) in the input side would count clock

transitions from high to low. This is the concept of active is, an action occurs when

the input is low.

 A four-flip-flop counter can count decimal numbers from 0 to 15. To count higher, it

is necessary to add more flip-flops. It is easy to determine the maximum decimal

count in terms of the number of flip-flops using the following relation

Maximum count = 2" - 1 (1.1)

where n = number of flip-flops.

 The term 2" means 2 raised to the nth power, that is, 2 multiplied by itself n times.

For example,

2
2
 = 2 x2 = 4

2
3
 = 2 X 2 X 2 = 8

2
4
 = 2 X 2 X 2 X 2 '"-' 16

20

2
5
 = 2 X 2 X 2 X 2 X 2 = 32

2
6
 = 2 X 2 X 2 X 2 X 2 X 2 = 64

2
7
 = 128

2
8
 = 256

2
9
 = 512

2
10

 = 1024

Arithmetic logic Unit

 An arithmetic logic unit (ALU) is a digital circuit capable ofperfonning both

arithmetic and logic operations.

 The basic arithmetic operations performed by an ALU are addition (+) and

subtraction(-:). Multiplication (*) and division (/) of digital numbers are

accomplished with other digital circuits.

 Logic operations will usually include inversion (NOT), AND, and OR. The ALU

represented has two data inputs; the

Addition and Subtraction:

 If the proper digital levels are applied to the inputs of the S bus, the ALU can be

used to add two digital numbers.

21

 The two numbers to be added are represented by the proper logic levels at A and B,

and the SUM of these two numbers will appear at output F.

 In event the sum of the two numbers generates a carry, an H will appear at the

CARRY OUT. To illustrate, suppose we wish to perform the addition 6 + 7 = 13.

Here's how we might do it with decimal numbers.

 The digital levels illustrated result in the addition of these two numbers. The

equivalent numbers decimal are shown in parentheses. Notice that the

CARRY IN allows this ALU to add two numbers, plus a carry.

 By changing the control levels at the S bus, this ALU will determine the

difference A -B (subtraction).

 In this case, the digital levels at the F bus represent the DIFFERENCE, rather

than the SUM.

Logic Functions

 By changing the digital levels at the S bus, the ALU can be used to perform a

number of different logic functions relative to the two digital inputs.

 The desired function appears at the F bus. Here are some of the possibilities:

 F=A AND B

 F=A OR B

 The operations are carried out "bit by bit." For example,

22

If A= 1010 then F= ̅= 0101

If A= 1010 and if B = 0ll0, then

F= A AND B = 1010 AND 0110 = 0010

 In this case, the AND ing is done on the corresponding bit of each input. There are

tour AND operations.

 It's easier to see by writing the data as follows:

 The "vertical lines" between A and B show which bits are AND.

Comparison

 Comparing the magnitude of two numbers is an important logical operation. The

circuit is a comparator. It is capable of comparing two digital numbers and

indicating whether the magnitude of one is greater than, less than, or equal to the

other.

 For example, if A= 0110 (decimal 6) and B = 0111 (decimal 7), then the output A

< B will be high.

 The other two outputs will be low. A 7485 in the TTL family is a 4-bit

comparator similar. Also, the 74181 ALU can be used with the same results.

23

Input/Output

 In order for any digital system to be useful, there must be some provision for

entering data into the system and also some method of extracting data from the

system.

 In the case of a computer, information is frequently entered by typing on a keyboard

or perhaps by using a magnetic floppy disk. Useful information can be obtained from

the computer by examining the visual displays on a cathode-ray tube (CRT) or by

reading material produced on a printer.

 Clearly there is a requirement to connect multiple input devices, one at a time, to the

system. The digital circuit used for this operation is a multiplexer.

 Likewise, there is a need to connect the system output to a number of different

destinations, one at a time. The digital circuit used for this purpose is a

demultiplexer.

 The term multiplex means "many into one." A multiplexer (MUX) can be

represented. There are n input lines. Each line is used to shift digital data serially.

 Thus, data from multiple sources can be connected to a single input port, one at a

time. An example ofa MUX is the 74150 in the TTL family. It has 16 input lines and

a single output line.

24

 The opposite of multiplex is demultiplex, "onewhich means into many." A

demultiplexer (DEMUX) can be represented. This digital circuit simply connects the

single data input line to one of the n output lines, one at a time, according to the

levels on the C bus.

 Thus serial data from the computer output port can be directed to different

destinations, one at a time. An example of a DEMUX is the TTL 74154, which can

be used to connect a single input to any one of 16 outputs, one at a time.

 Any information entered into a digital system must be in the form of a digital

number. A circuit that changes data into the required digital form is called an

encoder.

 The encoder on the next page will change a decimal number into its binary

equivalent. It may be used with a keyboard.

 For instance, depressing the number 4 key on a keyboard will cause input line 4 to

this encoder to be high (the other inputs are all low). The result will be decimal 4,

binary 0100, at the encoder output as shown.

 Taking digital information from the output of a computer and changing it into

another form is accomplished with a decoder, for example, changing the digital

number O110 (decimal 6) into its decimal form.

25

DIGITAL COMPUTERS

Terms

 Digital circuits can be interconnected to construct a digital computer.

 A computer intended to perform a very specific task, constructed with a minimum

number of components, might be referred to as a microcomputer.

 Small portable, or desktop, computers are usually in the microcomputer class.

Computers with greater capacities, often used in business, are called minicomputers.

 A large mainframe computer system capable of storing and manipulating massive

quantities of data, for example, a digital computer system used by a bank or an

insurance company, might then be called maxi computer.

Uses

 The inclusion of an ALU with additional logic circuits provides arithmetic

capabilities (addition, subtraction, multiplication, division).

 The logic portion of the ALU means the computer can be used to make logical

 decisions. Beyond these basic functions, a digital computer can be used to process data

(balance bank accounts), to rapidly perform otherwise time-consuming tasks (determine

payroll amounts and print out paychecks), to precisely monitor and control intricate

processes (life support systems in a hospital operating room).

Basic Configurations

 A microcomputer designed to control a given machine, process, or system might be

represented in fig. The control produced signals by the computer appear as the

output bus and are sent to an output device.

 Here, the signals are properly conditioned and sent to the mechanism being

controlled. The controlled entity must then send signals indicating its present

condition back to the computer via an input device and via the input bus.

 The computer analyzes these present condition signals, determines any necessary

action, and sends required correction signals to out the system.

26

 A microcomputer system might be designed to irrigate the lawn area of a park.

Watering is to be done only at night, when the soil moisture falls below a given value.

 This allows the connection of a number of different input devices:

 A keyboard for typewritten entry of alphanumeric informationA disk drive or tape

drive for entering data stored in magnetic form A microphone for voice input

 The DEMUX on the output bus allows numerous possibilities for receiving

information from the computer: Familiar The CRT for a visual display.A

printer to provide printed material (called hard copy).

27

 A disk or tape drive to record data in magnetic form Perhaps a speaker for audio

information

 A minicomputer such as this can be used for many different tasks. It can be used as a

word processor, for data processing, for communication via telephone (both voice

and fax), for training in an educational setting, for computer games, and so on!

 For instance, a maxi computer will likely have more than one printer, and perhaps

even different types of printers.

 It will generally have a large number of users, all of whom desire access to the

system at the same time.

 One workstation must then be provided for each user.

 A keyboard and a CRT are the minimum components required at each workstation.

The digital circuits used to construct maxi computer systems are necessarily more

complicated than minicomputer systems, and they may operate at a much faster rate.

Basic Computer Architecture

 The central processing unit (CPU) is the brain of a digital computer. It is

constructed using an ALU along with a number of registers and counters.

 The CPU is therefore the primary center for computation and decision making. All

the operations within the CPU, and indeed within the computer itself, must be

carefully coordinated.

 A digital signal refered to as the system clock is used as a reference to time when

specific operations take place. The clock signal is usually a periodic, rectangular

waveform.

 Using a crystal in the clock circuit allows the accuracy and stability of the clock

frequency, to be controlled with great precision.

 The clock provides a "heartbeat" for the computer. A block diagram of a digital

computer is started by drawing the CPU and clock.

 The CPU is capable of computation and decision, but it must have specific

instructions telling it exactly ·what to do and when to do it. This set of instructions is called a

program.

28

 A program is a detailed list of operations written by a human programmer.

The programmer decides what the computer is to do and when it should be

done, and then writes a list of instructions to be carried out in the proper

order.

 The program is entered into the computer, using perhaps a keyboard, and

stored in the computer memory.

 The CPU can then "fetch" from memory one instruction at a time, in the

given order. It will execute the instruction and then fetch the next

instruction. With this repeated fetch and-execute cycle, the CPU will

accomplish the desired task. A memory block used for program storage has

been added.

 A portion of the memory block is labeled data. This is the area where the

information being processed by the computer is stored. In addition, this is where the

CPU stores the results of computations and/or decisions made.

 Since the CPU takes ("reads") data from memory, as well as returns ("writes") data

into memory, the memory data bus is bidirectional. By contrast, the program data

29

bus is not bidirectional, since information on this bus is always from memory to

CPU.

 The CPU communicates with the "outside world" by means of the input encoders

and the output decoders.

 The ability to multiplex inputs and de multiplex outputs may also be included in the

input/output blocks that have been added. This configuration is sometimes quite

inefficient, since all information entering or exiting the computer must pass through

the CPU.

 The CPU operates at a much faster rate than most external devices, and it must wait

while data are being entered or exited: A direct memory access (DMA) block is

generally included to alleviate this problem.

 The DMA allows information to move directly from an input device into memory or

from memory directly to an output device.

 While information is being transferred via the DMA, the CPU is free to carry on its

computational or logical operations. This greatly improves system efficiency as well

as speed of operation.

30

 Before data can be entered into the computer, a signal on the input request line asks

the computer for "permission" to input information.

 For instance, depressing the enter key on a keyboard will generate an input request

signal. When the CPU is ready, a signal is generated on the acknowledge line, and

data will be entered via the DMA into the memory. This request-acknowledge

sequence is often called handshaking.

 A similar handshaking must occur when the CPU is ready to deliver data to an

external device. However, in this case, the CPU makes an output request, and the

external device gives permission.

 All of these blocks are operated in synchronism with the clock, but additional

direction must be provided.

 The controller is the unit that decides which block "goes first" (establishes

priorities), decides the order in which external devices are serviced, routes data along

the various buses such that no conflicts occur, and controls the overall operation of

the system.

31

 A microprocessor is often used as the basic IC around which a micro computer or

minicomputer is constructed. Numerous computers have been designed, beginning

with the 8080 microprocessor. Improvements to this basic IC have led to the

development of a family of microprocessor units including the 8085 and the 8086.

 DIGITAL INTEGRATED CIRCUITS

 A digital IC is constructed by an interconnection of resistors, transistors, and perhaps

capacitors, small all of which have been formed on the surface of a semiconductor

wafer. The entire circuit resides on a tiny piece of semiconductor material called a

chip.

 The semiconductor wafer is typically a slice of mono crystal line about silicon 0.2

mm thick and perhaps 8 to 15 cm in diameter. The wafer is divided checkerboard

fashion into 1000 or so rectangular areas.

 Each area will become a single chip. The resistors and transistors necessary for each

digital circuit are then formed on each chip by a series of semiconductor processing

32

steps. In this fashion, identical digital circuits are manufactured simultaneously on

the same silicon wafer.-

 After the processing steps are completed, the wafer is separated into individual

chips. Each chip is a digital circuit, for example, an inverter or an AND gate.

 An individual digital circuit may have only a few components, but some circuits

have a few hundred components!

 Each chip is then mounted in a suitable package, as shown in Fig. 1.33c. The

package illustrated here is a 14-pin dual-inline package (DIP).

IC Families

 ICs are categorized by size according to the number of gates contained on each chip.

There is no absolute rule, but an IC having fewer than 10 or 12 gates is usually

referred to as a small-scale integration (SSI) IC.

 For instance, a 7404 has six inverters in a 14-pin DIP. ICs having more than 12 but

fewer than 100 gates are called medium-scale integration (MS!) !Cs; encoders and

decoders are examples of MSI ICs.

 If there are more than 100 gates but fewer than 1000, the IC is called a large-scale

integration (LSI) JC. An IC having more greater than 1000 is referred to as a ve,y

large-scale integration (VLSI) JC.

 A large complex system such as semiconductor memory or a microprocessor will be

either LSI or VLSI.

33

 ICs are further categorized according to the type of transistors used. The two basic

transistor types are bipolar and metal-oxide-semiconductor (MOS).

 Bipolar technology is faster but requires more power, and is generally preferred for

SSI and MSI. MOS is slower, but requires much less power occupies and also a

much smaller chip area for a given function.

 MOS is therefore preferred for LSI and is widely used in applications such as pocket

calculators, wristwatches, hearing aids, and so on. For the moment, let's consider the

overall characteristics of each digital IC family.

Bipolar Transistors

There are two important digital circuit families constructed bipolar using transistors:

• Transistor-Transistor Logic (TTL)

• Emitter-Coupled Logic (ECL)

Transistor-Transistor Logic

 TTL was first introduced by Texas Instruments in 1964 using the numbers 54XX

and 74XX. These two families are now widely available from a number of different

manufacturers.

 The 74XX ICs operate over a temperature range of 0°C to 75°C. The 54XX devices

are more rugged; they operate over a temperature range of -55°C to+ I25°C. As you

might expect, the 54XX devices are more expensive.

34

 Otherwise, the logical operations of these two families are the same. In each case,

the XX portion of the part number refers to a specific device.

 For instance, "04" stands for inverter, and a 7404 is a TTL inverter. A 7411 is a TTL

AND gate, and so on. When there is no danger of confusion, it is common practice

to shorten the description by omitting the first two digits.

 In the interest of higher operating speed, the 74XX family was improved with the

introduction of the 74HXX (where the H stands for high speed) family of devices.

 The price paid for increased speed was an increase in power required to operate each

gate. This led to another family of devices designed to minimize power

requirements-the 74LXX (where the L stands for low power) series.

 A major improvement in the TTL series came with the development of a special

transistor arrangement called a Schottky transistor.

 Using this device, the 74SXX (S for Schottky) family came into being. These

devices greatly improved operating speed, but again at the cost of increased power

consumption. At this point, a family of devices designated 74LSXX (low-power

Schottky) was developed.

 The 74LSXX family offers high-speed operation with minimal power consumption

and today is preferred in most designs. The original 7400 also remains popular.

 There are two additional families, 74ASXX (advanced Schottky) and 74ALSXX

(advanced low-power Schottky), available.

Emitter-Coupled Logic

 Emitter-coupled logic (ECL) is considerably faster than any of the TTL families, but

the power required for each gate is also much higher.

 With a propagation delay of only 2 ns, the industry standard for ECL circuits is

10,000 ECL, abbreviated 10K. The l00K (100,000) series is even faster, with a delay

time of only 1 ns. Motorola markets a family of devices designated MECL 1OK and

MECL 1OKH (Motorola Emitter coupled Logic).

MOS Transistors

35

 Three digital logic families constructed using MOS field-effect transistors

(MOSFETs):

• PMOS Using p-channel MOSFETs

• NMOS Using n-channel MOSFETs

• CMOS Using both n-channel and p-channel MOSFETs

 PMOS, the slowest and oldest type, is nearly obsolete today.

 NMOS dominates the LSI field and is widely used in semiconductor memories

micro processors.

 CMOS is preferred where individual logic circuits are used and where very

low power consumption is required.

Digital logic Symbols

 The Institute of Electrical and Electronics Engineers (IEEE) along with the

American National Standards Institute (ANSI) have developed a new symbolic

language and set of symbols to be used with digital logic circuits.

 These new symbols are now being used on manufacturers' data sheets along with

traditional symbols. The most recent revision of IEEE Standard Graphic Symbols for

Logic Functions, ANSI/IEEE Std 91-1984, provides for two different types of

symbols.

 Symbols of the first type, called distinctive-shape symbols, are exactly as have been

shown throughout this chapter.

36

 The second system, which is called the rectangular-shape system, uses a rectangular

box with a special symbol for each type of gate. The IEEE standard does not express

a preference for either shape.

 A rectangular box is used for the gate, the input is labeled A, and the output is

labeled Y.

 The triangle on the output line signifies that the output is active when low. Thus,

when the input is active (high), the output will be active (low).

 The 7404 is a hex inverter; that is, it is an IC that contains six inverters. The DIP

package for this device is shown in Fig. 1.36a, along with the proper pin numbers on

the package. Figure 1.36b shows the six standard logic symbols for the inverters.

 Triple three-input AND gate, 7 411: (a) Pin configuration, (b) Logic

symbol,

 (c) Logic symbol (IEEE)

37

 The pin out and symbols for the 7411 quad 2-input. The new IEEE symbol for the

AND gate is a rectangle with the ampersand (&) symbol written in it; is used in Fig.

1.37c to show the three AND gates in the 7411.

DIGITAL LOGIC

 A digital circuit having one or more input signals but only one output signal is

called a gate .the most basic gates-the NOT gate (inverter), the OR gate and the

AND gate-were introduced.

 Connecting the basic gates in different ways makes it possible to produce circuits

that perform arithmetic and other functions associated with the human brain (an

ALU). Because they simulate mental processes, gates are often called logic circuits.

 A discussion of both positive and negative logic leads to the important concept of

assertion-/eve/ logic.

 Hardware description languages (HDL) are an alternative way of describing logic

circuits. This uses a set of textual codes that is machine (computer) readable.

 THE BASIC GATES-NOT, OR, AND

 Three logic circuits: the inverter, the OR gate, and the AND gate, can be used to

produce any digital system.

The Inverter (NOT Gate)

 In one truth table, the symbols Hand L are used, while the binary numbers O and 1 are used .in

the other. The information in each table is identical, however, since we know L = 0 and H = 1.

38

 In this text, both symbols are used, hence since there is no chance for confusion. You will find

both symbols used in other texts, as well as in manufacturers' data sheets.

 The important idea is that there are only two possible voltage levels (low and high) associated

with a digital circuit. This fits nicely with the binary number system, since it has only two

values (0 and 1). This is often referred to as two-state operation.

 By definition, this is positive logic, since the higher voltage level is assigned binary 1. In

negative logic, where the higher voltage level is assigned binary (zero).

OR Gates

 An OR gate has two or more input signals but only one output signal. It is called an OR gate

because the output voltage is high if any or all of the input voltages are high. For instance, the

output of a 2-input OR gate is high if either or both inputs are high.

 For example, the first ABC entry is 000, the next is 001, then 010, and so on, up to the final

entry of 111. Since all binary numbers are present, all input possibilities are included.

39

 Incidentally, the number of rows in a truth table equals 2", where n is the number of inputs. For

a 2-input OR gate, the truth table has 22, or 4 rows. A 3-input OR gate has a truth table with 2
3
,

or 8 rows, while a 4-input OR gate results in 24, or 16 rows, and so on.

 An OR gate can have as many inputs as desired. No matter how many inputs, the action of any

OR gate is summarized like this: One or more high inputs produce a high output.

logic Symbols

 Figure 2.6a shows the symbol for a 2-input OR gate of any design. Whenever you see this

symbol, remember the output is high if either input is high.

 The logic symbol for a 3-input OR gate. Figure 2.6c is the symbol for a 4-input OR gate. For

these gates, the output is high when any input is high. The only way to get output allow is by

having all inputs low.

 When there are many input signals, it's common drafting practice to extend the input side as

needed to allow sufficient space between the input lines.

 It is the symbol for a 12-input OR gate. The same idea applies to any type of gate; extend the

input side when necessary to accommodate a large number of input signals.

 TTL OR Gates Figure 2.7 shows the pinout diagram of a 7432, a TTL quad 2-input OR gate.

This digital IC contains four 2-input OR gates inside a 14-pin DIP. After connecting a supply

voltage of +5 V to pin 14 to and a ground pin 7, you can connect one or more of the OR

gates to other TTL devices

40

 Timing Diagram Figure 2.8 shows an example of a timing diagram for a 2-input OR gate.

The input voltages drive pins 1 and 2 of7432a. Notice that the output (pin 3) is low only when

both inputs are low. The output is high the rest of the time because one or more input pins are

high.

AND Gates

 The AND gate has a high output only when all inputs are high. Figure 2.1a shows a 2-input

AND gate. The truth table (Fig. 2.10 b) summarizes all input-output possibilities for a 2-input

AND gate.

 Examine this table carefully and remember the following: the AND gate has a high output only

when A and B are high. In other words, the AND gate is an all-or-nothing gate; a high output

occurs only when all inputs are high. This truth table uses 1s and 0s, where 1 = Hand 0 = L.

 In Boolean equation form =A AND B, i.e. Y=A.B or Y=AB

Y = 0.0 = 0, Y = 0.1 = 0, Y = 1.0 = 0and Y = 1.1 = 1

 The '.' sign here represents logic AND operation and not multiplication operation of basic

arithmetic though the result for are same both.

 TTL AND Gates Figure 2.13 shows the pinout diagram of a 7408, a TTL quad 2-input AND

gate. This digital IC contains four 2-input AND gates.

 After connecting a supply voltage of +5V to pin 14 and a ground to pin 7, you can connect one

or more of the AND gates to other TTL devices.

 TTL AND gates are also available in triple 3-input and dual 4-input packages.

41

 Timing Diagram Figure 2.14 shows an example of a timing diagram for a 2-input AND gate.

The input voltages drive pins 1 and 2 of a 7408. Notice that the output (pin 3) is high only when

both inputs are high (between C and D, G and H, etc.). The output is low the rest of the time.

 UNIVERSAL LOGIC GATES-NOR, NAND

 Gates, which can perform this task, are called universal logic gates. Clearly, basic gates like

AND, OR and NOT don't fit into this category for the simple reason that conversion among

themselves itself are not possible. As for example, one cannot gate OR operation by using

number any or combination of AND gates.

 Two universal logic gates NOR and NAND.

NOR Gates

 The logic circuit used to be called a NOT-OR gate because the output is

Y=A+B

 Read this as "Y equals NOT A OR B" or "Y equals the complement of A OR B." Because the

circuit is an OR gate followed by an inverter, the only way to get a high output is to have both

inputs low, as shown in the truth table of Table 2.1.

NOR Gate Symbol

 The bubble (small circle) on the output is a reminder of the inversion that takes place after the

ORing. Furthermore, the words NOT-OR are contracted to the word NOR.

42

NOR logic gate

 The new IEEE rectangular symbol for the NOR gate. The small triangle on the output is

equivalent to the bubble used on the standard symbol. The indicator ≥ inside the box means

"if one or more of the inputs are high, the output is high."

43

Bubbled AND Gate

 The bubbles on the inputs are a reminder of the inversion that takes place before the

AND operation. It is bubbled AND gate. We find that output Y and inputs A, B are

identical for bubbled AND gate and NOR gate.

 Therefore, these two circuits and are equivalent thus interchangeable. Given any

logic circuit with NOR gates, we can replace it by bubbled AND gates and converse

is also true.

De Morgan'sFirst Theorem

The Boolean equation for Fig. 2.19b is Y=A+B

The Boolean equation for Fig. 2.20b is Y=AB

 The first equation describes a NOR gate, and the second equation a bubbled AND gate. Since

the outputs same inputs, we can equate the right~hand members to get.

 This identity is known as De Morgan'sFirst Theorem. In words, it says the complement of a sum

equals the product of the complements. This can also be proved by comparing the truth tables

shown in Fig. 2.4(b) and NOR gate truth table of Table 2.1. A similar exercise that compares

truth tables of three input NOR gate and three input bubbled AND gate show they are identical

and we can write, (A+ B + C)' = A'B'C'. Note that this equivalence can be extended to gates or

circuits for larger number of inputs, too.

Universality of NOR Gate

 Figure 2.21 shows how all other logic gates can be obtained from NOR gates. To get a NOT

gate we tie inputs of NOR gate together (Fig. 2.21 a) so that there is only one input to the

circuit. If input is 0, then both

44

 The inputs to NOR gate are 0. Following NOR gate truth table (Table 2see.1) we output now is

l. Similarly, if input is 1, both the inputs to NOR gate are 1 that gives output 0. Therefore

output of circuit, shown in Fig. 2.2 la is complement of its input and thus gives NOT operation.

Eye of the Beholder

 Truth tables, logic circuits, and Boolean equations are different ways of looking at the same

thing. Whatever we learn from one viewpoint applies to the other two. If we prove that truth

tables are identical, this immediately tells us the corresponding logic circuits are

interchangeable, and their Boolean equations are equivalent.

NAND Gates

 Originally, the logic circuit was called NOT-AND gate because the output is Y=AB

 Read this as "Y equals NOT A AND B" or "Y equals the complement of A AND B." Because

the circuit is an AND gate followed the by an inverter, only way to get a low output is for both

inputs to be high, as shown in the truth table of Table.

45

NAND-Gate Symbol

 The logic circuit has become so popular that the abbreviated symbol is used for it.

The bubble on the output reminds us of the inversion after the ANDing.

 Also, the words NOT-AND are contracted to NAND. Whenever you see this symbol,

remember that the output is NOT the AND of the inputs. With a NAND gate, all

inputs must be high to get a low output. If any input is low, the output is high.

 The new IEEE rectangular symbol for the NAND gate. The small triangle on the output is

equivalent to the bubble used on the standard symbol. The indicator"&" inside the box means

"the output is high only when all inputs are high."

Bubbled OR Gate

 Inverters on the input lines of an OR gate. The circuit is often drawn in the abbreviated form,

where the bubbles represent inversion. We will refer to the abbreviated drawing of as a bubbled

OR gate.

46

De Morgan'sSecond Theorem

The Boolean equation for Y=AB

The Boolean equation for Y=X +B

 The first equation describes a NAND gate, and the second equation a bubbled OR gate. Since

the outputs are equal for the same inputs, we can equate the right-hand members to get

AB= A +B (2.2)

 This identity is known as De Morgans second theorem. It says the complement of a product

equals the sum of the complements. This can also be proved by comparing the truth tables

shown in Fig. 2.3(b) and NAND gate truth table of Table 2.2.

 A similar exercise that compares truth tables of three input NAND gate and three input bubbled

OR gate show they are identical and we can write, (A.B.C)' =A'+ B' + C'. Note that this

equivalence can be extended to gates or circuits with any number of inputs.

Universality of NANO Gate

 How all other logic gates can be obtained from NAND gates and why it is called a universal

logic gate. Figure 2.27a shows how we tie inputs of NAND gate together (as we had done in

case of NOR gate) to get a NOT gate that has only one input.

 If input is 0, then both the inputs to NAND gate are. 0. Following NAND gate trnth table (Table

2.3) we see output now isl. Similarly, if input is 1, both the inputs to NAND gate are 1 that

gives output 0. Therefore output of circuit, shown in Fig. 2.27a is complement of its input and

thus gives NOT operation.

47

2.3 AND-OR-INVERT GATES

Figure 2.31a shows an AND-OR circuit. Figure 2.31b shows the De Morgan equivalent circuit, a

NAND-NAND network. In either case, the Boolean equation is Y=AB+C

 Since NAND gates are the preferred TTL gates, we would build the circuit of Fig. 2.31 b. As

you know, NAND-NAND circuits like this are important because with them you can build any

desired logic circuit.

TTL Devices

 AND-OR circuits are not easily derived from the basic NAND-gate design. But it is easy to get

an AND-OR-INVERT circuit as in Fig. 2.3 lc. A variety of circuits like this are available as

TTL chips. Because of the inversion, the output has the equation shown below.

 Table 2.6 lists the AND-OR-INVERT gates available in the 7400 series. In this table, 2-wide

means two AND gates across, 4-wide means four AND gates across, and so on.

 For instance, the 7454 is a 2-input 4-wide AND-OR-INVERT gate ; each AND gate has two

inputs (2-input), and there are four AND gates (4-wide). Figure 2.32b shows the 7464; it is a

2-2-3-4-input 4-wide AND-OR-INVERT gate.

48

 Connecting the output of a 2-input 2-wide AND-OR-INVERT gate to an inverter will give us

the same output as an AND-OR circuit.

Expandable AND-OR-INVERT Gates

 The widest AND-OR-INVERT gate available in the 7400 series is 4-wide. What do we do when

we need a 6- or 8-wide circuit? One solution is to use an expandable AND-OR-INVERT gate.

 Figure 2.33 shows the logic symbol for an expandable AND-OR-INVERT gate. There are two

additional inputs, labeled bubble and arrow. Table 2.7 lists the expandable AND-OR-INVERT

gates in the 7400 series.

Expanders

 Connect bubble to bubble and arrow to arrow.

 Visualize the outputs of Fig. 2.34a connected to the arrow and bubble inputs of Fig. 2.33. Figure

2.34b shows the logic circuit. This means that the expander outputs are being ORed with the

49

signals of the AND-OR-INVERT gate. In other words, Fig. 2.34b is equivalent to the AND-OR-

INVERT circuit of Fig. 2.34c.

 We can connect Figure more expanders. It shows two expanders driving the expandable gate.

Now we have a 2-2-4-4-input 4-wide AND-OR-INVERT circuit.

 The 7460 is a dual 4-input expander. The 7450, a dual expandable AND-OR-INVERT gate, is

designed for use with up to four 7460 expanders. This means that we can add two more

expanders in Fig. 2-34d to get a 2-2-4-4-4-4-input 6-wide AND-OR-INVERT circuit.

 POSITIVE AND NEGATIVE LOGIC

 Up to now, we have used a binary O for low voltage and a binary 1 for high voltage. This is

called positive logic.

 People are comfortable with positive logic because it feels right. But there is another code

known as negative logic where binary O stands for high voltage and binary 1 for low voltage.

Even though it seems unnatural, negative logic has many uses.

Positive and Negative Gates

 An OR gate in a positive logic an system becomes AND gate in a negative logic system.. That

is, if either input is high in Fig. 2.35, the output is high.

50

 In a positive logic system, binary O stands for low and binary 1 for high. So, we can convert

Table 2.8 to Table 2.9. Note that Y is a 1 if either A or B is 1. This sounds like an OR gate.

 And it is, because we are using positive logic. To avoid ambiguity, a positive OR gate because

it performs the OR function with positive logic. (Some data sheets describe gates as positive

OR gate, positive AND gate, etc.)

 In a negative logic system, binary 1 stands for low and binary O for high. With this code. Now,

watch what happens. The output Y is a 1 only when both A and B are 1.

 This sounds like an AND gate! And it is, because we are now using negative logic. In other

words, gates are defined by the way they process the binary Os and 1s. If you use binary 1 for

low voltage and binary O for high voltage, then you liave to refer to Fig. 2.35 as a negative

AND gate.

 In a similar way, we can show the truth table of other gates with positive or negative logic. By

analyzing the inputs and outputs in terms of Os and ls, you find these equivalences between the

positive and negative logic:

 These definitions are always valid. If you get confused from time to time, refer to Table 2.11 to

get back to the ultimate meaning of the basic gates.

51

Assertion-level logic

 Why do we even bother with negative logic? The reason is related to the concept of active-low

signals. For instance, the 74150 multiplexer has an active-low input strobe; this input turns on

the chip only when it is low (negative true).

 This is an active-low signal; it causes something to happen when it is low, rather than high. As

another example, the 74154 decoder has 16 output lines; the decoded output signal is low

(negative true).

 In other words, all output lines have a high voltage, except the decoded output line. Besides

TTL devices, microprocessor chips like the 8085 have a lot of active-low input and output

signals.

 Many designers draw their logic circuits with bubbles on all pins with active-low signals and

omit bubbles on all pins with active-high signals. This use of bubbles with active-low signals is

called assertion-level logic that.

 It means you draw chips with the kind of input that causes something to happen, or with the

kind of output that indicates something has happened. If a low input signal turns on a chip, you

show a bubble on that input.

 If a low output is a sign of chip action, you draw a bubble on that output. Once you get used to

assertion-level you may prefer drawing logic circuits this way.

 Sometimes you hear expressions such as "The inputs are asserted" or "What happens when the

inputs are asserted?" An input is asserted when it is active. This means it may be low or high,

depending on whether it is an active-low or active-high input.

 For instance, given a positive AND gate, all inputs must be asserted (high) to get a high output.

As another example, the STROBE input of a TTL multiplexer must be asserted (low) to turn on

52

the multiplexer. In short, you can equate the word assert with activate. You assert, or activate,

the inputs of a gate or device to get something to happen.

52

UNIT -II

COMBINATIONAL LOGIC CIRCUIT

 This chapter discusses Boolean algebra and several simplification techniques. After learning the

laws and theorems of Boolean algebra, you can rearrange Boolean equations to arrive at simpler

logic circuits.

 An alternative method of simplification is based on the Kanaugh map. In this approach, geometric

rather than algebraic techniques are used to simplify logic circuits.

 Quine-McClusky tabular method provides a more systematic reduction technique, which is

preferred when a large number of variables are in consideration.

There are two fundamental approaches in logic design:

1. The sum-of-products method

2. product-of sum method

 The sum-of-products solution results in an AND-OR or NAND-NAND network,

 while the product-of-sums solution results in an OR-AND or NOR-NOR network.

BOOLEAN LAWS & THEOREMS

Basic laws

The commutative laws are

 These two equations indicate that the order of a logical operation is unimportant because the

same answer is arrived at either way. As far as logic circuits are concerned. Figure 3.la shows

how to visualize Eq. (,.1).

 All it amounts to is realizing that the inputs to an OR gate can be transposed without changing

the output. Likewise, Fig. 3.lb is a graphical equivalent for Eq. (3.2).

The associative laws are

53

These laws show that the order of combining variables has no effect on the final answer. In terms of

logic circuits , Eq Fig..3.1c (3.3) while 3.1d represents illustrates Eq. (3.4).

The distribute law is

A(B + C) = AB + AC (3.5)

 This law is easy to remember because it is identical to ordinary algebra.

Figure 3 .1 e shows the corresponding logic equivalence. The distributive

law gives you a hint about the value of Boolean algebra.

 If you can rearrange a Boolean expression, the corresponding logic circuit

may be simpler.

 The first five laws present no difficulties because they are identical to

ordinary algebra. You can use these laws to simplify complicated and

Boolean expressions arrive at simpler logic circuits.

 But before you begin, you have to learn other Boolean laws and theorems.

54

OR Operations

The next four Boolean relations are about OR operations. Here is the first:

A+O=A (3.6)

This says that a variable ORed with O equals the variable. If you think about it,

makes perfect sense. When A is 0,

O+O =O

And when A is 1,

1 + 0 = 1

In either Eq. case, (3.6) is true.

Another Boolean relation is

A+A =A (3.7)

Again, you can see right through this by substituting the two possible values of

A. First when A = 0, Eq.(3.7) gives

O+O =O

which is true. Next, A = I results in

1 + 1 = 1

which is also true because 1 ORed with 1 produces 1. Therefore, any variable ORed

with itself equals the variable.

Another Boolean rule worth knowing is

A+ I= 1 (3.8)

Why is this valid? When A= 0, Eq. (3.8) gives

0 + 1 = 1

which is true. Also. A = 1 gives

1 + 1 = 1

55

 This is correct because the plus sign implies OR addition, not

ordinary addition. In summary,

The next four Boolean relations are about OR operations. Here is the first:

A+O=A (3.6)

This says that a variable ORed with O equals the variable. If you think about it,

makes perfect sense. When A is 0,

O+O =O

And when A is 1,

1 + 0 = 1

In eitherEq. case, (3.6) is true.

Another Boolean relation is

A+A =A (3.7)

Again, you can see right through this by substituting the two possible values of

A. First when A = 0, Eq.

(3.7) gives O+O =O

which is true. Next, A = I results in

1 + 1 = 1

The next four Boolean relations are about OR operations. Here is the first:

A+O=A (3.6)

This says that a variable ORed with O equals the variable. If you think about it,

makes perfect sense. When A is 0,

O+O =O

And when A is 1,

1 + 0 = 1

In eitherEq. case, (3.6) is true.

56

Another Boolean relation is

A+A =A (3.7)

Again, you can see right through this by substituting the two possible values of

A. First when A = 0, Eq.

(3.7) gives

O+O =O

which is true. Next, A = I results in

1 + 1 = 1

This is correct because the plus sign implies OR addition, not ordinary

addition. In summary,

Eq. (3.8) says this,input if oneto an OR gate is high, the output is high no matter

what the other input.

Finally, we have

 A+ A= I (3.9)

You should see this in a flash. If A is 0, A is 1 and the equation is true. Conversely,

if A is 1, A is O and The equation agree still.In short , a variable Red with its

complement always equals 1.

AND Operations

Here are three AND relations

 A· 1 =A (3.10)

 A ·A =A (3.11)

 A ·O =O (3.12)

When A is 0, all the foregoing are true. Likewise, when A is 1, each is true.

57

Therefore, the three equations

are valid and can be used to simplify Boolean equations.

One more AND formula is

A· A =O (3.13)

This one easy to understand because you get either

0 · l = 0

or

I· 0 = 0

for the two possible values of A. In words, Eq. (3.13) indicates that a variable

ANDed with its complement always equals zero.

Double Inversion and De Morgan's Theorems

The double-inversion nde is

A =A (3.14)

which shows that the double complement of a variable equals the variable. Finally,

there are the De Morgan theorems discussed in Chapter 2:

58

A+B =AB (3.15)

AB= A +B (3.16)

You already know how important these are. The first says a NOR gate and a

bubbled AND gate are equivalent. The second says a NAND gate and a bubbled

OR gate are equivalent.

Duality Theorem

The duality theorem is one of those elegant theorems proved in advanced

mathematics. We will state the theorem without proof. Here is what the duality

theorem says. Starting with a Boolean relation, you can derive another Boolean

relation by

 Changing each OR sign to an AND sign

 Changing each AND sign to an OR sign

 Complementing any O or 1 appearing in the expression

For instance, Eq. (3.6) says that

A+O=A

The dual relation is

A· 1 =A

This dual property is obtained by changing the OR sign to an AND sign, and by

complementing the O to get a 1.

The duality theorem is useful because it sometimes produces a new Boolean

relation. For example, Eq. (3 .5) states that

A(B+C) =AB+AC

By changing each OR and AND operation, we get relation the dual

A + BC = (A + B)(A + C) (3.17)

59

 17)

Covering and Combination

 The covering rule, where one term covers the condition of the other term so

that the other term becomes redundant, can be represented in dual form as

A +AB =A (3.18)

A(A +B) =A (3.19)

And

The above can be easily proved from basic laws because,

AB+AB =A

(A + B)(A + B) = A

Eq. (3.20) can easily be proved B + B = 1

Expanding left hand side of Eq. (3.21)

60

above three variable minterms can alterna-tively be represented by mo,

m1, 1112, 1113, 1114, 1115, in an output of

Sum of products Equation 17)

It follows the equations

61

The sum of equations represents

62

logic Circuit

After you have a sum-of-products equation, you can derive the co1Tesponding logic circuit by drawing an AND-OR network, or

what amounts to the same thing, a NAND-NAND network. In Eq. (3.24) each product is the output of a 3-input AND gate.

In Fig. 3.6, the bus has six wires with logic signals A, B, C, and their complements.

Microcomputers are bus-organized, meaning that the input and output signals of the logic circuits

are connected to buses.

63

TRUTH TABLE TO KARNAUGH MAP

 A Karnaugh map is a visual display of the fundamental products needed for a

 sum-of-products solution. For instance here is how to convert Table 3.5 into its

 Karnaugh map.

 Begin by drawing Fig. 3.7a. Note the variables and complements:

the vertical column has A followed by A, and the horizontal row has B followed by

 B. The first output 1 appears for A = 1 and B = 0. The fundamental product for this

input condition is AB.

In terms of decimal equivalence each position of Karnaugh map can be drawn as

shown in Fig. 3.7b. Note that, Table 3.5 can be written using minterms as

Y= L m(2, 3) and Fig. 3.7e represents

Three-Variable Maps

 Here is how to draw a Karnaugh map for Table 3.6 or for logic equation, Y = F(A, B, C) =

64

Lm(2,6,7). First, draw the blank map of Fig. 3.8a. T

 The vertical column is labeled AB, AB, AB, and AB.

 With this order, only one variable changes from complemented to uncomplemented form (

or vice versa) as you move downward.

 In terms of decimal equivalence of each position the Karnaugh map is as shown in Fig.

3.8b. Note how mintenns in the equation gets mapped into corresponding positions in the

map.

65

Four-Variable Maps

 Many digital computers and systems process 4-bit numbers. For instance, some digital chips will

work with nibbles like 0000, 0001, 0010, and so on. For this reason, logic circuits are often

designed to handle four input variables (or their complements). This is why you must know how

to draw a four-variable Kamaugh map.

 Here is an example. Suppose you have a truth table like Table 3.7. Start by drawing a blank map

 like Fig. 3.9a. Notice the order. The vertical column is AB, AB, AB,and AB.The horizontal row

 is CD, CD, CD, and CD. In terms of decimal equivalence of each position the Kamaugh

map is as shownin Fig. 3.9b.

 In Table 3.7, you have output ls appearing for ABCD inputs of 0001, OllO, 0111, and 1110. The

fundamental products for these input conditions are ABCD,ABCD,ABCD, and ABCD. After entering ls

on the Karnaugh map, you have Fig. 3.9c. The final step of filling in Os results in the complete map of

Fig. 3.9d

Entered Variable Map

As the name suggests, in entered variable map one of the input variable is placed inside Kamaugh map. This

is done separately noting how it is related with output. This reduces the Karnaugh map size by one degree,

66

 i.e. a three variable problem that

requires 2
3
 = 8 locations in Karnaugh map will require i

3
-ll = 4 locations in entered variable map. This

technique is particularly useful for mapping problems with more than four input variables.

We illustrate the technique by taking a three variable example, truth table of which is shown in Table 3.6.

Let's choose C as map entered variable and see how output Y varies with C for different combinations of

other two variables A and B.

 Fig. 3.1 Oa shows the relation drawn from Table 3.6. For AB= 00 we find Y = 0 and is not dependent

on C. For AB= 01 we find Y is complement of C thus we can write Y = C'. Similarly, for AB= 10, Y =

0 and for AB= 11, Y= 1.

 The corresponding entered variable map is shown in Fig. 3.10b. If we choose A as map entered

variable we have table shown in Fig. 3 .1 Oc showing relation with Y for various combinations of BC;

the corresponding entered variable map is shown in Fig. 3.10d.

PAIRS, QUADS, AND OCTETS

Look at Fig. 3.lla. The map contains a pair of ls that are horizontally adjacent (next

to each other). The first l represents the product ABCD; the second l stands for the

67

product ABC I5. As we move from the first 1 to the second 1, only one variable

goes from uncomplemented to complemented form (D to D); the other variables

don't change form (A, Band C remain uncomplemented). Whenever this happens,

you can eliminate the variable that changes form.

Proof

The sum-of-products equation corresponding to Fig. 3.1 la is

Y=ABCD + ABCD

which factors into

y = ABC(D + D)

Since D is ORed with its complement, the equation simplifies to

Y=ABC

 In general, a pair of horizontally adjacent Is like those of Fig. 3.11 a

means the sum-of-products equation will have a variable and a

complement that drop out as shown above.

 For easy identification, we will encircle two adjacent Is as shown in Fig. 3

.11 b. Two adjacent 1s such as these are called a pair. In this way, we can

tell at a glance that one variable and its complement will drop out of

68

 The c01Tesponding Boolean equationother.In words, an encircled pair of

ls like those of Fig. 3.1 lb no longer stand for the ORing of two separate

products, ABCD and ABCD. Rather, the encircled pair is visualized as

representing a single reduced product ABC.

 Here is another example. Figure 3.12a shows a pair of 1s that are

vertically adjacent. These ls correspond to ABC D and AB CD. Notice that

only one variable changes from uncomplemented to complemented form

(B to B). Therefore, B and B can be factored and eliminated algebraically,

leaving a reduced product ofACD.

More .Examples

 Whenever you see a pair of horizontally or vertically adjacent 1s, you can

eliminate the variable that appears in both complemented and

uncomplemented form. The remaining variables (or their complements) will

be the only ones appearing in the single-product tenn corresponding to the

pair of ls.

Y= ACD + ABD

The Quad

 A quad is a group of four ls that are horizontally or vertically adjacent. The

ls may be end-to-end, as shown in Fig. 3.13a, or in the form of a square, as

in Fig. 3.13b.

 When you see a quad, always encircle it because it leads to a simpler

product. In fact, a quad eliminates two variables and their complements.

69

 So the octet of Fig. 3.14a means three variables and their complements

drop out of the corresponding product.

 A similar proof applies to any octet. From now on don't bother with the

algebra.

70

 Merely step through the ls of the octet and determine which three

variables change fom1. These are the variables that drop out.

KARNAUGH SIMPLIFICATIONS

 A pair eliminates one variable and its complement, a quad eliminates two

variables and their complements, and an octet eliminates three variables and

their complements.

Because of this, after you draw a karnaugh map,encircle the octets first,the quads,

second and the pair lost. In this way the greatest simplification results

Overlapping Groups

 The fundamental product ABC D is part of the pair and part of the octet. The

simplified equation for the

It is valid to encircle the ls as shown in Fig.

3. l 6b, but then the isolated 1 results in a more com-

plicated equation:

71

Rolling the Map

 Another thing to know about is rolling. Look at Fig. 3.17a on the next page.

The pairs result in this equation

 Visualize picking up the Kamaugh map and rolling it so that the left side touches the right side. If

72

you are visualizing correctly, you will realize the two pairs actually form a quad.

To indicate this, draw half circles around each pair, as shown in Fig. 3: 17b. From this viewpoint, the quad

of Fig. 3.17b has the equation

Why is rolling valid? Because Eq. (3.27) can be algebraically simplified to Eq. (3.28). The proof starts

with Eq. (3.27):

 But this final equation is the one that represents a rolled quad like Fig. 3.17b.

Therefore, ls on the edges of Kanaugh map can be grouped with ls on opposite edges.

Eliminating Redundant Groups

 After you have finished encircling groups, eliminate any redundant group. This is a group whose ls

are already used by other groups. Here is an example. Given Fig. 3.20a, encircle the quad to get Fig.

3.20b. Next, group the remaining 1s into pairs by overlapping (Fig. 3 .20c). In Fig. 3 .20c, all the 1s

of the quad are used by the pairs.

 Because of this, the quad is redundant and can be eliminated to get Fig. 3.20d. As you see, all the ls

are covered by the pairs. Figure 3.20d contains one less product than Fig. 3.20c; therefore, Fig. 3.20d

is the most efficient way to group the ls.

 Conclusion

 Here is a summary of the Karnaugh-map method for simplifying Boolean equations:

73

 Enter a 1 on the Kamaugh map for each fundamental product that produces a I output in the truth table.

Enter Os elsewhere.

 Encircle the octets, quads, and pairs. Remember to roll and overlap to get the largest groups possible.

 If any isolated ls remain, encircle each.

 Eliminate any redundant group.

 Write the Boolean equation by ORing the products corresponding to the encircled groups.

Simplification of Entered Variable Map

 This is similar to Kamaugh map method. Refer to entered variable maps shown in Fig. 3.10. The

groupings for these are as shown in Fig. 3.21a and Fig. 3.21b.

 Note that in Fig. 3.21a C' is grouped with 1 to get a larger group as I can be written as 1 = 1 + C'.

Similarly A is grouped with 1 in Fig. 3.21b.

 This is because one can write 1 = C + C' and C is included in one group while C' in

other. The output of this map can be written as Y =AC+ BC'.

Y=F(A,B,C,D)=I:.m(7,9, 10, 11, 12, 13, 14, 15)

 DON'T-CARE CONDITIONS

 In some digital systems, certain input conditions never occur during normal operation; therefore, the

corresponding output never appears. Since the output never appears, it is indicated by an X in the

truth table.

 For instance, Table 3.8 on the next page shows a truth table where the output is low for all input

entries from 0000 to 1000, high for input entry 1001, and an X for l O10 through 1111. The X is

called a don 't-care condition.

 Whenever you see anX in a truth table, you can let it equal either O or 1, whichever produces a

simpler logic circuit.

74

Figure 3.23a shows the Karnaugh map

 3.8 with don't-cares for all inputs from 1010 to 1111. These don't-cares are like wild cards in poker

because you can let them stand for whatever you like.

 Figure 3.23b shows the most efficient way to encircle the l. Notice two crucial ideas. First,

the 1 is included in aquad, the largest group you can find if you visualize all X's as ls. Second, after

the 1 has been encircled, all X's outside the quad are visualized as Os.

 In this way, the Xs are used to the best possible advantage. As

 already mentioned, you are free to do this because don't-cares coITespond to input conditions

that never ap-pear.

The quad of Fig. 3.23b results in a Boolean equation of

Y=AD

75

 Remember these ideas

about don't-care conditions:

 Given the truth table, draw a Kamaugh map with Os, Is, and don't-cares.

 Encircle the actual ls on the Kamaugh map in the largest groups you can find by treating the don't-

cares as ls.

 After the actual ls have been included in groups, disregard the remaining don't cares by visualizing

them as Os.

PRODUCT-Of-SUMS METHOD

 With the sum-of-products method the design starts with a truth table that summarizes the

desired input-output conditions. The next step is to convert the truth table into an equivalent

sum-of-products equationfinal.

 The step is to draw the AND-OR network or its NAND-NAND equivalent.

 The product-of-sums method is similar. Given a truth table, you identify the fundamental sums

needed for a logic design. Then by ANDing these sums, you get the product-of-sums equation

corresponding to the truth table.

 But there are some differences between the two approaches. With the sum-of-products

method, the fundamental product produces an output l for the corresponding input condition.

 But with the product-of-sums method, the fundamental sum produces an output O for the

corresponding input condition. The best way to understand this distinction is with an example.

 Suppose you are given a truth table like Table 3.9 and you want to get the product-of-sums

equation. What you have to do is locate each output O in the truth table and write down its

fundamental sum. In Table 3.9, the

 first output O appears for A= 0, B = 0, and C = 0. The fundamental sum for these inputs is A+

B + C. Why?

76

This Because produces an output zero for the corresponding input condition:

Y=A+B+C=O+O+O=O

logic Circuit

 Each sum represents the output of a 3-input OR gate. Furthem10re, the logical product Y is the

output of a 3-input AND gate. Therefore, you can draw the logic circuit as shown in Fig. 3.26.

 A 3-input OR gate is not available as a TTL chip. So, the circuit of Fig. 3.26 is not practical. With

De Morgan's first theorem, however, you can replace the OR-AND circuit of Fig. 3.26 by the

NOR-NOR circuit ofFig. 3.27.

77

Conversion between SOP and POS

 We have seen that SOP representation is obtained by considering ones in a truth table while POS

comes considering zeros. In SOP, each one at output gives one AND tem1 which is finally ORed.

 In POS, each zero gives onewhichORterm is finally ANDed. Thus SOP and POS occupy

complementary locations in a tmth table and one representation can be obtained from the other by

identifying complementary locations,

 changing mintenn to maxtenn or reverse, and finally changing summation by product or reverse.

78

PRODUCT-Of-SUMS SIMPLIFICATION

 After you write a product-of-sums equation, you can simplify it with Boolean algebra.

Alternatively, you may prefer simplification based on the Kamaugh map. There are several ways

of using the Kanaugh map.

 One can use a similar technique as followed in SOP representation but by forming largest group of

zeros and then replacing each group by a sum term. The variable going in the formation of sum

term is inverted if it remains constant with a value 1 in the group and it is not inverted if that value

is 0. Finally, all the sum terms are ANDed to get simplest POS fonn. We illustrate this in

Examples 3.11 and 3.12this.In section we also present an interesting alternative to above

technique.

Sum-of-Products Circuit

Suppose the design starts with a truth table like Table 3.10. The first thing to dotheis to draw

Kanaugh map in the usual way to get Fig. 3.28a. The encircled groups allow us to write a sum-of-

products equation:

Figure 3.28b shows the corresponding NAND-NAND circuit.

Complementary Circuit

 To get a product-of-sums circuit, begin by comple-menting each O and 1 on the Kamaugh map of

Fig. 3.28a. This results in the complemented map shown in Fig. 3.28c. The encircled ls allow us to

write the following sum-of-products equation:

 Finding the NOR-NOR Circuit

 What we want to do next is to get the product-of-sums solution, the NOR-NOR circuit that

produces the

79

80

Duality

 An earlier section introduced the duality theorem of Boolean algebra. Now we are ready to apply

this theo-rem to logic circuits. Given a logic circuit, we can find its dual circuit as follows:

 Change each AND gate to an OR gate, change each OR gate to an AND gate, and complement all

input-output signals. An equivalent statement of duality is this: Change each NAND gate to a

NOR gate, change each NOR gate to a NAND gate, and complement all input-output signals.

Here is a summary of the key ideas in the preceding discussion:

 Convert the truth table into a Karnaugh map. After grouping the ls, write the sum-of-products

equation and draw the NAND-NAND circuit. This is the sum-of-products solution for Y.

 Complement the Karnaugh map. Group the 1s, write the sum-of-products equation, and draw

the NAND-NAND circuit for Y. This is the complementary NAND-NAND circuit.

 Convert the complementary NAND-NAND circuit to a dual NOR-NOR circuit by changing all

NAND gates to NOR gates and complementing all signals. What remains is the product-of-

sums solution for Y.

 Compare the NAND-NAND circuit (Step 1) with the NOR-NOR circuit (Step 3). You can use

whichever circuit you prefer, usually the one with fewer gates.

Data-Processing Circuits

 This chapter is about logic circuits that process binary data. We begin with a discussion of

multiplexers, which are circuits that can select one of many inputs.

 Then you will see how multiplexers are used as a design alternative to the sum-of-products

solution. This will be followed by an examination of a variety of circuits, such as demultiplexers,

decoders, encoders, exclusive-OR gates, parity checkers, magnitude comparator, and read-only

memories.

 The chapter ends with a discussion of programmable logic arraysrelevantand HDL concepts.

81

MULTIPLEXERS

 Multiplex means many into one. A multiplexer is a circuit with many inputs but only one output.

By applying control signals, we can steer any input to the output. Thus it is also called a data

selector and control inputs are termed select inputs.

 Figure 4.la illustrates the general idea. The circuit has n input signals, m control signals and 1

output signal. Note that, m control signals can select at the most 2
111

 input signals thus n ~ 2
111

 •

 The circuit diagram of a 4-to- l multiplexer is shown in Fig. 4.1 c and its truth table in Fig. 4.1 b.

Depending on control inputs A, Bone of the four inputs Do to D3 is steered to output Y.

 Let us write the logic equation of this circuit. Clearly, it will give a SOP representation, each AND

gate

16-to-1 Multiplexer

Figure shows a 16-to-l multiplexer. The input bits are labeled Do to D 15 . Only one of these is

transmitted to the output. Which one depends on the value of ABCD, the control input. For instance,

when ABCD=OOOO

the upper AND gate is enabled while all other AND gates are disabled. Therefore, data bit Do is

transmitted to the output, giving Y=Do

If Do is low, Y is low; if Do is high, Y is high.is The point that Y depends only on the

value of Do. lf the control nibble (group of 4-bits) is changed to

82

ABCD=

1111

all

gates

are

disabled except the bottom AND gate. In this case, D 15 is the only bit transmitted to the output,

and Y=D1s

As you can see, the control nibble determines which of the input data bits is transmitted to the

output. Thus we can write output as

The 74150

 Try to visualize the 16-input OR gate of Fig. 4.2 changed to a NOR gate. What effect does

this have on the operation of the circuit? Almost none.

 All that happens is we get the complement of the selected data bit rather than the data bit

itself. For instance, when ABCD = 0111,is the output

Y= D7

 This is the Boolean equation for a typical transistor-transistor logic (TTL) multiplexer because it

has an

 inverter on the output that produces the complement of the selected data bit.

 The 74150 is a 16-to-l TTL multiplexer with the pin diagram shown in Fig. 4.3. Pins 1 to 8 and 16

to 23 are

 for the input data bits D0 to D 15 . Pins 11, 13, 14, and 15 are for the control bits ABCD. Pin 10 is

the output;

 And it equals the complement of the selected data bit. Pin 9 is for the STROBE,

an input signal that disables or

 Enables multiplexer. As shown in Table 4.1, a low strobe enables the multiplexer,

so that output Yequals

.

83

. Multiplexer logic

 Digital design usually begins with a truth table. The problem is to come up with a logic

circuit that has the same truth table. In Chapter 3, you saw two standard methods for

implementing a truth table: the sum-of-products and the product-of-sums solutions.

 The third method is the multiplexer solution. For example, to use a 74150 to implement

Table 4.2. Complement each Youtput to get the corresponding data input:

Bubbles on Signal lines

Data sheets often show inversion bubbles on some of the signal lines. For instance, notice the

bubble on pin 10, the output of Fig. 4.4.

This bubble is a reminder that the output is the complement of the selected data bit.

84

Universal logic Circuit

 Multiplexer sometimes is called universal logic circuit because a 2n-to-l multiplexer can be used

as a design solution for any n variable truth table. Thisseenwe have for realization of a 4 variable

truth table by 16-to-l multiplexer in Fig. 4.5. Here, we show how this truth table can be realized

using an 8-to-l multiplexer.

 Let's consider A,B and C variables to be fed as select inputs. The fourth variable D then has to be

present as data input. The method is shown in Fig. 4.5a. The first three rows map the truth table in

a different way, similar to the procedure we adopted in entered variable map (Section 3.3). We

write all the combinations of3 select inputs in first row along different columns. Now

corresponding to each value of 4th variable D, truth table

85

Nibble Multiplexers

Sometimes we want to select one of two input nibbles. In this case, we can use a nibble

multiplexer like the one shown in Fig. 4.6. The input nibble on the left is A3A2A1Ao and the one on

the right is B3B2B1B0 .

 The control signal labeled SELECT determines which input nibble is transmitted to the

output. When SELECT is low, the four NAND gates on the left are activated; therefore,

Y3 Y2Y1 Yo= A3A2A1Ao

 When SELECT is high, the four NAND gates on the right are active, and

 Y3 Y2Y1 Yo =B3B2B1Bo

Figure 4.7a on the next page shows the pinout diagram of a 74157, a nibble multiplexer with a

SELECT described inputas. previously When SELECT is low, the left nibble is steered to the

output.

 When SELECT ,

86

 DEMULTIPLEXERS

 Demultiplex means one into many. A demultiplexer is awithlogic circuit one input and many

outputs. By applying control signals, we can steer the input signal to one of the output lines.

Figure 4.9a illustrates the general idea.

 The circuit has 1 input signal, m control or select signals and n output signals where n :::; 2
111

 •

Figure 4.9b shows the circuit diagram of a 1-to-2 demultiplexer. Note the similarity of multiplexer

87

and demultiplexer circuits in generating different combinations of control variables through a bank

ofAND gates.

 Figure 4.9c lists some of the commercially available demultiplexer I Cs. Note that a

demultiplexer IC can also behave like a decoder. More about this will be discussed in next section.

 1-to-16 Demultiplexer

 Figure 4.10 shows a l-to-16 demultiplexer. The input bit is labeled D. This data bit (D) is

transmitted to the data bit of the output lines. But which one? Again, this depends on the value of

ABCD, the control input. When ABCD = 0000, the upper AND gate is enabled while all other

AND gates are disabled.

 Therefore, data bit Dis transmitted only to the Yo output, giving Yo= D. If Dis low, Yo is low. IfD

is high, Yo is high. As you can see, the value of Y0 depends on the value of D. All other outputs

are in the low state. If the control nibble is changed to ABCD = 1111, all gates are disabled except

the bottom AND gate. Then, D is transmitted only to the Y1s output, and Y1s = D.

The 74154

 The 74154 is a l-to-16demultiplexer with the pin diagram ofFig. 4.11. Pin 18 is for

the input DATAD, and pins 20 to 23 are for the control bits ABCD.

Pins l to 11 and 13 to 17 are for the output bits Yo to Y15 • Pin 19 is for the STROBE,

again an active-low input. Finally, pin 24 is for Vcc and pin 12 for ground.

88

shows the truth table of a 74154. First, notice the STROBE input. It must be low to activate the 74154.

When the STROBE is low, the control inputABCD determines which output lines are low when the

DATA input is low.

When the DATA input is high, all output lines are high. And, when the STROBE is high, all output

lines are high.

89

BCD-TO-DECIMAL DECODERS

BCD is an abbreviation for binary-coded decimal. The BCD code expresses each digit in a decimal

number by its nibble equivalent. For instance, decimal number 429 is changed to its BCD form as

follows:

To anyone using the BCD code, 0100 0010 1001 is equivalent to 429.

As another example, here is how to convert the decimal number 8963 to its BCD form:

Again, we have changed each decimal digit to its binary equivalent.

90

Some early computers processed BCD numbers. This means that the decimal numbers were changed

into BCD numbers, which the computer then added, subtracted, etc. The final answer was converted from

BCD back to decimal numbers.

One final point should be considered. Notice that BCD digits are from 0000 to 1001. All combinations

above this (1010 to 1111) cannot exist in the BCD code because the digit highest decimal being coded

is 9.

BCD-to-Decimal Decoder

 The circuit of Fig. 4.18 is called a l-of-10 decoder because only 1 of the 10 output lines is high.

For instance,

 when ABCD is 0011, only the Y3 AND gate has all high inputs; therefore, only the Y output is

high, IfABCD changes to 1000, only the Y AND gate hasinputs;allhigh as a result, only the Y output goes

high. 8 8

 BCD-to-decimal converter.

 The 7445

 Typically, you would not build a decoder with separate inverters and AND gates, as shown

in Fig. 4.18. Instead, you would use a TTL IC like the 7445 ofFig. 4.19.

 Pin 16 connects to the supply voltage Vcc and pin 8 is grounded. Pins 12 to 15 are for the

BCD input (ABCD), while pins I to 7 and 9 to 11 are for the outputs.

 This IC is functionally equivalent to the one in Fig. 4.18, except that the active output line

is in the low state. All other output lines are in the high state, as shown in Table 4.4.

 Notice that an invalid BCD input (1010 to 1111) forces all output lines into the high state.

 ENCODERS

 An encoder converts an active input signal into a coded output signal. Figure 4.24

illustrates the general idea. There are n input lines, only one of which is active.

 Internal logic within the encoder converts this active input to a coded binary output with

m bits.

91

Decimal-to-BCD Encoder

92

The 74147

 Figure 4.26a is the pinout diagram for a 74147, a decimal-to-BCD encoder. The decimal input, X 1

to X9, connect to pins 1 to 5, and 10 to 13. The BCD output comes from pins 14, 6, 7, and 9. Pin

16 is for the supply voltage, and pin 8 is grounded. The label NC on pin 15 means no connection

(the pin is not used).

 Figure 4.26b shows how to draw a 74147 on a schematic diagram. As usual, the bubbles indicate

active-low inputs and outputs.

 Table 4.5 is the truth table ofa 74147. Notice the following. When allXinputs are high, all outputs

are high. When X 9 is low, the ABCD output is LHHL (equivalent to 9 if you complement the

bits). When X8 is the only low input, ABCD is LHHH

93

EXCLUSIVE-OR GATES

 The exclusive-OR gate has a high output only when an odd number of inputs is high. Figure

4.29 shows how to build an exclusive-OR gate.

 The upper AND gate forms the product AB, while the lower one produces AB. There- fore, the

output of the OR gate is

Table 4.6 shows the truth table for a 2-input exclusive-OR gate. The output is high when A or Bis high,

but not when both high are. This is why the circuit is known as an exclusive-OR gate. In other words,

the output is a 1 only when the inputs are different

Four Inputs

 Figure 4.3 la shows a pair of exclusive-OR gates driving an exclusive-OR gate. If all inputs (A

to D) are low, the input gates have low outputs, so the fi-nal gate has a low output. If A to C are

low and D is high, the upper gate has a low output, the lower gate has a high output, and the

output gate has a high output.

94

 If we continue analyzing the circuit operation for the remaining input possibilities, we can

work out Table 4. 7. Here is an important prope1ty of this truth table. Each ABCD input with

an odd number of ls produces an output I.

 For instance, the first ABCD entry to produce an output 1 is 000 l; it has an odd

95

Any Number of Inputs

 Using 2-input exclusive-OR gates as building blocks, you can produce exclusive-OR gates with

any number of inputs. For example, Fig. 4.32a shows a pair of exclusive-OR gates. There are 3

inputs and l output.

 If you analyze this circuit, you will find it produces an output 1 only when the 3-bit input has an

odd number of ls. Figure 4.32b shows an abbreviated symbol for a 3-input exclusive-OR gate.

PARITY GENERATORS AND CHECKERS

 Even parity means an n-bit input has an even number of ls. For instance, 110011 has

even parity because it contains four ls.

 Odd parity means an n-bit input has an odd number of ls. For example, 110001 has

odd parity because it contains three ls.

Parity Checker

 Exclusive-OR gates are ideal for checking the parity of a binary number

because they produce an output 1 when the input has an odd number of 1s.

Therefore, an even-parity in-put to an exclusive-OR gate produces a low

output, while an odd-parity input produces a high output.

96

 For instance, Fig. 4.33 shows a 16-input exclusive-OR gate. A 16-bit number

drives the input. The exclusive- OR gate produces an output 1 because the

input has odd parity (an odd number of ls). If the 16-bit input

changes to another.

 Parity Generation

 In a computer, a binary number may represent an instruction that tells the computer to add,

subtract, and so on; or the binary number may represent data to be processed like a number, letter,

etc.

 In either case, you sometimes will see an extra bit added to the original binary number to produce

a new binary number with even or odd parity.

and the final 9-bit output is 1 01000001. Notice that this has odd parity.

 Suppose we change the 8-bit input to O110 0001. Now, it has odd parity. In this

case, the exclusive-OR gate produces an output 1. But the inve1ter produces a 0, so that the final 9-bit

output is O O110 0001. Again, the final output has odd parity.

97

Application

 What is the practical application of parity generation and checking? Because of transients, noise,

and other disturbances, 1-bit errors sometimes occur when binary data is transmitted over

telephon,' lines or other communication paths. One way to check for errors is to use an odd-parity

generator at the iansmitting end and an odd-parity checker at the receiving end. If no 1-bit errors

occur in transmission, the received data will have odd parity. But if one of the transmitted bits is

changed by noise or any other disturbance, the received data will have even parity.

For instance, suppose we want to send 0100 0011. With an odd-parity generator like Fig. 4.34, the data

to be transmitted will be O O100 0011.

 This data can be sent over telephone lines to some destination. If no errors occur in transmission, the

odd-parity checker at the receiving end will produce a high output, meaning the received numqer has odd

parity. On the other hand, if a 1-bit error does creep into the transmitted data, the odd-parity checker will

have a low output, indicating the received data is invalid.

One final point should be made. Errors are rare to begin with. When they do occur, they are usually 1-

bite1rnrs. This is why the method describedalmosthere catches all of the errors that occur in

transmitted data.

98

The 74180

 Figure 4.35 shows the pinout diagram for a 74180, which is a TTL parity generator-checker. The

input data bits are X7 to X0; these bits may have even or odd parity. The even input (pin 3) and the

odd input (pin 4) control the operation of the chip as shown in Table 4.8. The symbol I stands for

summation

 . In the left input column of Table 4.8, I of H's (highs) refers to the parity of the input dataX7 toX0.

Depending on how you set up the values of the even and odd inputs, the I even and I odd outputs

may be low or high.

 For instance, suppose even input is high and odd input is low. When the input data has even parity

(the

 first entry of Table 4.8), the I even output is high and the I odd output is low. Whendatathe input

has odd parity, the I even output is low and the 1: odd output is high.

 generator,the delete inverter.)

99

1

UNIT –III

NUMBER SYSTEM & CODE

 BINARY NUMBER SYSTEM

 The binary number system is a system that uses only the digits 0 and 1 as codes. All other digits (2 to

9) are thrown away.

 To represent decimal numbers and letters of the alphabet with the binary code, you have to use

different strings of binary digits number for each or letter. The idea is similar to the Morse code, where

strings of dots and dashes are used to code all numbers and letters. What follows is a discussion of

decimal and binary counting.

 Decimal Odometer

 To understand how to count with binary numbers, it helps to review how an odometer (miles indicator

of a car) counts with decimal numbers.

 When a car is new, its odometer starts with00000 After 1 km the reading becomes 00001

 Successive kms produce 00002, 00003, and so on, up to 00009

 A familiar thing happens at the end of the tenth km. When the units wheel turns from 9 back to 0, a tab

on this wheel forces the tens wheel to advance by 1. This is why the numbers change to00010

Reset-and-Carry

 The units wheel has reset to 0 and sent a carry to the tens wheel. Let's call this familiar action reset and

carry The other wheels of an odometer also reset and carry. For instance, after 999 kms the odometer

shows 00999

 What does the next km do? The units wheel resets and carries, the tens wheel resets and carries, the

hundreds wheel resets and carries, and the thousands wheel advances by 1, to get 01000

 Binary Odometer

 Visualize a binary odometer as a device whose wheels have only two digits, 0 and 1. When each wheel

turns, it displays 0, then 1, then back to 0, and the cycle repeats. A four-digit binary odometer starts with

0000 (zero)

 After 1 mile, it indicates

0001 (one)

 The next mile forces the units wheel to reset and carry, so the numbers change to

0010 (two)

100

 The third mile results in0011 (three)

 After 4 miles, the units wheel resets and carries, the second wheel resets d carries, and third the

wheel advances by 1:

100 (four)

 Table 5.1 shows all the binary numbers from OOOO to 1111, equivalent to decimal O to 15

The word bit is the abbreviation for binary digit. Table 5.1 is a list of 4-bit number from 0000 to 1111.

When a binary number has 4 bits, it is sometimes called a nibble. Table 5.1 shows 16 nibbles (0000 to

llll).

 A binary number with is 8 bits known as a byte; this has become the basic unit of data used in

 computers.For now memorise these definitions:

bit =X

nibble = XXXX

 byte = XXXXXXXX

 where the X may be a 0 or a 1.

 BINARY-TO-DECIMAL CONVERSION

 Positional Notation and Weights

 We can express any decimal integer (a whole number) in units, tens, hundreds, thousands, and so on.

For instance, decimal number 2945 may be written as

 2945 = 2000 + 900 + 40 + 5

 In powers of 10, this becomes

2945 = 2(10
3
) + 9(10

2
) + 4(10

1
) + 5(10°)

101

 The decimal number system is an example of positional notation, each digit position has a weight or

value. With decimal numbers, the weights are units, tens, hundreds, thousands, so and on. The sum of

all the digits multiplied by their weights gives the total amount being represented.

 In the foregoing example, the 2 is multiplied by a weight of 1000, the 9 by a weight of 100, the 4 by a

weight of 10, and the 5 by weight of 1; the total is

 2000 + 900 + 40 + 5 = 2945

 Binary Weights

 For instance, binary number 111 becomes

 111=100+10+1 (5.1)

 In decimal numbers, this may be rewritten as

 7=4+2+1 (5.2)

 Writing a binary number as shown in Eq. (5 .1) is the same as splitting its decimal equivalent into

units, 2s, and 4s as indicated by Eq. (5.2).

 In other words, each digit position in a binary number has a weight. The least

 significant digit (the one on the right) has a weight of 1.

 The second position from the right has a weight of 2; the next, 4; and then 8, 16, 32, and so

forth. These weights are in ascending powers of 2; therefore, we can write the foregoing equation

as

7= 1(2
2
)+ 1(2

1
)+ 1(2°)

102

 Whenever you look at a binary number, you can find its decimal equivalent as follows:

1. When there is a 1 in a digit position, add the weight of that position.

2. When there is a 0 in a digit position, disregard the weight

of that position.

 For example, binary number 101 has a decimal equivalent of

 4+0+1=5

 As another example, binary number 1101 is equivalent to

8+4+0+1=13

 Still another example is 1100 l, which is equivalent to

16 + 8 + 0 + 0 + 1 = 25

 Streamlined Method

 We can streamline binary-byte-decimal conversion the following procedure:

1. Write the binary number.

2. Directly under the binary number write 1, 2, 4, 8, 16 ... , working from right to left.

3. If a zero appears in a digit position, cross out the decimal weight for that position.

4. Add the remaining weights to obtain the decimal equivalent.

 As an example of this approach, let us convert binary 101 to its decimal equivalent:

 STEP 1 101

 STEP 2 4 2 1

 STEP 3 4 2 1

103

 STEP4 4 + 1 = 5

 As another example, notice how quickly 10101 is converted to its decimal

equivalent:

1 0 1 0 1

16 8 4 2 1 21

 Fractions

 For instance, what is the decimal equivalent of0.101? In this case, the weights of digit positions to

the right of the binary point are given by ½,1/4,1/8, 1/16 and so on. In powers of 2, the weights

are

 etc.

 or in decimal form:

 0.5 0.25 0.125 0.0625 etc.

 Here is an example. Binary fraction 0.101 has a decimal equivalent of 0.1 0

 10.5 + 0+ 0.125 = 0625

 Another example, the decimal equivalent of 0.1101 is

0.1 1 0 1 0.5 + 0.25 + 0 + 0.0625 = 0.8125

 Mixed Numbers

 For mixed numbers (numbers with an integer and a fractional part), handle each part according to

the rules just developed.

 The weights for a mixed number are

104

 For future reference, Table 5.3 lists powers of 2 and their decimal Equivalents and the numbers

of K and M. The abbreviation K stands for 1024.Therefore, lK means 1024. 2K stands for 2048,

4K represents 4096, and so on. The abbreviation M stands for 1,048,576, which is equivalent to

1024K (1024 x 1024 = 1,048,576).

 A memory chip that stores 4096 bits is called a "4K memory." A digital device might have a

memory capacity of 4,194,304 bytes. This would be referred to as a "4-megabyte (Mb) memory."

 DECIMAL-TO-BINARY CONVERSION

 One way to convert a decimal number into its binary equivalent is to reverse the process described in

the preceding section. For instance, suppose that you want to convert decimal 9 into the corresponding

binary number.

 All you need to do is express 9 as a sum of powers of 2, and then write 1s and Os in the appropriate

digit positions:

 9=8+0+0+1 1001

 As another example:

 25 = 16 + 8 + 0 + 0 + 111001

 Double Dabble

 A popular way to convert decimal numbers to binary numbers is the double-dabble method.

 In the double-dabble method you progressively divide the decimal number by 2, writing down the

remainder after each division. The remainders, taken in reverse order, form the binary number.

 The best way to understand the method is to go through an example step by is step. Here how to

convert decimal 13 to its binary equivalent

105

 In this final division 2 does not divide into 1; thus, the quotient is 0 with a

remainder of 1.

 Whenever you arrive at a quotient of O with a remainder of 1, the conversion is finished. The

remainders when read downward give the binary equivalent. In this example, binary 1101 is

equivalent to decimal 13.

Fractions

 As far as fractions are concerned, you multiply by 2 and record a carry in the integer position. The

carries read downward are the binary fraction. As an example, 0.85 converts to binary as follows:

106

 Reading the carries downward gives binary fraction 0.110110. In this case, we stopped the conversion

process after getting six binary digits.

 Because of this, the answer is an approximation. If more accuracy is needed, continue multiplying by

2 until you have as many digits as necessary for your application.

 Useful Equivalents

 The table has an important property that you should be aware of. Whenever a binary number has all

1s (consists of only 1s), you can find its decimal equivalent with this formula:

 where n is the number of bits. For instance, 1111 has 4 bits; therefore, its decimal equivalent is

 As another example, 1111 1111 has 8 bits, so

Decimal= 2
8
 - 1 =256-1 = 255

 BCD-8421 and BCD-2421 Code

 Binary Coded Decimal (BCD) refers to representation of digits 0-9 in decimal system by 4-bit

unsigned binary numbers.

107

 The usual method is to follow 8421 encoding which employs conventional route of weight

placements like 8 representing the weight of the 4th. place (as = 8), 4, i.e. of the 3rd place,

2, i.e. of the 2nd place and 1, i.e. of the 1st place.

 The 2421 code is similar to 8421 code except for the fact that the weight

assigned to 4th place is 2 and not 8. The decimal numbers 0-9 in these two codes then can be represented as

shown in Table 5.5.

 As an example,number decimal 29 in BCD-8421 is written as 00101001 (0010 representing 2

and 1001 representing 9) while in BCD-2421, it is written as 00101111 (0010 representing 2

and 1111 representing 9).

5.4 OCTAL NUMBERS

 The base of a number system equals the number of digits it uses. The decimal number system

has a base of 10 because it uses the digits O to 9.

 The binary number system has a base of 2 because it uses only the digit

 0 and 1. The octal number system has a base of 8.

 Although we can use any eight digits, it is customary to use the first eight decimal digits:

 0, 1,2,3,4,5,6, 7

 (There is no 8 or 9 in the octal number code.) These digits, 0 through 7, have exactly the same

physical meaning as decimal symbols; that is, 2 stands for.., 5 symbolizes, and so on.

Octal Odometer

108

 The easiest way to learn how to count in octal numbers is to use an octal odometer. This hypothetical

device is similar to the odometer of a car, except that each display wheel contains only eight digits,

numbered 0 to 7.

 When a wheel turns from 7 back to 0, it sends a carry to the next-higher wheel.

Initially, an octal odometer shows

0000 (zero)

 The next 7 kms produces readings of

0001 (one)

0002 (two)

0003 (three)

0004 (four)

0005 (five)

0006 (six)

0007 (seven)

 At this point, the least-significant wheel has run out of digits. Therefore, the next km forces a reset and

carry to obtain

0010 (eight)

 The next 7 kms produces these readings: 0011, 0012, 0013, 0014, 0015, 0016, and 0017. Once again,

the least-significant wheel has run out of digits. So the next km results in a reset and carry:

0020 (sixteen)

 Subsequent kms produce readings of 0021, 0022, 0023, 0024, 0025, 0026, 0027, 0030, 0031, and so

on.

109

Octal-to-Decimal Conversion

 How do we convert octal numbers to decimal numbers? In the octal number system each digit position

corresponds to a power of 8 as follows:

 Therefore, to convert from octal to decimal, multiply each octal digit by its weight and add the

resulting products. Note that s
0
 = I.

 For instance, octal 23 converts to decimal like this:

 2(8
1
) + 3(8°) = 16 + 3 = 19

 Here is another example. Octal 257 converts to

 2(8
1
)+5(8

1
)+7(8°)= 128+40+7= 175

Decimal-to-Octal Conversion

 How do you convert direction, in the opposite that is, from decimal to octal? Octal dabble, a method

similar to double dabble, is used with octal numbers. Instead of dividing by 2 (the base of binary

numbers), you divide by 8 (the base of octal numbers) writing down the remainders after each

division.

 The remainders in reverse order form the octal number. As an example, convert decimal 17 5 as

follows:

110

Thus decimal 175 is equal to octal 257.

Fractions

 With decimal fractions, multiply instead of divide, writing the carry into the integer position. An

example of this is to convert decimal 0.23 into an octal fraction.

 The carries read downward give the octal fraction 0.165. We terminated after three places; for more

accuracy, we would continue multiplying to obtain more octal digits.

Octal-to-Binary Conversion

 Because 8 (the base of octal numbers) is the third power of 2 (the base of binary numbers), you can

convert from octal to binary as follows: change each octal digit to its binary equivalent.

 For instance, change octal 23 its to binary equivalent as follows:

 Here, each octal digit converts to its binary equivalent (2 becomes 010, and 3 becomes 011). The

binary equivalent of octal 23 is 010 011, or 010011. Often, a space is left between groups of 3

bits; this makes it easier to read the binary number.

111

 Binary-to-Octal Conversion

 Conversion from binary to octal is a reversal of the foregoing procedures. Simply remember to

group the bits in threes, starting at the binary point; then convert each group of three to its octal

equivalent (Os are added at each end, if necessary). For instance, binary number 1011.01101

converts as follows:

 Start at the binary point and, working both ways, separate the bits into groups of three.

 When necessary, as in this case, add 0s to complete the outside groups. Then convert each group

of three into its binary equivalent. Therefore:

 1011.01101 = 13.32

 The simplicity of converting octal to binary and vice versa has many advantages in digital work.

 For one thing, getting information into and out of a digital system requires less circuitry because it

is easier to read and print out octal numbers than binary numbers.

 Another advantage is that large decimal numbers are more easily converted to binary if first

converted to octal and then to binary.

5.5 HEXADECIMAL NUMBERS

 Hexadecimal numbers are used extensively in microprocessor work. To begin with, they are much

shorter than binary numbers. This makes them easy to write and remember. Furthermore, you can

mentally convert them to binary whenever necessary.

 The hexadecimal number system has a base of 16. Although any 16 digits may be used, everyone

uses 0 to 9 and A to F as shown in Table 5.6. In other words, after reaching 9 in the hexadecimal

system, you continue counting as follows:

A,B,C,D,E,F

112

Hexadecimal Odometer

 The easiest way to learn how to count in hexadecimal numbers is to use a hexadecimal odometer.

 This hypothetical device is similar to the odometer of a car, except that each display wheel has 16

digits, numbered 0 to F. When a wheel turns from F back to 0, it sends a carry to the wheel next.

Higher Initially, a hexadecimal odometer shows

 At this point, the least-significant wheel has run out of digits. Therefore, the next km forces a reset

and carry to obtain

 0010 (sixteen)

 The next 15 kms produces these readings: 0011, 0012, 0013, 0014, 0015, 0016, 0017, 0018, 0019,

001A,00IB, 00lC, 001D, 00lE, and 00lF. Once again, the least significant wheel has run out of

digits. So, the nextkm results in reset a and carry:

 0020 (thirty-two)

 Subsequent kms produce readings of 0021,0022,0023,0024,0025,0026,0027,0028,0029,002A,002B,

002C, 002D, 002E, and 002F.

 For instance, here are three more examples:

113

Numbe

r

Next

number

835C 835D

A47F A480

BFFF cooo

Hexadecimal-to-Binary Conversion

 To convert a hexadecimal number to a binary number, convert each hexadecimal digit to its 4-bit

equivalent using the code given in Table 5.5. For instance, here's how to 9AF converts binary:

Binary-to-Hexadecimal Conversion

 To convert in the opposite direction, from binary to hexadecimal, again use the code from Table 5.5.

Here are two examples. Binary 1000 1100 converts as follows:

 In both these conversions, we start with a binary number and wind up with the equivalent

hexadecimal number.

Hexadecimal-to-Decimal Conversion

 How do we convert hexadecimal numbers to decimal numbers? In the hexadecimal number system

each digit position corresponds to a power of 16. The weights of the digit positions in a hexadecimal

number are as follows

114

 Therefore, to convert from hexadecimal to decimal, multiply each hexadecimal digit by its weight and

add the resulting products. Note that 16° = 1.

 Here's an example. Hexadecimal F8E6to.39 converts decimal as follows:

F8E6 = F(16
3
) + 8(16

2
) + E(16

1
) + 6(16°) + 3(16-

1
) + 9(16-

2
)

= 15(16
3
) + 8(16

2
) + 14(16

1
) + 6(16°) + 3(16-

1
) + 9(16-

2
)

= 61,440 + 2048 + 224 + 6 + 0.1875 + 0.0352

= 63,718.2227

Decimal-to-Hexadecimal Conversion

 One way to convert from decimal to hexadecimal is the hex dabble. The idea to is divide successively

by 16, writing down the remainders. Here's a sample of how it's done. To convert decimal 2479 to

hexadecimal, the first division is

 Therefore, hexadecimal 9AF is equivalent to decimal 2479.

 Notice how similar hex dabble is to double dabble. Notice also that remainders greater than 9 have to

be changed to hexadecimal digits (10 becomes A, 15 becomes F, etc.).

Using Appendix 1 *

 A typical microcomputer can store up to 65,535 bytes. The decimal addresses of these bytes are from

0 to 65,535. The equivalent binary addresses are from

0000 0000 0000 0000

115

111

1 1111 1111 1111

 The first 8 bits are called the upper byte, and the second 8 bits are the lower byte.

 If you have to do many conversions between binary, hexadecimal, and decimal, learn to use Appendix

1. It has four headings: binary, hexadecimal, upper byte, and lower byte.

 For any decimal number between O and 255, you would use the binary, hexadecimal, and lower byte

columns. Here is the recommended way to use Appendix 1. Suppose you want to convert binary 0001

1000 to its decimal equivalent. First, mentally convert to hexadecimal:

 Next, look up hexadecimal 18 in Appendix 1 and read the corresponding decimal value from the

lower-byte column:

 The reason for mentally converting from binary to hexadecimal is that you can more easily locate a

hexadecimal number in Appendix 1 than a binary number. Once have you the hexadecimal

equivalent, you can read the lower-byte column to find the decimal equivalent.

 When the decimal number is greater than 255, you have to use both the upper byte and the lower

byte in

 Appendix 1. For instance, suppose you want to convert this binary number to its decimal

equivalent:

 1110 1001 0 ll l 0100

 First, convert the upper byte to its decimal equivalent as follows:

116

 Therefore, binary 1110 1001 0111 0100 is equivalent to decimal 59,764.

THE ASCII CODE:

 To get information into and out of a computer, we need to use some kind of alphanumeric code (one

for letters, numbers, and other symbols).

 At one time, manufacturers used their own alphanumeric codes, which led to all kinds of confusion.

Eventually, industry settled on an input-output code known as the American Standard Code for

Information Interchange (ASCII, pronounced ask'-ee).

 This code allows manufacturers to standardize computer hardware such as keyboards, printers, and

video displays.

 Using the Code

 The ASCII code is a 7-bit code whose format is

where each Xis a O or a 1. Use Table 5 .8 to find the ASCII code for the uppercase and lowercase letters

of the alphabet and some of the most commonly used symbols. For example, the table shows that the

capital letter A has an of 100 and an ofOOOl. The ASCII code for A is, therefore,

 1000001

For easier reading, we can leave a space as

follows:

 100 0001 (A)

The letter a is coded as

 110 0001 (a)

More examples are

117

 110 0010 (b)

 1100011 (c)

 110 0100 (d)

so and on.

 Also, study the punctuation and mathematical symbols. Some examples are

In Table 5.7, SP stands for space (blank). Hitting the space bar of an ASCII keyboard sends this into a

microcomputer:

010 0000 (space)

Parity Bit

 The ASCII code is used for sending digital data over telephone lines. As mentioned in the preceding

chapter, 1-bit errors may occur in transmitted data.

 To catch these errors, a parity bit is usually transmitted along with the original bits. Then a parity

checker at the receiving end can test for even or odd parity, whichever parity has been prearranged

between the sender and the receiver.

 Since ASCII code uses 7 bits, the addition of a parity bit to the transmitted data produces an 8-bit

number in this format:

 This is an ideal length because most digital equipment is set up to handle bytes of data.

EBCDIC as Alphanumeric Code

 There exists few others but relatively less used alphanumeric codes. The EBCDIC is an abbreviation

of Extended Binary Coded Decimal Interchange Code.

118

 It is an eight-bit code and primarily used in IBM make devices. Here, the binary codes ofletters and

numerals come as an extension of BCD code. The bit assignments of EBCDIC are different from the

ASCII but the character symbols are the same.

5.7 THE EXCESS-3 CODE

 The excess-3 code is an important 4-bit code sometimes used with binary-coded decimal (BCD)

numbers. To convert any decimal number into its excess-3 fonn, add 3 to each decimal digit, and then

convert the sum to a BCD number.

 Table 5.9 shows the excess-3 code: In each case, the excess-3 code number is 3 greater than the BCD

equivalent.

 Such coding helps in BCD arithmetic as 9's complement of any excess-3 coded number can be

obtained simply by complementing each bit. Take for example decimal number 2.

 Its 9's complement is 9- 2 = 7. Excess-3 code of2 is 0101. Complementing each bit we get 1010 and

its decimal equivalent is 7. To convert BCD to excess-3 we need an adder and for the reverse we need

a subtractor.

119

 Incidentally, if you need an integrated circuit (IC) that converts from excess 3 to decimal, look at the

data sheet of a 7443. This transistor-transistor logic (TTL) chip has four input lines for the excess-3

input and IO output lines for the decoded decimal output.

 THE GRAY CODE

 The advantage of such coding will be understood from this example. Let an object move along a track

and move from one zone to another. Let the presence of the object in one zone is sensed by sensors

ABC.

 If consecutive zones are binary coded zone -then0 is represented by ABC= 000, zone- I by ABC= 001,

zone-2 by ABC= 010 and so on, as shown in Fig. 5.la. Now consider, the object moves from zone-1 to

zone-2.

 Both BC has to change to sense that movement. Suppose, sensor B (may be an electro-mechanical

switch) reacts slightly late than sensor C.

 Then, initially ABC= 000 is sensed as if the object has moved in the other direction from zone-1 to

zone-0. This problem can be more prominent if the object moves from zone-3 (ABC=011) to zone-4

(ABC= 100) when all three sensors has to change its value.

 Note that, if zones are gray coded (Fig. 5.lb) such problem does not appear as between two

consecutive zones only one sensor changes its value.

 The disadvantage with gray code is that it is not good for arithmetic operation.

 However, comparing truth tables of binary coded numbers and gray coded numbers (Table 5.18) we

can design binary to gray converter as shown in Fig. 5.2a and gray to binary converter as shown in

Fig. 5.2b. Let's see how these circuits work by taking one example each.

120

 Again this conversion can be verified from Table 5.10 that shows the Gray code, along with the

corresponding binary numbers.

 Each Gray-code number differs from any adjacent number by a single bit. For instance, in going from

decimal 7 to 8, the Gray-code numbers change from 0100 to 1100; these numbers differ only in the

most significant bit. As another example, decimal numbers 13 and 14 are represented by Gray-code

numbers 1011 and 1001; these numbers differ in only one digit position (the second position from the

right).

 So, it is with the entire Gray code; every number dif-fers by only 1 bit from the preceding number.

121

 Besides the excess-3 and Gray codes, there are other binary-type codes. Appendix 5 lists some of

these codes for future reference.

 Incidentally, the BCD code is sometimes referred to as the 8421 code because the weights of the digit

positions from left to right are 8, 4, 2, and 1. As shown in Appendix 5, there are many other weighted

codes such as the 7421, 6311, 5421, and so on.

 ARITHMETIC CIRCUITS

 BINARY ADDITION

 Numbers represent physical quantities. Table 6.1 shows the decimal digits and the corresponding

amount of pebbles.

 Digit 2 stands for two pebbles (..),five5for pebbles (.....), and so on. Addition represents the

combining of physical quantities. For instance:

2+3=5

symbolizes the combining of two pebbles with three pebbles to obtain a total of five pebbles.

Symbolically, this is expressed

 + ••• = •••••

122

Four Cases to Remember

 Computer circuits don't process decimal numbers;process they numbers binary. Before you can

understand how a computer perfonns arithmetic, you have to learn how to numbers add binary.

 Binary addition is the key to binary subtraction, multiplication, and division. So, let's begin with the

four most basic cases of binary addition:

0+0 =0 (6.1)

0 + 1 = 1 (6.2)

l + 0 = 1 (6.3)

1+1 =10 (6.4)

Equation (6.1) is obvious; so are Eqs. (6.2) and (6.3) because they are identical to decimal addition.

The fourth case, however, may bother you. If so, you don't understand what Eq. (6.4) represents in the

physical world.

Equation (6.4) represents the combining of one pebble and one pebble to obtain a total of two pebbles:

 •+• = ••

 Since binary 10 stands for ••, the binary equation

l + 1 = 10

 makes perfect sense. From now on, remember that numbers, whether binary, decimal, octal, or

hexadecimal are codes for physical amounts.

Subscripts

 The foregoing discussion brings up the idea of subscripts. Since we already have discussed four kinds

of numbers (decimal, binary, octal, and hexadecimal), we have four different ways to code physical

123

quantities. How do we know which code is being used? In other words, how can we tell when l O is a

decimal, binary, octal, or hexadecimal number?

 On the other hand, if a discussion uses more than one type of number, it may be helpful for to use

subscripts the base as follows:

 For instance, 112 represents binary 11,238 stands for octal 23, 45 10 for decimal 45, and F4 16 for

hexadecimal F4. With the subscripts in mind, the following equations should make perfect sense:

larger Binary Numbers

 Column-by-column addition applies to binary as well as decimal numbers. For example, suppose

you have this problem in binary addition:

 Notice the carry into the final column; this carry occurs because 1 + I = 10. As in decimal

addition, you write down the O and carry the I to the next-higher column.

124

8-Bit Arithmetic

 That's all there is to binary addition. If you can remember the four basic rules, you can add

column by column to find the sum of two binary numbers, regardless of how long they may be.

In first-generation microcomputers (Apple II, TRS-80, etc.), addition is done on two 8-bit

numbers such as

 The most-significant bit (MSB) of each number is on the left, and the least-significant bit (LSB)

is on the right. For the first number, A7 is the MSB and Ao is the LSB. For the second number, B7

is the MSB and Bo is the LSB.

 BINARY SUBTRACTION

Let's begin with four basic cases of binary subtraction:

0-0 =O (6.5)

1-0 = 1 (6.6)

1-1 =O (6.7)

10-1=1 (6.8)

 Equations (6.5) to (6.7) are easy to understand because they are identical to decimal subtraction.

The fourth case will disturb you if you have lost sight of what it really means. Back in the

physical world, Eq (6.4) represents

125

6.3 UNSIGNED BINARY NUMBERS

 All data is either positive or negative. When this happens, you can forget about + and - signs, and

concentrate on the magnitude (absolute value) of numbers.

 For instance, the smallest 8-bit num-ber is 0000 0000, and the largest is 1111 1111. Therefore,

the total range of 8-bit numbers is

0000 0000 (OOH)

To

1111 1111 (FFH)

 This is equivalent to a decimal Oto 255. As you can see, orwe are not including+ - signs with these

decimal numbers.

With 16-bit numbers, the total

range is

0000 0000 0000 0000 (OOOOH)

126

To

1111 1111 1111 1111 (FFFFH)

 which represents the magnitude of all decimal numbers from O to 65,535.

 Data of the foregoing type is called unsigned binary because all of the bits in a binary number are

used to represent the magnitude of the corresponding decimal number.

 You can unsigned add and subtract binary numbers, provided certain conditions are satisfied. The

following examples will tell you more about unsigned binary numbers.

limits

 First-generation microcomputers can process only 8 bits at a time. For this reason, there are certain

restrictions you should be aware of. With 8-bit unsigned arithmetic, all magnitudes must be between

O and 255.

 Therefore, each number being added or subtracted must be between O and 255. Also, the answer must

fall in the range ofO to 255. If any magnitudes are greater than 255, you should use 16-bit arithmetic,

which means operating on the lower 8 bits first, then on the upper 8 bits (see Example 6.3).

Overflow

 In 8-bit arithmetic, addition of two unsigned numbers whose sum is greater than 255 causes an

ove1ifow, a carry into the ninth column.

 Most microprocessors have a logic circuit called a carryfiag; this circuit detects a carry into the ninth

column and warns you that the 8-bit answer is invalid.

6.4 SIGN-MAGNITUDE NUMBERS

 What do we do when the data has positive and negative values? The answer is important because it

determines how complicated the arithmetic circuits must be. The negative decimal numbers are -1, -2,

-3, and so on.

 The magnitude of these numbers is 1, 2, 3, and so forth. One way to code these as binary numbers is to

convert the magnitude to its binary equivalent and prefix the sign.

 With this approach, the sequence-I, -2, and-3 becomes-001, -010, and-011. Since everything has to be

coded as strings ofOs and ls, the+ and- signs also have to be represented in binary form.

127

 For reasons given soon, 0 is used for the+ sign and 1 for the - sign. Therefore, -001, -010, and-011 are

coded as 1001, 1010, and l0ll.

 The foregoing numbers contain a sign bit followed by magnitude bits. Numbers in this form are called

sign-magnitude numbers.

 For larger decimal numbers, you need more than 4 bits. But the idea is still the same: the MSB always

represents the sign, and the remaining bits always stand for the magnitude. Here are

Range of Sign-Magnitude Numbers

 As you know, the unsigned 8-bit numbers cover the decimal range ofO to 255. When you use

sign-magnitude numbers, the you reduce largest magnitude from 255 to 127 because you need

to represent both positive and negative quantities. For instance, the negative numbers are

 The largest magnitude is 127, approximately half of what is for unsigned binary numbers. As

long as your input data is in the range of -127 to + 127, you can use 8-bit arithmetic. The

programmer still must check sums for an overflow because all 8-bit answers are between -127

and+ 127.

 If the data has magnitudes greater than 127, then 16-bit arithmetic may work. With 16-bit

numbers, the negative numbers are from

128

 The main advantage of sign-magnitude numbers is their simplicity. Negative numbers are

identical to positive numbers, except for the sign bit.

 Because of this, you can easily find the magnitude by deleting the sign bit and converting the

remaining bits to their decimal equivalents.

 Unfortunately, sign-magnitude numbers have limited use because they require complicated

arithmetic circuits. If you don't have to add or subtract the data, sign-magnitude numbers are

acceptable.

 For instance, sign-magnitude numbers are often used in analog-to-digital (AID) conversions.

2'S COMPLEMENT REPRESENTATION

 There is a rather unusual number system that leads to the simplest logic circuits for performing

arithmetic. Known as , 2's complement representation, this system dominates microcomputer

architecture and programming.

1 's Complement

 The I's complement of a binary number is the number that results when we complement

each bit.

 Figure 6.1 shows how to produce the I's complement with logic circuits. Since each bit

drives an inverter, the 4-bit output is the l's complement of the 4-bit input. For in-stance, if

the input is

The same principle applies to binary numbers of any length: complement each bit to obtain the l's

complement. More examples of l's complements are

129

2's Complement

 The 2's complement is the binary number that results when we add l to the l's complement. As a

formula:

2's complement = l's complement + 1

 For instance, to find the 2's complement of 1011, proceed like this:

 Instead of adding 1, you can visualize the next reading on a binary odometer. So, after obtaining the

l's complement O100, ask yourself what comes next on a binary odometer. The answer is 0101.

Back to the Odometer

 The binary odometer is a marvelous way to understand 2's complement representation.

 By examining the numbers of a binary odometer, we can see how the typical microcomputer

represents positive and negative numbers. With a binary odometer, all bits eventually reset to Os.

 Some readings before and after a complete reset look like this:

1000 (-8)

1001 (-7)

1010 (-6)

1011 (-5)

1100 (-4)

1101 (-3)

130

1110 (-2)

1111 (-1)

0000 (0)

0001 (+1)

0010 (+2)

0011 (+3)

0100 (+4)

0101 (+5)

0110 (+6)

0111 (+7)

 Binary 1101 is the reading 3 miles before reset, 1110 occurs 2 miles before reset, and 1111

indicates 1 mile before reset.

 Then, 0001 is the reading 1 mile after reset, 0010 occurs 2 miles after reset, and OOH indicates 3

miles after reset.

Positive and Negative Numbers

 "Before" and "after" are synonymous with "negative" and "positive." Figure 6.2 illustrates with this

idea the number line of basic algebra: 0 marks the origin, positive numbers are on the right, and

negative numbers are on the left.

 The odometer readings are the binary equivalents of decimal numbers: 1000 is the binary equivalent

of -8, 1001 stands for - 7, 1010 stands for -6, and so on.

 The odometer readings in Fig. 6.2 demonstrate how positive and negative numbers are stored in a

typical microcomputer.

131

Here are two important ideas to notice about these odometer readings.

 First, the MSB is the sign bit: 0 represents a + sign, and 1 stands for a - sign.

 Second, the negative numbers in Fig. 6.2 are the 2's Complements positive of the numbers, as you

can see in the following:

 In other words, you can take the 2's complement of a positive binary number to find the corresponding

negative binary number. For instance:

 After taking the 2's complement of 1001, we obtain O111, which represents +7.

 What does the foregoing mean? It means that taking the 2's complement is equivalent to negation,

changing the sign of the number. Why is this important? Because it's easy to build a logic circuit that

produces the 2's complement. Whenever this circuit takes the 2's complement, the output is the

negative of the input. This key idea leads to an incredibly simple arithmetic circuit that can add and

subtract.

132

 In summary, here are the things to remember about 2's complement representation:

I. Positive numbers always have a sign bit of 0, and negative numbers always have a sign bit of 1.

 Positive numbers are stored in sign-magnitude form.

 Negative numbers are stored as 2's complements.

 Taking the 2's complement is equivalent to a sign change.

Converting to and from 2'sComplement Representation

 We need a fast way to express numbers in 2's complement representation. Appendix 2 lists all

8-bit numbers in positive and negative form.

 A final point. Look at the last two entries in Appendix 2. As you see, + 127 is the largest positive

number in 2's complement representation, and-128 is the largest negative number.

 Similarly, in the 4-bit odometer discussed earlier, + 7 was the largest positive number, and -8 was the

largest negative number. The largest negative number has a magnitude that is one greater than the

largest positive number. This slight asymmetry of 2's complement representation has no particular

meaning.

2'S. COMPLEMENT ARITHMETIC

 Early computers used sign-magnitude numbers for positive and negative values. This led to

complicated arithmetic circuits.

 Then an engineer discovered that 2's complement representation could simplify arithmetic hardware.

(This refers to the electronic, magnetic, and mechanical devices of a computer.)

133

 Since then, 2'scomplement representation has become a universal code for processing positive

negative and numbers.

Help from the Binary Odometer

 Addition and subtraction can be visualized in terms of a binary odometer. When you add a positive

number, this is equivalent to advancing the odometer reading. When you add a negative number, this

has the effect of turning the odometer backward.

 Likewise, subtraction of a positive number reverses the odometer, but subtraction of a negative

number advances it.

Addition

 Let us take a look at how binary numbers are added. There are four possible cases: both numbers

positive, a positive number and a smaller negative number, a negative number and a smaller positive

number, and both numbers negative.

 Let us go through all four cases for a complete coverage of what happens when a computer adds

numbers.

Case 1 Both positive. Suppose that the numbers are +83 and + 16. With Appendix 2, these numbers are

converted as follows:

134

 With 8-bit arithmetic, you disregard the final carry into the ninth column. The reason is related to

the bi-nary odometer, which ignores final carries.

 In other words, when the eighth wheel resets, it does not generate a carry because there is no ninth

wheelthe to receive carry. You can convert the binary answer to decimal as follows:

 This agrees with the answer we obtained by direct decimal addition.

Conclusion

 We have exhausted the possibilities. In every case, 2's complement addition works. In other

words, as long as positive and negative numbers are expressed in 2's complement representation,

an adding circuit will automatically produce the correct answer.

Subtraction

135

 There four cases: both numbers positive, a positive number and a smaller negative number, a

negativenumber and a smaller positive number, and both numbers negative.

 The question now is how can we use an adding circuit to do subtraction. By trickery, of course.

 From algebra, you already know that adding a negative number is equivalent to subtracting a

positive number. If we take the 2's complement of the subtrahend, addition of the complemented

subtrahend gives the correct answer. Remember that the 2's complement is equivalent to

negation.

 One way to remove all doubt about this critical idea is to analyze the four cases that can arise

during a subtraction.

136

137

 UNIT-IV

ARITHMETIC CIRCUITS

 Circuits that can perform binary addition and subtraction are constructed by

combining logic gates. These circuits are used in the design of the arithmetic logic

unit (ALU). The electronic circuits are capable of very fast switching action, and thus

an ALU can operate at high clock rates.

 For instance, the addition of two numbers can be accomplished in a matter of

nanoseconds! This chapter begins with binary addition and subtraction, then presents

two different methods for representing negative numbers. You will see how an

exclusive OR gate is used to construct a half-adder and a full-adder. You will see how

to construct an 8-bit adder-subtracter using a popular IC.

 A technique to design a fast adder is discussed in detail followed by discussion on a

multifunctional device called Arithmetic Logic Unit or ALU. Finally, an outline to

perform binary multiplication and division is also presented.

ARITHMETIC BUILDING BLOCKS

 We are on the verge of seeing a logic circuit that performs 8-bit arithmetic on positive

and negative numbers. But first we need to cover three basic circuits that will be used

as building blocks.

 These building blocks are the half-adder, the full-adder, and the controller inverter.

Once you understand how these work, it is only a short step to see how it all comes

together, that is, how a computer is able to add and subtract binary numbers of any

length.

Half-Adder

 When we add two binary numbers, we start with the least-significant column. This

means that we have to add two bits with the possibility of a carry. The circuit used for

this is called a half-adder.

 Figure 6.3 shows how to build a half-adder. The output of the exclusive-OR gate is

called the SUM, while the output of the AND gate is the CARRY. The AND gate

produces a high output only when both inputs are highexclusive.The-OR gate

produces a high output if either input, but not both, is high. Table 6.2 shows the truth

table of a half-adder.

 When you examine each entry in Table 6.2, you are struck by the fact that a half-

adder performs binary addition.

138

 As you see, the half-adder mimics our brain pro-cesses in adding bits. The only

difference is the half-adder is about a million times faster than we are.

 Full-Adder

 For the higher-order columns, we have to use afi1ll-adder, a logic circuit that can add

3 bits at a time. The third bit is the carry from a lower column. This implies that we

need a logic circuit with three inputs and two outputs, similar to the full-adder shown

in Fig. 6.4a. (Other designs are possible. This one is the simplest.)

 Table 6.3 shows the truth table of a full-adder. You can easily check this truth table

for its validity. For instance, CARRY is high in Fig. 6.4a when two or more of the

ABC inputs are high; this agrees with the CARRY column in Table 6.3. Also, when

an odd number of high ABC inputs drives the exclusive-OR gate, it produces a high

output; this verifies the SUM column of the truth table.

139

From this truth table we get Karnaugh map as shown in Fig. 6.4b that gives following logic

equations,

A general representation of full-adder which adds i-th bit A; and B; of two numbers A and

Band takes carry from (i-l)th bit could be

Controlled Inverter

Figurea 6.5 shows controlled inverter. When INVERT is low, it transmits the 8-bit input to

the output; when INVERT is high, it transmits the l's complement. For instance, if the input

number is

140

 The controlled inverter is important because it is a step in the right direction. During a

subtraction, we first need to take the 2's complement of the subtrahend. Then we can

add the complemented subtrahend to obtain the answer.

 With a controlled inverter, we can produce the l's complement. There is an easyto

way get the 2 's complement, discussed in the next section. So, we now have all the

building blocks: half-adder, full-adder, and controlled inverter.

THE ADDER..SUBTRACTER

 We can connect full-adders as shown in Fig. 6.6 to add or subtract binary numbers.

The circuit is laid out from right to left, similar to the way we add binary numbers.

Therefore, the least-significant column is on the right, and the most-significant

column is on the left.

 The boxes labeled FA are full-adders. (Some adding circuits use a half-adder instead

of a full-adder in the least-significant column.)

 The CARRY OUT from each full-adder is the CARRY IN to the next-higher full-

adder. The numbers be~ ing processed are A 7 ... Ao and B7 ... Bo, and the answer is

S7 ... S0.

 With 8-bit arithmetic, the final carry is ignored for reasons given earlier. With 16-bit

arithmetic, the final carry is the carry into the addition of the upper bytes.

141

Addition

Here is how an addition appears:

 During an addition, the SUB signal is deliberately kept in the low state. Therefore,

the binary number B7... Bo passes through the controlled inverter with no change.

The full-adders then produce the correct output sum.

 They do this by adding the bits in each column, passing carries to the next higher

column, and so on. For instance, starting at the LSB, the full-adder adds Ao, Bo,

and SUB. This produces a SUM of So and a CARRY OUT to the next-higher full-

adder; The next-higher full-adder then adds A 1, B 1, and the CARRY IN to

produce S1 and a CARRY OUT.

 A similar addition occurs for each of the remaining full-adders, and the correct

sum appears at the output lines.

For instance, suppose that the numbers being added are + 125 and -67. Then, A 7 ... Ao =

0111 1101 and

B7 ••• B0 = 1011 1101. This is the problem:

Since SUB = 0 during an addition, the CARRY IN to the least-significant column is 0:

142

The first full-adder performs this addition:

The CARRY OUT of the first full-adder is the CARRY IN to the second full-adder:

In the second column

1 + 0 + 0 = 1 with a carry of 0The carry goes to the third full-adder:

In a similar way, the remaining full-adders add their 3 input bits until we arrive at the last

full-adder:

When the CARRY IN to the MSB appears, the full-adder produces

1 + 0 + 1 = 0 with a carry of 1

The addition process ends with a final carry:

 During 8-bit arithmetic, this last carry is ignored as previously

discussed; therefore, the answer is

This answer is equivalent to decimal +58, which is the algebraic sum of the numbers we

started with: +125 and-67.

Subtraction

Here is how a subtraction appears:

143

During a subtraction, the SUB signal is deliberately put into the high state. Therefore, the

controlled inverter produces the l's complement of B7 ••• B0. Furthermore, because SUB is the

CARRY IN to the first full-adder, the circuit processes the data like this:

When A7 ... A0 = 0, the circuit produces the 2's complement of B7 •.. B0 because 1 is being

added to the l's complement B7 ... B0. When A 7 ... A0 does not equal zero, the effect is

equivalent to adding A 7 ... A0 and the 2's complement of B7 . .. Bo.

Here is an example. Suppose that the numbers are +82 and +17. Then A7 ... Ao=

0101Bo= 0001inverter000I.The controlled produces the l's complement ofB, which is

11100010 and B7 ...1110. Since SUB

 1 during a subtraction, the circuit performs the following addition:

 For 8-bit arithmetic, the final carry is ignored as previously discussed; therefore, the

answer is S7 · ..

144

 This answer is equivalent to decimal +65, which is the algebraic difference

between the numbers we started with: +82 and+ 17.

FAST ADDER

 Fast adder is also called parallel adder or carry look ahead adder because that is how

it attains high speed in addition operation. Before we go into that circuit,see let's what

limits the speed of an adder.

 Consider, the worst case scenario when two four bit numbers A: 1111 and B: 0001

are added. This generates a carry in the first stage that propagates to the last stage as shown

next.

 Addition such as these (Fig. 6.6) is called serial addition or ripple carry addition. It

also reveals from the adder equation (given in Section 6.8) result of every stage

depends on the availability of carry from previous stage.

 The minimum delay required for carry generation in each stage is two gate delays,

one coming from AND gates (1st level) and second from OR gate (2nd level). For 32-bit

serial addition there will be 32 stagesn working in serial.

 In worst case,2 itx will require 32 = 64 gate delays to generate the final carry. Though

each gate delay is of nanosecond order, serial addition definitely limits the speed of high

speed computing. Parallel adder increases the speed by generating the carry in advance

145

(look ahead) and there is no need to wait for the result from previous stage. This is achieved

by following method.

Let us use the second equation for carry generation from previous section, i.e.

 G; stands for generation of carry and P; stands for propagation of carry in a

particular stage depending on input to that stage. As explained in previous

section, ifA;B; = 1, then ith stage will generate a carry, no matter previous stage

generates it or not. And if A;+ B; = 1 then this stage will propagate a carry if

available from previous stage to next stage.

 Note that, all G; and P; are available after one gate delay once the numbers A and

B are placed.

Starting from LSB, designated by suffix O ifwe proceed iteratively

we get,

 The equationsButlook pretty complicated. do we gain in any way? Note that, these

equations can be real-ized in hardware using multi-input AND and OR gates and in

two levels. Now, for each carry whether Co or C3 we require only two gate delays

once the G; and P; are available.

 We have already seen they are available after 1 gate delay. Thus parallel adder (circuit

diagram for 2-bit is shown in Fig. 6.8a) generates carry within

1 + 2 = 3 gate delays. Note that, after the carry is available at any stage there are two more

gate delays from Ex-OR gate to generate the sum bit as we can write S; = G; EB P; EB C;_1.

 Thus serial adder in worst case requires at least (2n + 2) gate delays for n-bit

addition and parallel adder requires only 3 + 2 = 5 gate delays for that. One can

imagine the gain for higher values of n.

146

 However, there is a caution. We cannot increase n indiscriminately for parallel

adder as every logic gate has a capacity to accept at most a certain number of

inputs, termed/an-in. This is a characteristic of the logic family to which the gate

belongs. More about this is discussed in Chapter 14.

 The other disadvantage of parallel adder is in-creased hardware complexity for

large n. In Fig. 6.8b we present functional diagram and pin connections of a

popular fast adder, IC 74283.

 Now, how do we add two 8-bit numbers using IC 74283? Obviously, we need two

such devices and Cout of LSB adder will be fed as C;n of MSB unit. This way each

individual 4-bit addition is done parallely but between two ICs carry propagates by

rippling.

To avoid carry ripple between two ICs and get truly parallel addition the following

approach can be useful. Let each individual 4-bit adder unit generate two additional outputs

Group Carry Generate (G3-0) and Group Carry Propagate (P3-0). They are defined as follows

147

 What do we get from above equation? Group carry generation and propagation

terms are available from respective adder blocks (G3_0, P3_0 from LSB and G 7-4,

P 7-4 from MSB) after 3 and 2 gate delays respec-tively.

 This comes from the logic equations that define them with Gi, Pi available after 1

gate delay.

 Once these group-carry terms are available, we can generate C7 from previousby

equation designing a small Look Ahead Carry (LAC) Generator circuit.

 This requires a bank of AND gates (here one 2 input and one 3 input) followed by a

multi-input OR gate (here, three input) totaling 2 gate delays.

 Thus final carry is available in 3 + 2 = 5 gate delays and this indeed is what we

were looking for in parallel addition. In next section we discuss a versatile IC

74181 that while performing 4-bit addition generates this group carry generation

and propagation terms.

 LAC generator circuits are also commercially available; IC 74182 can take up to

four pairs of group carry terms from four adder units and generate final carry for 16

bit addition.

ARITHMETIC LOGIC UNIT

 Arithmetic Logic Unit, popularly called ALU is multifunctional device that

can perfonn both arithmetic and logic function. ALU is an integral part of central

processing unit or CPU of a computer.

 It comes invarious forms with wide range of functionalitynormalthan. Other

addition, subtraction it can also perform increment, decrement operations. As logic

148

unit it performs usual AND, OR, NOT, EX-OR and many other complex logic

functions.

 It also comes with PRESET and CLEAR options, invoking which all the

function outputs are made 1 and O respectively. Normally, a mode selector input (M)

decides whether ALU perfonns a logic operation or an arithmetic operation. In each

mode different functions are chosen by appropriately activating a set of selection

inputs.

149

 In this section, we take up one very popular discrete ALU device from TTL family

for discussion. IC 74181 is a 4-bit ALU that can generate 16 different kinds of

outputs in each mode selected by four selection inputs S3, S2, S1 and So.

 The functional diagram of this IC with pin numbers and corresponding truth table

is shown in Fig. 6.9(a) and Fig. 6.9(b) respectively. Note that this truth table

considers data inputs A and Bare activeA high. similar but different trnth table is

obtained if data is considered as active low.

 Well, the truth table is pretty exhaustive though one might wonder what could be

the utility of functions like (A+ B) plus AB'. But a careful observation shows one

important function missing, that ofa comparator. Is it truly so? No, it can be

obtained in an indirect way.

 The Cout is activated (active low) by addition as well as subtractio.n because

subtraction is carried out by 2 's complement addition. Note that, if the result of an

arithmetic operation is negative it will be available in 2 's complement form.

 The A= B output is activated when an the function outputs are 1, i.e. F 3 ... F 0 =

1111. Output A= B, together with Cout can give functions like A> Band A <B.

Note that

 B is an open collector output; thus when more than 4-bits are to be compared this output

of different ALU devices are wire-ANDed, simply by knotting outputs together to get the

final result. To know more about open collector gates refer to Section 14.5 of Chapter 14.

 The outputs Cout, G3_0 and P 3_o are useful when addition and subtraction of more than

4-bits are performed using more than one IC 74181 as discussed in previous sections.

 Logic operations are done bit-wise by making M = l and choosing appropriate select

inputs. Note that, carry is inhibited for M = 1.

 Let us see how AND operation between two 4-bit numbers 1101 and O111 is to be

performed. Enter input A 3 .. Ao = 1101 and B 3 .. Bo = 0111. Make S3 .. S0 = 1011 and of

course M = I to choose logic function. The output is shown as F 3 . .F0 = 00 ll.

For arithmetic operations M = 0 to be chosen and we have to appropriately place Cin (

active low), if any. For example, ifwe want to add decimal numbers 6 with 4 we have to

place 0110 for 6 at A and 0100 for 4 at

150

 Then with S3 .. S0 = 1001 (from truth table) and Cin = 1 (active low) the output generated

is F3 ..F 0 = 1010 which is decimal equivalent of 10.

BINARY MULTIPLICATION AND DIVISION

 Typical 8-bit microprocessors like the 6502 and the 8085 use software multiplication and

division. In other words, multiplication is done with addition instructions and division with

subtraction instructions.

 Therefore, an adder-subtracter is all that is needed for addition, subtraction,

multiplication, and division.

For example, multiplication is equivalent to repeated addition. Given a problem such as

8x4=?

the first number is called the multiplicand and the second number, the multiplier. Multiplying

8 by 4 is the same as adding 8 four times:

8+8+8+8=?

 One way to multiply 8 by 4 is to program a computer to add 8 until a total of four 8s

have this been added. approach known as programmed multiplication by repeated

addition.

 There are other software solutions to multiplication and division that you will learn

about if you study assembly-language programming.

 There availableareICs that will multiply two binary numbers. For instance, the 74284

and the 74285 will produce an 8-bitthatbinary number is the product of two 4-bit

binary numbersI.

 These veryCsare fast, and the total multiplication time is only about 40 nanoseconds

(ns)!

CLOCK AND TIMING CIRCUITS

 The heart of every digital system is the system clock. The system clock provides the

heartbeat without which the system would cease to function. In this chapter we

consider the characteristics of a digital clock signal as well as some typical clock

circuits.

151

 Schmitt triggers are used to produce nearly ideal digital signals from otherwise noisy

or degraded signals. Propagation delay is the time required for a signal to pass from

the input of a circuit to its output.

 You will see how to utilize logic gate propagation delay time to construct a pulse-

forming circuit. A monostable is a basic digital timing circuit that is used in a wide

variety of timing applications. We consider a number of different commercially

available monostable circuits and examine some common applications.

CLOCK WAVEFORMS

 Up to this point, we have been considering static digital logic levels, that is, voltage

levels that do not change with time. However, all digital computer systems operate by

"stepping through" a series oflogical operations.

 The system signals are therefore changing with time: they are dynamic. The concept

of a system clock was in-troduced in Chapter. 1. It is the clock signal that advances

the system logic through its sequence of steps. The square wave shown in fig 7.1 a is

a typical clock.

 Waveform used in a digital system. It should be noted that the clock need not be the

perfectly symmetrical wavefonn shown. It could simply be a se1ies ofpositive (ornegative) pulses as

shown in Fig. 7.lb.

 This waveform could of course be considered an asymmetrical square wave with a duty cycle

other than 50 percent. The main requirement is that the clock be perfectly periodic, and

stable.

 Notice that each signal in Fig. 7.1 defines a basic timing interval during which logic

operations must be performed.

 This basic timing interval is defined as the clock cycle time, and it is equal to one period of

the clock wave-fonn. Thus all logic elements must complete their transitions in less than one

clock cycle time.

152

Synchronous Operation

 Nearly all of the circuits in a digital system (computer) change states in .STnchronism with

the system clock. A change of state will either occur as the clock transitions from low to high

or as it transitions from high to low.

 The low-to-high transition is frequently called the positive transition (PT), as shown in Fig.

7.2.

 The PT is given emphasis by drawing a small arrowthe on rising edge of the clock

waveform. A circuit that changes state at this time is said to be positive-edge-triggered. The

high-to-low transition is called the negative transition (NI), as shown in Fig. 7.2.

 The NT is emphasized by drawing a small arrow on thefalling edge of the clock wavefom1.

A circuit that changes state at iliis time is said to be negative- edge-triggered.

 Virtually all circuits in a digital system are either positive-edge- triggered or negative-edge-

triggered, and thus are synchronized with the system clock. There are a few exceptions.

 For instance, the operation of a push button (RESET) by a human operator might result in

an instant change of state that is not in synchronism with the clock. This is called an

asynchronous operation.

Characteristics

 The clock waveform drawn above the time line in Fig. 7.3a is a perfect, ideal clock. What

exactly are the characteristics that make up an ideal clock? First, the clock levels must be

absolutely stable.

 When the clock is high, the level must hold a steady value of +5 V, as shown between points

153

a and b on the time line.

 When the clock is low, the level must be an unchanging O V, as it is between points b and c.

In actual practice, the stability of the clock is much more important than the absolute value of

the voltage level.

 For instance, it might be perfectly acceptable to have a high level of +4.8 V instead of+ 5.0

V, provided it is a steady, unchanging, +4.8V.

 The second characteristic deals with the time required for the clock levels to change from

high to low or vice versa. The transition of the clock from low to high at point a in Fig.

7.3a is shown by a vertical line segment.

 This implies a time of zero; that is, the transition occurs instantaneously-it requires zero

time. The same is true of the transition time from high to low at point bin Fig. 7.3a. Thus

an ideal clock has zero transition time.

 A nearly perfect clock waveform might appear on an oscilloscope trace as shown in Fig.

7.3b. At first glance this would seem to be two horizontal traces composed of line

segments.

 On closer examination, however, it can be seen that the waveform is exactly like the ideal

waveform in Fig. 7.3a if the vertical segments are removed. The vertical segments might

not appear on the oscilloscope trace because the transition times are so small (nearly zero)

and the oscilloscope is not capable of responding quickly enough.

 The vertical segments can usually be made visible by either increasing the oscilloscope

"intensity," or by reducing the "sweep time."

154

 Figure 7.3c shows a portion of the wavefonn in Fig. 7.3b expanded by reducing the

"sweep time" such that the transition times are visible. Clearly it requires some time for

the waveform to transition from low to high-this is defined as the rise time tr- Remember,

the time required for transition from high to low is de-fined as the fall time If It is

customary to measure the rise and fall times from points on the wavefonn referred to as

the JO and 90 percent points.

 In this case, a 100 percent level change is 5.0 V, so 10 percent of this is 0.5 V and 90

percent is 4.5 V. Thus the rise time is that time required for the waveform to travel from

0.5 up to 4.5 V. Similarly, the fall time is that time required for the waveform to transition

from 4.5 down to 0.5 V.

 The second characteristic deals with the time required for the clock levels to change from

high to low or vice versa. The transition of the clock from low to high at point a in Fig.

7.3a is shown by a vertical line segment.

 This implies a time of zero; that is, the transition occurs instantaneously-it requires zero

time. The same is true of the transition time from high to low at point bin Fig. 7.3a. Thus

an ideal clock has zero transition time.

 A nearly perfect clock waveform might appear on an oscilloscope trace as shown in Fig.

7.3b. At first glance this would seem to be two horizontal traces composed of line

segments.

 On closer examination, however, it can be seen that the waveform is exactly like the ideal

waveform in Fig. 7.3a if the vertical segments are removed.

 The vertical segments might not appear on the oscilloscope trace because the transition

times are so small (nearly zero) and the oscilloscope is not capable of responding quickly

enough.

 The vertical segments can usually be made visible by either increasing the oscilloscope

"intensity," or by reducing the "sweep time."

 Figure 7.3c shows a portion of the wavefonn in Fig. 7.3b expanded by reducing the

"sweep time" such that the transition times are visible.

 Clearly it requires some time for the waveform to transition from low to high-this is

defined as the rise time tr- Remember, the time required for transition from high to low is

de-fined as the fall time If It is customary to measure the rise and fall times from points on

155

the wavefonn referred to as the JO and 90 percent points. In this case, a 100 percent level

change is 5.0 V, so 10 percent of this is 0.5 V and 90 percent is 4.5 V.

 Thus the rise time is that time required for the waveform to travel from 0.5 up to 4.5 V.

Similarly, the fall time is that time required for the waveform to transition from 4.5 down

to 0.5 V.

 Finally, the third requirement that defines an ideal clock is its frequency stability. The

frequency of the clock should beoversteady and unchanging a specified period of time.

 Short-term stability can be specified by requiring that the clock frequency (or its period)

not be allowed to vary by more than a given percentage over a short period of time-say, a

few hours.

 Clock signals with short-tenn stability can be derived from straightforward electronic

circuits as shown in the following sections.

 Long-term stability deals with longer periods of time~perhaps days, months, or years.

 Clock signals that have long-term stability are generally derived from rather special

circuits placed in a heated enclosure (usually called an "oven") in order to guarantee close

control of temperature and hence frequency.

 Such circuits can provide clock frequencies having stabilities better than a few parts in 10
9

per day.

FLIP-FLOPS

 The outputs of the digital circuits considered previously are dependent entirely on their

inputs. That is, if an input changes state, output may also change state.

 However, there are requirements for a digital device or circuit whose output will remain

unchanged, once set, even if there is a change in input level(s). Such a device could be

used to store a binary number.

 A flip-flop is one such circuit, and the characteristics of the most common types of flip-

flops used in digital systems are considered in this chapter.

 Flip-flops are used in the construction of registers and counters, and in numerous other

applications.

 The elimination of switch contact bounce is a clever application utilizing the unique

operating characteristics of flip-flops. In a sequential logic circuit flip-flops serve as key

memory elements.

156

 Analysis of such circuits are done through tablestruth or characteristic equations of

flip-flops. The analysis result is normally presented through state

RS FLIP-FlOPS

 Any device or circuit that has two stable states is said to be bistable. For instance, a

toggle switch has two states. stable It is either up or down, depending on the position of

the switch as shown in Fig. 8.la.

 The switch is also said to have memo,y since it will remain as set until someone changes

its position.

 Aflip-fiop is a bistable electronic circuit that has two stable states-that is, its

output is either O or +5 V dc as shown in Fig. 8.1 b. The flip-flop also has

memory since its output will remain as set l something is done to change it.

 As such, the flip-flop (or the switch) can be regarded as a memory device.

 In fact, any bistable device can be used to store one binary digit (bit). For

instance, when the flip-flop has its output set O V dc.It can be regarded as

storing a logic O and when its output is set at + 5 V de, as storing a logic l.

 flip-flop is often called a latch, since it will hold, or latch,

 in either stable state.

Basic Idea

 One of the easiest ways to construct a flip-flop is to connect two inverters in

series as shown in Fig. 8.2a.

 The line connecting the output of inverter B (INV B) back to the input of inverter

A (INV A) is referred to as the feedback line.

157

 For the moment, remove the feedback line and consider V1 as the input and V3 as

the output as shown in Fig. 8.2b.

 There are only two possible signals in a digital system, and in this case we will

define L = 0 = 0 V dc and H = 1 = + 5 V dc.

 If V1 is set to OV dc, then V3 will also be OV dc. Now, if the feedback line shown

in Fig. 8.2b is reconnected, the ground can be removed from Vi, and V3, will

remain at OVdc.

 This is true since once the input of INVA is grounded, the output of INV B will

go low and can then be used to hold the input of INV lowA by using the feedback

line. This is one stable state-V3 = 0 Vdc.

Conversely, if Vi is +5 Vdc, V3 will also be +5 Vdc as seen in Fig. 8.2c. The

feedback line can again be used to hold Vi at + 5 V de since V3 is also at + 5 V de. This

is then the second stable state- V3 = + 5 V de.

NOR-Gate latch

 The basic flip-flop shown in Fig. 8.2a can be improved by replacing the

inverters with either NAND or NOR gates. The additional inputs on these gates

provide a convenient means for application of input signals to

158

switch the flip-flop from one stable state to the other. Two 2-input NOR gates

are connected in Fig. 8.3a to fom1 a flip-flop.

Notice that if the two inputs labeled R and Sare ignored, this circuit will function exactly as

the one shown in Fig. 8.. 2a.

 This circuit is redrawn in a more conventional form in Fig. 8.3b. The flip-flop

actually has two outputs, defined in more general terms as Q and Q.

159

 It should be clear that regardless of the value of Q, its complement is Q. There are

two inputs to the flip-flop defined as R and S.

 The input/output possibilities for this RS flip-flop are summarized in the truth table

in Fig. 8.4.

 To aid in understanding the operation of this circuit, recall that an H = I at any

input of a NOR gate forces its output to an L = 0.

1. The first input condition in the truth table is R = 0 and S = 0. Since a O at the input of

a NOR gate has no effect on its output, the flip-flop simply remains in its present state;

that is, Q remains unchanged.

2. The second input condition R = 0 and S = I forces the output of NOR gate B low.

Both inputs to NORgate A are now low, and the NOR-gate output must be high. Thus a

I at the S input is said to SET the flip-flop, and it switches to the stable state where Q =

1.

3. The third input condition is R = I and S = 0. This condition forces the output of NOR

gate A low, and since both inputs to NOR gate B are now low,the output must be high.

Thus a 1 at the input is said to RESET the flip-flop. and it switches to the stable state

where

4. The inlast input condition table, R=1 and S=1, is forbidden,as it forces the outputs

of both NOR gates to the low state.

 In other words, both Q=0 and at the same time ! But this violates

the basic definition of a flip-flop that requires Q to be the complement of Q,

and so it is generally agreed never to impose this input condition.

Incidentally, if this condition is for some reason, imposed and the next input

is R = 0, S = 0 then the resulting state Q depends on propagation delays of

two NOR gates.

 If delay of gate A is less, i.e. it acts faster, then Q = 1 else it is 0. Such

dependence makes the job of a design engineer difficult, as any replacement

of a NOR gate will make Q unpredictable.

160

nNAND-Gate latch

 A slightly different latch can be constructed by using NAND gates as shown

in Fig. 8.7. The truth table for this NAND-gate latch is different from that for

the NOR-gate latch.

 We will call this latch an RS flip-flop. To understand how this circuit

functions, recall that a low on any input to a NAND gate will force its output

high. Thus a low on the S input will set the latch (Q = 1 and Q = 0).

 A low on the R input will reset it (Q = 0). If both R and S are high, the flip-

flop will rem~n in its previous state. Setting both Rand S low simultaneously

is forbidden since this forces both Q and Q high.

EDGE-TRIGGERED D FLIP FLOP

Although the D latch is used for temporary storage in electronic instruments, an

161

even more popular kind of D flip-flop is used in digital computers and systems. This

kind of flip-flop samples the data bit at a unique point in time.

 Figure 8.21 shows a positive pulse-forming circuit at the input of a D latch.

The narrow positive pulse (PT) enables the AND gates for an instant.

 The effect is to activate the AND gates during the PT of C, which is

equivalent to sampling the value of D for an instant. At this unique point in

time, D and its complement hit the flip-flop inputs, forcing Q to set or reset

(unless Q already equals D).

 Again, this operation is called edge triggering because the flip-flop

responds only when the clock is in transition between its two voltage

states. The triggering in Fig. 8.21 occurs on the positive-going edge of the

clock; this is why it's referred to as positive-edge triggering.

 The truth table in Fig. 8.21 b summarizes the action of a positive-edge-

triggeredD flip-fl.op. When the clock is low, D is a don't care and Q is

latched in its last state.

 On the leading edge of the clock (PT), designated by the up arrow, the data

bit is loaded into the flip-flop and Q takes on the value of D.

 When power is first applied, flip-flops come up in random states. To get

some computers started, an operator h<1s to push a RESET button. This

sends a CLEAR or RESET signal to all flip-flops.

Also, it's necessary in some digital systems to preset (synonymous

with set) certain flip-flops.

162

 Figure 8.22 shows how to include both functions in a D flip-flop. The edge

triggering is the same as previously described. Depressing the RESET

button will set Q to I with the first PT of the clock. Q will remain high as

long as the button is held closed.

 The first PT of the clock after releasing the button will set Q according to

the D input. Furthermore, the OR gates allow us to slip in a high PRESET

or a high CLEAR when desired. A high PRESET forces Q to equal 1; a

high CLEAR resets Q to 0.

 The PRESET and CLEAR are called asynchronous inputs because they activate the

flip-flop independentlyof the clock.

 On other hand, the D input is a synchronous input because it has an effect only with

PTs of the clock.

 Figure 8.23a is the IEEE symbol for a positive-edge-triggered D flip-flop. The clock

input has a small triangle to serve as a reminder of edge triggering.

 When you see this symbol, remember what it means; the D input is sampled and

stored on PTs of the clock.

 Sometimes, triggering on NTs of the clock is better suited to the application. In this

case, an internal inverter can complement the clock pulse before it reaches the AND gates.

 Figure 8.23b is the symbol for a negative-edge-triggered D flip-flop. The bubble and

triangle symboiize the negative-edge triggering.

163

 Figureis 8.23c another commercially available D flip-flop (the 54/74175 or 54/74LS

175). Besides having positive-edge triggering, it has an inverted CLEAR input This

means that a low CLR resets it.

 The 54/74175 has four of these D flip-flops in a single 16-pin dual in-line package

(DIP), and it's referred to as a quad D-

 type flip-flop with clear.

EDGE-TRIGGERED JK FLIP FLOP

 Setting R = S = I with an edge-triggered RS flip-flop forces both Q and Q to the same logic

level. This is an illegal condition, and it is not possible to predict the final state of Q.

 The JK flip-flop accounts for this illegal input, and is therefore a more versatile circuit.

 Among other things, flip-flops can be used to build counters. Counters can be used to count

the number of PTs orNTs of a clock. For purposes of counting, theJK flip-flop is the ideal

element to use.

 There are many commercially available edge-triggered JK flip-flops. Let's see how they

function.

Positive-Edge-Triggered JK Flip-Flops

In Fig. 8.24, the pulse-forming box changes the clock into a series of positive pulses, and thus

this circuit will be sensitive to PTs of the clock. The basic circuit is identical to the previous

positive-edge-triggered RS flip-flop, with two important additions:

1. The Q output is connected back to the input of the lower AND gate.

2. The Q output is connected back to the input of the upper AND gate.

This cross-coupling from outputs to inputs changes the RS flip-flop into a JK flip-flop. The

previous S input is now labeled J, and the previous R input is labeled K. Here's how it works:

164

1. When J and Kare both low, both AND gates are disabled. Therefore, clock pulses have no

effect. This first possibility is the initial entry in the truth table. As shown, when J and K are

both Os, Q retains its last value.

2. When J is low and K is high, the upper gate is disabled, so there's no way set the flip-flop.

The only possibility is reset. When Q is high, the lower gate passes passes a RESET pulse as soon

as the next positive.

165

clock edge arrives. This forces Q to become low (the second entry in the truth table).

Therefore, J = 0 and K = I means that the next PT of the clock resets the flip-flop

(unless Q is already reset).

3. When J is high and K is low, the lower gate is disabled, so it's impossible to reset the

flip-flop. But you can set the flip flop as follows. When Q is low, Q is high; therefore,

the upper gate passes a SET pulse on the next positive clock edge.

4. This drives Q into the high state (the third entry in the truth table). As you can see, J = 1

and K = 0 means that the next PT of the clock sets the flip-flop (unless Q is already

high).

5. When J and Kare both high (notice that this is the forbidden state with an RS flip-flop),

it's possible to set or reset the flip-flop. If Q is high, the lower gate passes a RESET

pulse on the next PT. On the

 other hand, when Q is low, the upper gate passes a SET pulse on the next PT.

Either way, Q changes to the complement of the last state (see the truth table).

Therefore, J = I and K = I mean the flip-flop will toggle (switch to the opposite

state) on the next positive clock edge.

Propagation delay prevents the JK flip-flop from racing (toggling more than once during a

positive dock edge). Here's why. In Fig. 8.24, the outputs change after the PT of the clock. By

then, the new Q and Q values are too late to coincide with the PTs driving the AND gates.

For instance, if tP = 20 ns, the outputs change approximately 20 ns after the leading edge of

the clock.

 If the PTs are narrower than 20. ns, the returning Q and Q arrive too late to

cause false triggering.

 Figure 8.25a shows a symbol for a JK flip-flop of any design. When you see this

on a schematic diagram, remember that on the next PT of the clock:

I. J and K low: no change of Q.

2. J low and K high: Q is reset low.

3. J high and K low: Q is set high.

166

4. J and K both high: Q toggles to opposite state.

You can include OR gates in the design to accommodate PRESET and CLEAR as was

done earlier. Figure 8.25b gives the symbol for a JK flip-flop with PR and CLR. Notice that it

is negative-edge-triggered and requires a low PR to set it or a low CLR to reset it.

Figure 8.25c is another commercially available JK flip-flop. Itis negative-edge-

triggeredrequiresand a low CLR to reset it. The output Q reacts immediately to a PR

or CLR signal. Both PR and CLR are asynchronous, and they override all other input

signals.

JK MASTER-SLAVE. FLIP-FLOPS

Figure 8.28 shows one way to build a JK master-slave flip-flop. Here's how it works

1. To begin with, the master is positive-level- triggered and the slave is negative-level-

triggered. Therefore, the master responds to its J and K inputs before the slave. IfJ = 1

and K = 0, the master sets on the positive clock

transition. The high Q output master of the drives the J, input of the slave, so on the negative

clock transition, the slave sets, copying the action of the master.

2.If J = 0 and K = I, the master resets on the PT of the clock. The high Q output of the

master goes to the K input of the slave. Therefore, the NT of the clock forces the slave to

reset. Again, the slave has copied the master.

3. If the master's J and K inputs are both high, it toggles on the PT of the clock and the slave

then toggles on the clock NT. Regardless of what the master does, therefore, the slave

copies it: if the master sets, the slave sets; if the master resets, the slave resets.

4.If J = K = 0, the flip-flop is disabled and Q remains unchanged.

167

Figure 8.25c is another commercially available JK flip-flop. It is negative-edge-triggered

requires and a low CLR to reset it.

 The output Q reacts immediately to a PR or CLR signal. Both PR and CLR are

asynchronous, and they override all other input signals.

 The symbol for a 7476 master-slave flip-flop is by taking PR low, or it can be reset to

Q = L by taking CLR low. These two inputs take precedence over all other signals!

 There is something different however. First of all, notice that the clock (C) is not

edge-triggered.

 The master does in fact change state when C goes high.

However, while the clock is high, any change in J or K will immediately affect the master

flip-flop. In other words, the master is transparent while the clock is and thus J and K must

be static during this time. The truth table in Fig. 8.29b reveals this action by means of the

pulse symbol

 Second, the symbol l appearing next to the Q and the Q outputs is the IEEE

designation for a postponed output. In this case, it means Q does not change state until

the clock makes an NT. In other words, the contents of the master are shifting into the

slave on the clock NT, and at this time Q changes state.

 To summarize: The master is set according to J and K while the clock is high; the

contents of the master are then shifted into the slave (Q changes state) when the clock

goes low. This particular flip-flop might be referred to as pulse-triggered, to

distinguish it from the edge-triggered flip-flops previously discussed.

168

 There are numerous pulse-triggered master-slave flip-flops in use today. However,

because edge-triggered flip-flops have overcome the restriction of holding J and K

static when the clock is high, most new designs incorporate edge-triggered devices.

 Some of the more popular pulse-triggered flip-flops you might encounter include the

7473, 7476, and 7478. Their more modem, edge-triggered counterparts include the

74LS73A, the 74LS76A, and the 74LS78A.

169

UNIT -V

 REGISTERS

 A register is a very important digital building block. A data register is often used to

momentarily store binary information appearing at the output of an encoding matrix.

 A register might be used to accept input data from an alphanumeric keyboard and then

present this data at the input of a microprocessor chip.

 Similarly, registers are often used to momentarily store binary data at the output of a

decoder.

 For instance, a register could be used to accept output data from a microprocessor

chip and then present this data to the circuitry used to drive the display on a CRT screen.

 Thus registers /form a very important link between the main digital system and the

input-output channels.

 A universal asynchronous receiver transmitter (UART) is a chip used to exchange

data in a microprocessor system. The UART is constructed using registers and some control logic.

 A binary register also forms the basis for some very important arithmetic

operations. For example, the operations of complementation, multiplication, and division are

frequently implemented by means of a register.

 A shift register can also be connected to form a number of different types of

counters.

TYPES OF REGISTERS

 A register is simply a group of flip-flops that can be used to store a binary number.

There must be one flip-flop for each bit in the binary number.

 A group of flip-flops connected to provide either or both of these functions is

called a shift register.

 The bits in a binary number (let's call them the data) can be moved from one place

to another in either of two ways.

 The first method involves shifting the data 1 bit at a time in a serial fashion,

beginning with either the most significant bit (MSB) or the least significant bit (LSB).

 This technique is referred to as serial shifting. The second method involves

shifting all the data bits simultaneously and is referred to as parallel shifting.

 There are two ways to shift data into a register (serial or parallel) and similarly

two ways to shift the data out of the register.

170

 For instance :

 Serial in- serial out -54/74LS91,8 bits

 Serial in-parallel out-54/74164, 8 bits

 Parallel in-serial out-54/74165, 8 bits

 Parallel in-parallel out-54/74198, 8 bits

 The methods for shifting data in either a serial or parallel fashion .Data shifting

techniques and methods for constructing the four different types of registers are discussed in the

following sections.

 1.SERIAL IN-SERIAL OUT

 In this section we discuss how data is serially entered or exited from a shift register. The

flip-flops used to construct registers are usually edge-triggered JK, SR or D types.

 We begin our discussion with shift registers made from D type flip-flops and then extend

the idea to other types.

 Consider four D flip-flops connected as shown in Fig. (a) Forming 4-bit shift register.

 A common clock provides trigger at its negative edge to all the flip-flops. As output of one

D flip-flop is com1ectedinputto of the next at every Clock trigger data stored in one flip-flop is

transferred to the next.

171

 For this circuit transfer takes place like this Q ~ R, R ~ S, S ~ T and serial data input is

transferred to Q. Let us see how actual data transfer takes place by an example.

 At clock edge A, flip-flop Q has input O from serial data in D, flip-flop R has input O from

output of Q, flip-flop S has input O from output of Rand flip-flop .

 The input from output of S. When clock triggers, these inputs get transferred to

corresponding flip-flop outputs simultaneously so that QRST= 0000. Thus at clock trigger, values at

DQRS is transferred to QRST.

 At clock edge B, serial data in= 0, i.e. DQRS = 0000. So after NT at B, QRST=

0000data. Serial becomes 1 in next clock cycle.

 At clock edge C, DQRS = 1000 and after NT QRST= 1000. Serial data goes to O

in next clock cycle such that at clock edge D, DQRS = 0100 and after NT QRST = 0100. Example 5 .1

will give another illustration of such data transfer.

 Example: Show how a number 0100 is entered serially in a shift register shown in Fig. a using

state table.

 Solution Figure presents the state table. The timing diagram corresponding to this is discussed

in this section. Note how the data flow across the flip-flops is highlighted by arrow direction.

172

 2.SERIAL IN -PARALLEL OUT

 The second type of register mentioned is one in which data is shifted in serially, but shifted

out in parallel. In order to shift the data out in parallel, it is simply necessary to have all the data bits

available as outputs at the same time.

 This is easily accomplished by connecting the output of each flip-flop to an output pin. For

instance, an 8-bit shift register would have eight output lines-one for each flip-flop in the register.

 The 54/7 4164 is an 8-bit serial input-parallel output shift register. The pin out and logic

diagram for this device are given in Fig. (a)

 Two exceptions:

 (1) the true side of each flip-flop is available as an output-thus all 8 bits of any number stored in

the register are available simultaneously as an output (this is a parallel data output);

 (2) each flip-flop has an asynchronous clear input. Thus a low level at the clear input to the chip

(pin 9) is applied through an amplifier and will reset (clear) every flip-flop.

173

 Let's take a look at the gated serial inputs A and B. Suppose that the serial data is connected to

A; then B can be used as a control line.

 Here's how it works:

 B is Held High The NAND gate is enabled and the serial input data passes through the NAND gate

inverted. The input data is shifted serially into the register.

 B is Held Low The NAND-gate output is forced high, the input data stream is inhibited, and the next

positive

 clock transition will shift a O into the first flip-flop. Each succeeding positive clock transition will shift

another O into the register. After eight clock pulses, the register will be full of zeros!

 Example:

 How long will it take to shift an 8-bit number into a 54164 shift register if the clock is set at IO

MHz?

 Solution : A minimum of eight clock periods will be required since the data is entered serially. One

clock period is 100 ns, so it will require 800 ns minimum.

 Example :

 For the register in Example 9.4, when must the input data be stable? When can it be changed?

 Solution: The data must be stable from 30 ns before a positive clock transition until the positive

transition occurs. This leaves 70 ns during which the data may be changing.

 The waveforms shown in Fig. 9.9 show the typical response of a 54/74164. The serial data is

input at A (pin 1), while a gating control signal is applied at B (pin 2). The first clear pulse occurs at

time A and simply resets all flip-flops to 0.

 The clock begins at time B, but the first PT does nothing since the control line is low. At time

C the control line goes high, and the first data bit (a 0) is shifted into the register at time D.

174

 Finally, another clear pulse occurs at time L, the flip-flops are all reset to zero, and another shift

sequence may begin. Incidentally, the register can be cleared by holding the control line at B low and

allowing the clock to run for eight PTs. This simply shifts eight Os into the register.

 Let's analyze one of these circuits by starting with the RS flip-flops and then adding logic blocks

 to Accomplish.

 3.PARALLEL IN –SERIAL OUT

 The ideas necessary for shifting data into and out of a register in serial have been

developed. We can now use these same ideas to develop methods for the parallel entry of data into a

register.

 The 54/74166, for instance, is an 8-bit shift register, and the same circuit is repeated eight

times. So, it's necessary to study only one of the eight circuits, and that's what we'll do here.

175

 .

176

177

 First recognize that the clocked RS flip-flop and the attached inverter given in Fig. 9.1 la

fonn a type D flip-flop. If a data bit Xis to be clocked into the flip-flop, the complement of X

must be present at the input. For instance, if X = 0, then R = 0 and S = 1, and a 1 will be clocked

into the flip-flop when the clock transitions.

 Now, add a NOR gate as shown in Fig. 9.11 b. If one leg of this NOR gate is at ground

level, a data bit X at the other leg is simply inverted by the NOR gate. For instance, if X = 1,

then at the output of the NOR gate X = 0, allowing a 1 to be clocked into the flip-flop.

 This NOR gate offers the option of entering data from two different sources, either X 1 or

X2. Holding X2 at ground will allow the data at X1 to be shifted into the flip-flop; conversely,

holding X 1 at ground will allow data at X2 to be shifted in.

 To summarize:

 CONTROL is High Data bit atX1 will be shifted into the flip-flop at the next clock transition.

 CONTROL is Low Data bit atX2 will be shifted into the flip 0 flop at the next clock

transition.

 For the circuit in write the logic levels present gate leg if CONTROL=1 on each X1 = 1, andX2

= I

178

 Solution The correct 1evels are given in parentheses in Fig,

The data value 1 atX1 is shift into the flip-flop when the clock

transitions.

 4. PARALLEL IN-PARALLEL out

 That data can be shifted either in to out or of the

register in parallel. In fact, simply adding an output line

from each flip-flop in the 54/74166

 The 54/74174

 The 74174 in Fig. 9.13 is an example of a parallel in-parallel out register. The Texas

Instruments data sheet refers to it as a hex D-type flip-flop with clear. It is simply a parallel

arrangement of six D-type flip-flops.

 Each flip-flop is negative-edge-triggered, and thus a PT will shift data into the register. The

six data bits, D 1 through D6 are all shifted into the register in parallel. The stored data is

immediately available, in parallel, at the outputs, Q1 through Q6.

 This type of register is simply used to store data, and is sometimes called a data register, or

data latch. Notice that it is not possible to shift stored data either to the right or to the left.

 A low level at the clear input will immediately reset all flip-flops low. The clear input is

asynchronous-that is, it can be done at any time and it takes precedence over all other inputs.

179

 The 54/74198

 The 54/74198 is an 8-bit TTL MSI having both parallel input and parallel output capability.

The DIP pin out for this device is given in Fig. 9.14 on the next page.

 It uses positive edge-triggered flip-flops, as indicated by the small triangle at pin 11.

Notice that a 24-pin package is required since 16 pins are needed just for the input and output

data lines.

 Not only does this chip satisfy the parallel input-output requirements; it can also be used to

shift data through the register in either direction-referred to as shift right and shift left.

 All the registers previously discussed have the ability to shift right, that is, to shift data

serially from the data input flip-flop toward the right, or from a flip-flop QA toward flip-flop Qs.

We now need to consider how to shift left.

Fig -54/74198, 8-bit shift register. Parallel input-parallel output

 There are a number of 4-bit parallel in-,-parallel out shift registers available since they

can be conveniently packaged in a 16-pin DIP.

 An 8-bit register can be created by either connecting two 4-bit registers in series or by

manufacturing the two 4-bit registers on a single chip and placing the chip in a 24-pin package (

such as the 54/74198). Let's analyze a typical 4-bit register, say, a 5417495A.

 The data sheet for the 5417495A describes it as a 4-bit parallel-access shift register. It

also has serial data input and can be used to shift data to the right (from QA toward Qs) and in

the opposite direction-,to the left. The DIP pin out and logic diagram are given in Fig.

 The basic flip-flop and control logic used here are exactly the same as used in the

54/74164 as shown in Fig.

180

 The parallel data outputs are simply the Q sides of each of the four flip-flops in the

register. In fact, note that the output QD could be used as a serial output when data is shifted

from left to right through the register (right shift).

 When the mode control line is held high, the AND gate on the right input to each NOR

gate is enabled while the left AND gate is disabled.

 The data at inputs, A, B, C and D be will then loaded into the register on a negative

transition of the clock-this is parallel data input.

 When control the mode line is low, the AND gate on the right input to each NOR gate is

disabled while the left AND gate is enabled.

 The data input to flip-flop QA is now at serial input; the data input to Qs is QA and so on

down the line. On each clock NT, a data bit is entered serially into the register at the first flip-

181

flop QA, and each stored data bit is shifted one flip-flop to the right (toward the last flip-flop

Qv).

 Now, when the mode control line is held high, data bit will be entered into flip-flop QD,

and each stored data bit will be shifted one flip-flop to the left on each clock NT.

 There are two clock inputs--clock 1 and clock 2. This is to accommodate

requirements

 where the clock used to shift data to the right is separate from the clock used to shift data to

the left.

 If such a requirement is unnecessary, simply connect clock 1 and clock 2 together. The clock

signal will then pass through the AND-OR gate combination non inverted, and the flip-flops will

respond to clock NTs.

Memory

 Used to store information (to remember) is an important requirement in a digital system.

Circuits and/ or systems designed specifically for data storage are referred to as memory.

182

 In the simplest application, the memory may be a flip-flop, or perhaps a number of flip-

flops connected to a register. In a larger system, such as a microcomputer, the memory may be

composed of semiconductor memory chips.

 Semiconductor memories are composed of bipolar transistors or MOS transistors on an

integrated circuit (IC), and are available

 Two general categories

 1. read-only memory (ROM)

 2. random-access memory (RAM).

 ROM and RAM memories can be constructed to store impressive amounts of data entirely within

a computer system.

 Large amounts of data (such as banking or insurance records) are generally stored using

magnetic memory techniques.

 Magnetic memory includes the recording of digital information on magnetic tape, hard

Disks , and floppy storage disks.

BASIC TERMS AND IDEAS

 Semiconductor Memory

 Recent advances in semiconductor technology have provided a number of reliable and

economical MSI and LSI memory circuits.

183

 The typical semiconductor memory consists of a rectangular array of memory cells,

fabricated on a silicon wafer, and housed in a convenient package, such as a DIP.

 The basic memory cell is typically a transistor flip-flop or a circuit capable of storing charge

and is used to store 1 bit of information.

 Memories are usually classified as either bipolar, metal oxide semiconductor (MOS), or

complementary metal oxide semiconductor (CMOS) according to the type of transistor used to

construct the individual memory cells.

Characteristics

 The two general categories of memory

 1. RAM

 2. ROM

 It can be further divided as illustrated in Fig. A de power supply is required to

energize any semiconductor memory chip. Once de power is applied to a static RAM (SRAM), the

SRAM retains stored information indefinitely, without any further action.

 A dynamic RAM (DRAM), on the other hand, does not retain stored data indefinitely;

any stored data must be stored again (refreshed) periodically. Both SRAMs and DRAMs are used to

construct the memory inside a microcomputer or minicomputer

 DRAMs are used as the bulk of the memory, and high-speed SRAMs are used for a

smaller, rapid-access type of memory known as cache memory.

 The cache is used to momentarily store selected data in order to improve computer speed

of operation. SRAMs can be either bipolar or MOS, but all DRAMs are MOS.

 Data stored in a programmable ROM (PROM) is permanent-a PROM can be programmed

only once .However, the data stored in an erasable PROM (EPROM) can be "erased".

.

184

RAM

 An application in which data changes frequently calls for the use of a RAM.

 The logic circuitry associated with a RAM will allow a single bit of information to be

stored in any of the memory cells-this is the write operation.

 There is also logic circuitry that will detect whether a O or a 1 is stored in any particular

cell-this is the read operation.

 The fact that a bit can be written(stored) in any cell or read (detected) from any cell

suggests the description random access.

 A control signal, usually called chip-select or chip-enable, is used to enable or disable the

chip. In the read mode, data from the selected memory cells is made available at the output.

 The address lines determine the cells written into or read from. Since each cell is a

transistor circuit, a loss of de power means a loss of data-a RAM that has this type of memory cell

is said to provide volatile storage.

ROM

 . An application in which the data does not change dictates the use of a ROM. For

instance, a "lookup table" that stores the values of mathematical constants such as trigonometric

functions or a fixed program such as that used to find the square root of a number could be stored

in a ROM.

185

 The content of a ROM is fixed during manufacturing, perhaps by metallization or by the

presence or absence of a working transistor in a memory cell, by opening or shorting the gate structure,

or by the oxide-layer thickness.

 Since data is permanently stored in each cell, a loss of power does not cause a loss of data,

and thus a ROM provides non volatile data storage.

 An application in which the data may change from time to time might call for the use of an

EPROM.

 Example : State the most likely type of semiconductor memory for each application:

 (a) main memory

(b)in a hand calculator; storing values oflogarithms

(c) storing prices of vegetable produce;

 (d) emergency stop procedures for an industrial mill now the design stage.

 Solution (a) RAM; (b) ROM; (c) EPROM; (d) PROM.

MAGNETIC MEMORY

 Magnetic tape, floppy disks, and hard disks are all capable of storing large

quantities of digital data.

186

 A hard disk drive and a floppy disk drive are important components in nearly all

microcomputer and minicomputer systems.

 Large reels of magnetic tape are economical and widely used mass storage

components in large computer systems.

 The basic principle involved in each case is the magnetization of small spots in a

thin film of magnetic material.

1) Magnetic Recording

 Magnetic tape is produced by the deposition of a thin film of magnetic material on a long

strip of plastic, which is then wound on a reel.

 Magnetic material deposited on a rigid disk forms the basis of a hard disk.

 A current i in the coil shown in Fig. 1.1 a or, the next page will produce a magnetic field

across the gap. A portion of this field will extend into the magnetic material below the gap, and the

material will be magnetized with a fixed orientation.

 When the current is removed, a magnetized spot remains, as shown in Fig.1.2 b. Thus,

information has been stored. If the current is reversed in direction, a spot will again be magnetized, but

with the opposite fixed orientation, as shown in Fig1.3. c.

 Fig 1.1 a ,b,c

187

188

 Fig 2.1 a,b, Fig 3.1

 Now if a fixed, magnetized spot with a given orientation Fig. 2 .1a on the next page, a

current with the direction shown be will is moved past a gap as shown in induced in the coil

 Detecting the orientation of the magnetized spot by measuring the induced current is

reading information (1 or 0).

 At time t1, a spot is recorded under the write head. A short time later, at time t2, this spot passes

under the read head. It can then be read out and a check can be made to ensure that the correct data was in

fact recorded.

 2. Magnetic Tape

 Either seven or nine dual read-write heads are connected in parallel for use with magnetic

tape as illustrated in Fig. 4.1 a. As the tape moves past the heads, data is read or written, 7 (or 9) bits at a

time. In the 7-bit system, alphanumeric info1mation is recorded in coded form, and there is 1 parity(bit

even or odd).

 Data can be stored in coded form or in straight binary form.

 Fig4.1-a,b

 Data storage on a magnetic tape is sequential. That is, data is stored one word after another,

in sequence. To recover (read) data from the tape requires sequential searching.

 Clearly, the storage (or recovery) of data in a sequential system such as this requires

considerably more time than storage (or recovery) using RAM. Tape is said to have a longer access time

than RAM.

189

 3. Hard Disks

 Magnetic material deposited on a rigid disk (usually aluminum) is the basis for a hard

disk system.

 One or more of these disks are mounted in an enclosure similar to that shown in Fig. 5.1a.

The hard disks used in small computer systems are typically 3.5 in. or 5.25 in. in diameter.

 Hard disk drives with 40 to 400 gigabyte capacities are common in microcomputer

systems. The disk is rotated at speeds between 3600 to 7200 rpm and in high end servers up to 15000 rpm

resulting in typical access time of 16 ms to 3.6 ms.

 Because of the relatively short access times and the high storage density, hard disks are

widely used in all computer systems.

 Fig 5.1

 Hard Disk System

 Information is stored in tracks (concentric rings) around the disk. The disk is further

divided into sectors (pie-shaped sections

4.Floppy Disks

 A floppy disk is formed by the deposition of magnetic material on a

 semirigid plastic disk housed in a protective cover as shown in Figs. 5.2a and b.

 The read-write opening provides access for the read-write head, and the index access

hole allows the use of a photosensor to establish a reference position.

 When the write-protect notch is covered,be data cannot recorded on the disk,

preventing accidental loss of data.

 Double-sided high-density 5.25-in disks have a capacity of 1.2 MB. Double-sided high-

density 3.5-in disks have a capacity of2.88 MB.

190

Fig 5.2 a , b & c

 The floppy disk is portable, and it must be inserted into a disk drive as shown in Fig.

5.2.c. The drive unit consists of a single read-write head, read-write and control electronics, a drive

mechanism, and a track-positioning mechanism.

 The spindle drive rotates the magnetic disk at a speed of 360 rpm. Access time is

thus somewhat higher than the hard disk, being about 80 ms on average.

OPTICAL MEMORY

 Introduced in 1982 jointly by Philips and Sony for storing digital audio data, Compact

Disk (CD) found its way into computer storage in 1985.

 There was no looking back since then and today we find different types of CDs flooding the

market binary where data is optically .coded.

191

 The memory capacity of a CD is in the range of 650-700 MB, i.e. nearly 500 times more

than 1.44 MB magnetic floppy disk. Both come in movable datastorage category with almost same

price tag optical in but data integrity disk is maintained over much longer period of time.

 Its newer variety called Digital Versatile Disk (DVD) can store data from 4.7 GB to 17.1 GB

depending on configuration and make.

1.CD. ROM

 CD ROM or CD Read Only Memory devices are mass produced in factory using a stamp press

technology.

 CD ROM drives uses LASER (Light Amplification by Stimulated Emission of Radiation)

technology to read. data from A it. Semi conductor LASER generates a high intensity light wave of

stable wavelength"' 780 run.

 A lens system is used to direct the LASER towards the disk over approximately 1 micron

diameter spot.

 The pit width is such that there is at least and at most 10 zeroes between every This is

achieved by converting every 8-bit byte into a 14-bit value, a process called Eight to Fourteen

Modulation

 A compact disk reading system

192

(a) label layer

 (b) protective layer

(c) reflective layer

 (d) a transparent substrate layer on which land

2. CD-R

 CD-R or CD-Recordable allows user to write data but once. The CD-R

drive has laser unit which uses higher intensity light wave for write operations than

read.

 A macroscopic view of a part of compact disk surface

 This melts or chemically decomposes the dye to form a depression mark

in the recording layer in appropriate places. The places burnt have lower reflectivity

of light.

 Thus read laser gets two different intensities on reflected while light reading the

disk, similar to read operation of a CD ROM.

 Disadvantage :The writing speed of CD-R is much slower than the read speed.

3.CD-RW

 CD-RW or CD Read Write, previously known as CD-Erasable gives user facility

to write and erase data many times, unlike CD-R.

 Writing data on disk uses highest power of laser that heats up selected spots to

500°-700°C . The read process is like CD-ROM and CD-R that notes the difference in

reflectivity of the reflecting surface.

193

 The main drawback of CD-RW is very low reflectivity of the material and the

difference between two levels is also not much.

.

4.DVD

 Digital Versatile Disk or Digital Video Disk, popular as DVD resemble compact

disk in dimension and look but contains much higher storage space.

 DVD driver uses smaller wavelength (635 nm or 650 nm) and lower numerical

aperture of lens system to read smaller dimension land and pits.

 Each side can have two layers from which data is read and in certain disks data is

written on both the sides.

 Single sided, single layer has capacity of 4. 7 GB, single sided double layer has

8.5 GB, double sided single layer has 9 .4 GB while double sided double layer has 17 .1 ·

GB of storage space.

 The better quality of DVD output compared to CD comes from better channel

coding correction error scheme and of course a higher data transfer rate.

 MEMORY ADDRESSING

1. Cell Selection

 Addressing is the process of selecting one of the cells in a memory to be

written into or to be read from, In order to facilitate selection, memories are generally

arranged by placing cells in a rectangular arrangement of rows and columns as shown in

Fig. a.

 In this particular case, there are m rows and n ·columns, for a total of n X m

cells in the memory.

A rectangular array of m x n cells, (b) Selecting the cell at memory address AB

The control circuitry that accompanies the basic memory array is designed such that if one

and only one row line is activated and one and only one column line is activated, the

memory cell at the intersection of these two lines is selected.

 For instance, in Fig. 7.1 b, if row A is activated and column B is activated, the cell

194

at the intersection of this row and column is selected--that is, it can be read from or written

into.

 For convenience, this cell is then called AB, corresponding to the row and the

column selected. This designation is defined as the address of the cell. The activation of a

line (row or column) is achieved by placing a logic 1 (or perhaps a logic 0) on it.

2.Matrix Addressing

 Let's take a little time to consider the various possible configurations for a

rectangular array of memory cells.

 The different rectangular arrays of 16 cells are shown in Fig. 8.1 In each of the

five cases given, there are exactly 16 cells.

 Fig 8.1 a,b & c

 For any of the three configurations, the selection of a single cell still requires a

single row and a single column to define a unique address.

 The minimum requirement in either case is really only 16 lines. However, either

arrangement in Fig. 8.2b requires only 10 address lines-8 rows and 2 columns, or 2 rows and

8 columns.

195

 In general, the arrangement that requires the fewest address lines is a square array of n rows

and n columns for a total memory capacity of n x n = n2 cells. It is exactly for this reason that t he square

configuration is so widely used in industry.

 This arrangement of n rows and n columns is frequently referred to as matrix ad-dressing. In

contrast, a single column that has n rows (such as the 16 x 1 array of cells) is frequently called linear

addressing, since selection of a cell simply means selection of the corresponding row, and the column is

always used.

The small triangle (V) at the Q output means that the output is three-state (tri-state). We'll

use this chip in Sec. 13.5.

3.Address Decoding

 Take another look at the 4 x 4 memory in Fig. 8.1c. To select a single cell, we one must

activate and only one row, and one and only one column.

 This suggests the use of two l of 4 binary to decimal decoders as shown in Fig. 8.1. Consider the

selection of the cell at address 43 (row 4 and column 3). If A4 = 1 and A3 = 1, the decoder will hold the

row 4 line high while all other row lines will be low. Similarly, if A 2 = 1 and A1 = 0, the decoder will

hold column 3 high and all other column lines low.

 Thus an input A 4A 3A 2A 1 = 1110 will sekct cell 43. We can consider A4 A 3 as a row address

of 2 bits and A2A1 as a column address of 2 bits. Taken together, any cell in the array can be uniquely

specified by the 4-bit address A 4A3A2A 1• As another example, the address A4 A 3A2A 1 =the0110

selectcell at row 2 and column 3 (address 23).

 The address decoders shown in Fig. 13.14 further reduce the number of address lines needed

to uniquely locate a memory cell, and they are almost always included on the memory chip.

196

4.Expandable Memory

 So far, we have only discussed memories that provide access to a single cell or bit at a

time. It is often advantageous to access groups of bits-particularly groups of 4 bits (a nibble) and groups

of 8 bits (a byte).

 It is not difficult to extend our discussion here to accommodate such requirements.

There are at least two popular methods. The first simply accesses groups of cells on the same memory

chip, and we discuss this idea next.

 The second connects memory chips in parallel, and we consider this technique in a

following section.

 The logic diagram for a 64-bit (16 x 4) bipolar memory is given in Fig. 13.16. There

are 16 rows of cells with four cells in each row; thus the description (16 x 4). Each cell is a bipolar

junction transistor flip-flop.

 The address decoder has 4 address bits and thus 16 select lines--0ne for each row. In

this case, each select line is connected to all four of the cells in a row.

 So, each select line will now select four cells at a tin1e. Therefore, each select line will select a

4-bit word (a nibble), rather than a single cell.

You might think of this arrangement as a "stack" ofsixteen4-bit registers. This is really a form of l in

ear addressing, since the 4 address bits, when decoded, select one of the sixteen 4-bit registers

197

64-bit (16 x4) memory

ROMs, PROMs, AND EPROMs

 Let's turn our attention to the operation of a ROM. The tem1 ROM is generally reserved for

memory chips that are programmed by the manufacturer.

 Such a chip is said to be mask-programmable, in contrast to a PROM, which is said to be.

field-programmable- that is, it can be programmed by the user.

 EPROMs can be programmed, erased, and programmed again;

Programming

 What exactly does programming a ROM, PROM or EPROM involve? It simply involves

writing, or storing, a desired pattern of Os and ls (data).

 Each cell in the memory chip can store either a 1 or a 0. As supplied from the manufacturer,

most chips have a O stored in each cell. The chip is then programmed by entering ls in the appropriate

cells. For instance, the content of every 4-bit word in a 64 x 4 chip is initially 0000.

 If the desired content of a word is to be 0110, then the two inner bit positions will be

altered to In the case of a ROM, you must supply the manufacturer with the exact memory contents to be

stored in the ROM.

198

 The Texas Instruments TMS4732 is a ROM having 4096 eight-bit words (a 4096 x 8

ROM). The logic diagram is given in Fig. 13.17. The 8-bit word length makes this

NMOS (n-channel MOS) chip ideal for microprocessor applications.

 Texas Instruments will store user-specified data during manufacturing. The user must supply

data storage requirements in accordance with detailed instructions given on the TMS4732 data sheet

 The Texas Instruments TBP l 8S030 is a bipolar memory chip arranged as thirty-two

8-bit words (256 bits). The logic diagram for this user-programmable PROM chip is given in Fig. 13 .18.

Basically, the programming is done by applying a current

pulse to each output terminal where a logic 1 must appear (be

stored).

 The current pulse will destroy an existing

fuse link. When the fuse link is present, the transistor circuit in

that cell stores a 0.

 After the fuse link is destroyed, the circuit

storesprogramming1.

1. Apply the address of the word to be programme

(A0, Al' A2, A3 , A4). For instance, to programme the word at

address 14H (hex 14). apply

 AOAIA2A3A4 = 10100

2. To store the word Q0 Q1Q2 Q3 Q4 Q5 Q6 Q1 00101000:

 (A)Ground output Q2 and connect output sall other to +5 Vdc through a 3.9-k.Q resistor.

Raise the +5-Vdc supply to +9.25 Vdc and momentarily enable the chip. This will program a

1 in bit position Q2•

 (B) Repeat for bit position Q4 • This will program a 1 in bit position Q4 •

3. Repeat steps 2 and 3 for each word to be programmed.

ROMs

 The logic diagram for the Texas Instruments TMS4732, a 4096 x 8 ROM, is given in

Fig. a. Twelve address bits are required, A0 , A1, ... , All (2
12

 + 4096).

 There are two chip-enable inputs, S1 and S2• Both S1 and S2 must be high in order to

enable the chip.

199

 Each of the eight data output lines is a three-state line (the small V symbol). As

mentioned previously, this chip is ideal for microprocessor applications because of the 8-bit word

length. This ROM is mask-programmable, and data must be specified for the manufacturer before

purchase.

Texas Instruments offers a number of other ROMs with larger memory capacity, all of which are LSI

NMOS devices.

TMS4664: 8192 x 8-bit

TMS4764: 8192 x 8 bit

TMS47128: 16,384 x 8-bit

TMS47256: 32,768 x 8-bit

PROMs

 The TBPl 8S030 is a 256-bit (32 x 8) PROM arranged as a stack of thirty-two 8-bit

words. The 74S288 is an equivalent designation.

 As shown in Fig., the 5 row address bits are labeled A0 , AI' A2, A3, A4 and the 8

output bits in a word are labeled Q0 , QI' Q2, Q3, Q4, Q5, Q6, Qr

Input G is used to enable or disable the entire set of 32 input decoding gates.

 When G is high, all the address decoding gates are inhibited and the memory chip is

disabled, causing the eight output data bit lines to be high.

200

 Functional block diagram and word selection

201

EPROMs

 One disadvantage of a PROM is that once it is programmed, the contents are stored in that

memory chip permanently-it can't be changed; a mistake in programming the chip can't be corrected.

The EPROM overcomes this difficulty.

 The EPROM has a structure and addressing scheme similar to those of the previously

discussed PROM, but it is constructed using MOS devices rather than bipolar devices.

 Many MOS EPROMs are TTL-compatible, and even the technique used to program the chip is

similar to that used with a bipolar memory.

 The current pulse used to store a 1 when programming a bipolar PROM is used to destroy

("bum out") a connection on the chip. The same technique is used to program an MOS-type EPROM,

but the current pulse is now applied for a period of time (usually a few milliseconds) in order to store a

fixed charge in that particular memory cell.

 This stored charge will cause the cell to store a logic 1.The interesting thing about this

phenomenon is that the charge can be removed (or erased), and the cell will now contain a logic O!

Furthermore, the process can be repeated.

 The memory cells are "erased" by shining an ultraviolet light through a quartz window onto

the top of the chip. The light bleeds off the charge and all cells will now contain Os.

 The requirements for program runing and erasing an EPROM vary widely from chip to

chip, and data sheet information must be consulted in each individual case.

202

EEPROM, Flash Memory

 Electrically Erasable Programmable Read Only Memory (EEPROM) is similar to

EPROM as far as writing into memory is considered, i.e. effecting a current pulse to store charge.

 The erasing, however, is different and is done by removing the charge and sending a

pulse of opposite polarity.

 There are two types of EEPROM-parallel and serial. Parallel EEPROM is faster,

costlier and comes in 28xx family.

 Their pin out and functioning is similar to 27xx EPROM family. Serial EEPROM is

slower, cheaper, uses lower number of pins and comes in 24xx family.

 Flash memo, yon is a further advancement EEPROM. This, too, writes and erases data

electrically-can be both parallel and serial type. The number of write/erase cycle is finite and often, there

is a separate management scheme to take note of this.

 There is an internal voltage generation block that takes single voltage supply and

generates different voltages required for writing and erasing. Different manufacturers have created

different standards for flash memory chip which differ in pinout, memory organization, etc. Intel family

chips are 28Fxxx while AMD chips are numbered as 29Fxxx.

RAMs

 The basic difference between a RAM and a ROM is that data can be written into (stored

in) a RAM at any address as often as desired.

 Naturally data can be read from any address in either a RAM or a ROM, and the addressing

and for read cycles both devices are similar. The characteristics of both bipolar and MOS "static" RAMs

are discussed in this section.

 A static RAM (SRAM) uses a flip-flop as the basic memory cell (either bipolar or MOS)

and once a bit is stored in a flip-flop, it will remain there as long as power is available to the chip-

essentially forever-thus the term "static."

 On the other hand, the basic memory cell in a "dynamic" RAM (DRAM) utilizes stored

charge in conjunction with an MOS device to store a bit of information. Since this stored charge will not

Remain periods for long of time

The 7489

 The 7489 shown in Fig. 13.22 is a TTLRAM,LSI 64-bit arranged as 16 words of 4 bits

each.

 Holding the memory-enable (ME) input low will enable the chip for either a read or a

write operation, and the four data address lines will select which one of the sixteen 4-bit word positions

to read from or write into.

203

Then, if the write-enable (WE) is held low, the 4 bits present at the data inputs (D1, D2, D3, D4) will be

stored in the selected address.

 The read operation is no different from that for a ROM. For this chip, simply hold ME

low and WE high, and select the desired address. The 4-bit data word then appears at the "sense" outputs.

 The timing for a read operation is shown by the wave forms in Fig. 13.22d. The

propagation delay time t PHL is that period of time from the fall of ME until stable data appears at the

outputs-the data sheet gives a maximum value of 50 ns, with 33 ns typical. Naturally the address input

lines must be stable during the entire read operation, beginning·

204

with the fall of ME. Notice carefully that the data appearing at the four outputs will be the

complement of the stored data word!

 You will notice from the truth table that when the chip is deselected, that is, when ME is high,

the outputs all go to a high level, provided we are in a read mode (WE is high). So, in the read the

operation waveforms, time PLH is the delay time from the rise of ME until the outputs assume the

high state.

 The data sheet gives and 50 ns maximum 26 ns typical for this delay time.

 During a write operation the 4 bits present at the data inputs will be stored in the selected

memory address by holding the ME input low (selecting the chip) and holding the WE low.

 Let's look carefully at the timing requirements for the write cycle. First, the WE must be held

low for a minimum period of time in order to store information in the memory cells-this is given as

time tw on the waveforms, and the data sheet calls for 40 ns minimum.

 Memory-enable selects .the chip when low, and is allowed to go low coincident with or before

a write operation is called for by WE going low.

205

 Next, the data to be written into memory must be stable at the data inputs for a minimum

period of time before WE and, also for a minimum period of time after WE.

 The time period prior to WE is called the data-setup time t2• This time is measured from the

end of the write-enable signal back to the point where the

 In other words, the address lines are allowed to become stable coincident with or before

 WE goes low. The address lines must also be stable for a period of time after the rise of WE; this

is called the address-hold or select-hold time t5, and the data sheet calls for 5 ns minimum.

 Finally, after a write operation, if the chip is deselected (ME goes high), the outputs will return

to a high state. The maximum time for this to occur is the sense-recovery time tsR' given as 70 ns

maximum on the data sheet.

 The operation of a 7489 ns straightforward and easy to understand; therefore it is a good

chip to study in elementary discussions of RAMs. It can be used to construct memories having larger

capacities by connecting chips in parallel, but it's not too practical when we wish to consider memories of

16K, 32K, ... , 256K, 512K, and so on.

206

A SIMPLE COMPUTER DESIGN

 A digital computer is capable of computation and taking decision based on binary coded

instructions stored inside it.

 The central processing unit (CPU), also known as the brain of the computer sequentially

fetches these instructions, decodes it and then executes it by performing some action through available

hardware.

 The technique you learn in developing this simple machine will be useful when you go

for a full-fledged computer design in some higher-level courses.

 We'll also discuss a simple hardware operation description language, called Register

Transfer Language (RTL) useful for state machine design.

BUILDING BLOCKS

 Depending how we program it, we will be able to solve different arithmetic and

logic problems and that is shown towa.rds the end of this chapter through examples.

 The purpose of defining a problem is to choose specific hardware components that will

serve as building block of our simple computer.

The Problem

 Add 10 numbers stored in consecutive locations of memory. Subtract from this total a number,

stored in 11 th location of memory. Multiply this result with 2and store it in 12th location of memory. All

the numbers brought from memory lie between O and 9.

Memory

 The problem says the numbers or data to be fetched from memory and we also know that

programs, i.e. binary coded instructions are also stored in memory, let us divide the memory used in our

computer in two parts.

 One part stores the program or series of instructions the computer executes sequentially and

this is known as program memory. The other part houses data that program uses and is also used for storing

result. This is called data memo!J'·

 Now we try to decide how many bits of information we store in each address location.

Usually, bits in memory locations are stored in multiple of 8 called byte.

 Let's now see the requirement of program memory. There, in each location, certain number of

bits are allocated that defines the instruction to be executed. This is called operation code or in short,

207

opcode. The rest of the bits can be used for referring the memory .location from which data is to be brought

or stored, if required by the instruction.

 7 5 4 0

 opcode Address

Register Array

 The computer needs a set of registers to perform its operation. Memory Address Register

(MAR) is a 5-bit register that stores the address of the memory location referred in a particular instruction.

 The output of this is fed to a 5-to-32 address decoder. Each output of the decoder points to a

location in the memory. All memory referenced instruction loads memory address in MAR.

 Memory Data Register (MDR) is an 8-bit register that stores the memory output when a

memory read operation is performed. During memory write operation it stores the value that gets written

to the memory. Thus it can also be called a memory buffer.

 In arithmetic or logic operation when more than one operand is required by ALU, one

operand in our simple machine comes from MDR.

 Program Counter (PC) is a 5-bit counter that stores the address of the memory location

from which next instruction is fetched. At power on, our machine PC is reset so that its content is all zero.

 Thus location 00000 has to be a part of program memory and this is also the starting

address from which program execution begins. Since, in our simple machine all the instructions are single

byte instruction, every time an op code is fetched we'll increment PC by one, and thus PC will point to

location of the next op code.

 Instruction Register (IR) is a 3-bit register, which retains the opcode till it is properly

executed in one or more clock cycles. Since all memory read and write operations are done through MDR,

after an instruction is read from memory, 3 MSB that contains the opcode are transferred to JR.

 Accumulator (ACC) is a multi-purpose register that always stores one operand of an

arithmetic or logic operation. The result of this operation, i.e. ALU output is also stored in ACC. Functions

like shifting of bits to left or right are also carried on ACC. Thus, in our simple computer ACC is a shift

register with parallel load facility.

208

 Timing Counter (TC) is a synchronous parallel load counter that stores and updates the

timing information. The timing counter output is decoded to generate different timing signal, which in tum

triggers different events in execution of an instruction.

 The counter is reset synchronously with clock once an instruction is fully executed. If an

instruction is conceived as a macro operation then series of sequential steps necessary to carry out the

instructionis in the computer called micro operations

Other Important Hardware

 Arithmetic Logic Unit (ALU) is a versatile combinatorial circuit that can perform a large range of

arithmetic and logic operations. Since the data is 8-bit long, we use an 8-bit ALU.

 The control input value decides the function ALU executes at a particular time. ALU can

accept to two operands a time, one from A CC and the other from MDR. The ALU output is stored in

ACC.

 Decoder Instruction (ID) is a 3-to-8 decoder, which takes input from JR and thereby decodes

the opcode. In our simple computer there are 8 different op codes, each one making one of the decoder

output (D0, Dp···, D7) high. This in turn initiates specific micro operations necessary to execute that op

code in subsequent clock cycles.

 Timing Sequence Decoder (TSD) is again a 3-to-8 decoder that takes input from TC and

provides necessary timing information in the form of decoded output (~J' T1, • •• , T7) for a micro operation

to be executed.

 BUS is a group of wires that serve as a shared common path for data transfer of all the

devices connected to it. With this, we do not need a separate device to device connection which increases

the number of wiring specially when large number of devices are used in a system. Since, the largest group

of binary data that is transferred in our computer is 8-bit, the bus used is an 8-bit bus.

 BUS Selector (BS) is a multiplexer, which decides which one of all the connected

devices is in transmission mode, i.e. has placed data in the BUS. Note that, if more than one device try to

send data simultaneously, there will be a conflict producing erroneous result.

 This is called control path and we'll design it when we define the instruction set for our

computer.

 Generally speaking, address bus is the group of wires that transfer address information, data

bus is another group that transfers data and control bus transfers control information. Often, address

209

information and data are transferred through a common bus and a control logic decides which is to be

transferred and when.

REGISTER TRANSFER LANGUAGE

 Before we go for design of control path and the control unit as a whole we have to

define macro operations and then we need to break up each macro operation in series of micro operations at

register level.

 Register Transfer Language (RTL) gives a simple tool through which these micro

operations can be expressed and then control unit can be designed from that. The basic structure of this

language is

X:AB

 This means, if condition Xis TRUE, i.e. X = l then content of register Bis transferred to

register A. X can be a single logic variable or a logic expression like xy =x&y, x + y =x Iy, etc.

 In RTL we distinguish logic operation 'OR' from arithmetic operation 'addition' by assigning

symbols ' I 'and '+'respectively. The logic AND is expressed by symbol'&'. However, if the'+' sign appears

left to':' in an RTL statement it means logical OR and '.' refers to logical AND. This is so because to left of

':' only logical operators can reside.

 Often AND, OR, NOT are expressed by 'A', 'v', '-' respectively. Also note, this register

transfer destroys the previous content of A but not that of B. Both the register A and B now have the same

value. If register transfer takes via BUS

A B = BUS B, A <--BUS

210

Since, BUS is not a register but a group of wire this means B getting access to BUS through BUS

selector (BS) and the whole event takes place in one clock cycle. Figure 16.3 pictorially depicts register

transfer withoutand BUS.

To write anything to memory, in our simple computer we have to place the address information in MAR

and the data to be written in MDR. Thus, memory write operation in RTL is expressed as

X: M[MAR] <--MDR

Similarly, memory read operation is also done through MAR and MDR and RTL expression is

X:MD<--M[MAR]

If certain bits of a register are to be addressed we use RTL as follows:

X: IR MDR[7:5]

The statement above refers to transfer of three most significant bits of MDR to IR, a 3-bit register when

X= l.

The arithmetic and logic operations of ALU that bring operands from ACC and MDR and store the result

in ACC can be expressed in RTL in the following way

X:ACACC&MDR [logic AND]

X:ACCACC I MDR [logic OR]

X:ACCACCEBMDR [logic EX-OR]

X:ACCACC' [logic NOT]

211

X:ACCACC]+MDR [arithmetic addition]

X:ACCACC-MDR [arithmetic subtraction]

X:ACCACC+ [increment by l]

And finally if data is to be shifted in a register say by I bit to left we can write

X: ACC[7:l] ACC[6:0],ACC[O) 0

If such left shift occurs through carry the statement will be

X: ACC[7:l] ACC[6:0),ACC[0] CY

Normally, we come across these four kinds of micro operations namely

 (i) Inter-Register transfer

 ii) Arithmetic operation

 (iii) Logic operation

 (iv) Shift operation

212

EXECUTION Of INSTRUCTIONS, MACRO AND MICRO OPERATIONS

 In a computer, execution of instructions is carried through macro operations

which again can be subdivided into· micro operations.

 In this section, we first define the macro operations that we want to be

executed in the computer we are designing.

 Next, we'll discuss micro operations necessary to execute each macro operation and

it will be expressed through RTL.

 Remember that we have assigned only 3-bits as op code and hence we can define 2
3
 =

8 instructions or macro operations with them.

 Table lists all the instructions, corresponding mnemonics (easy to remember short

forms), op codes and 3-to-8 decoder (ID) output when JR is loaded with this op code.

213

Digital Principles and Applications

Instruction Cycles:

 To carry out each instruction or macro operation the computer has to go through three distinct phases

or cycles.

 In fetch cycle it brings the instruction or op code from the program memory. In decoding

phase it decodes the op code and finally the execution is done in execute cycle.

 These cycles together known as instruction cycle are again repeated for next instruction.

It is understandable that fetch and decode phase will be same for all instructions in our simple computer as

we have only single byte directly addressed instructions.

 However, the execution cycle will be different for different instructions depending on the

tasks the instruction wants to perform.

Fetch Cycle

 An instruction cycle begins with fetch cycle when TC is reset to 0. Then, only T0 output of

TSD will be high and rest low.

214

 PC now can be incremented to point to address of next location in program memory,

which stores next instruction.

 Content of MAR will be useful in execute phase if the op code makes some memory reference,

 the address of which remain available at MAR. In RTL the above operations can be represented as

T0 :MARPC

T1 : MDR M[MAR], PC PC+ 1

T2 : IRMDR[7:5],MAR.MDR[4:0]

 Decode Cycle

 In decode cycle we decode the op code fetched from program memory. Since at T2, register

IR is loaded with op code and 3-to-8 decoder (ID) that decodes the op code is a combinatorial circuit, we

finish decoding in T2 itself. In RTL we express it as

T2 : D0 ... D 7 DECODE (JR)

Often, the 3rd statement of previously mentioned fetch cycle that loads IR with new opcode is

considered a part of decode cycle or fetch-decode together is called fetch cycle.

Execute Cycle

Micro operations for each instruction are different and we list them first and then give the explanation.

215

 In operations like LDA, AND, ADD, SUB data is brought from memory, address of which is

 available in MAR. In executing STA the MAR content denotes the location where data is to be stored

 in memory.

 Macro operations AND, NOT, ADD, SUB use ALU. When HLT is executed S flag is set which

stops execution This of the program.

 We reset TC and let the computer begin a new instruction cycle. This analysis can be extended

to explain execution of other instructions.

 At this point we make an important observation that all the instruction executions are completed

within 5 clock cycles (T0 to T4) and hence a 3-bit counter, which can count up to 8 is sufficient as TC in our

simple computer.

 DESIGN OF CONTROL UNIT

 The control unit is primarily a combinatorial circuit that supplies necessary controls inputs to

all the important hardware elements of the computer.

 This takes timing information from computer master clock and is thus responsible for providing

necessary timing and control information.

216

 The path through which these signals travel to reach different parts of a computer is called

control path. Often we assign a group of wires, called control bus as shared path for this.

 The control logic is arrived at from

(i) basic computer architecture we have adopted in the beginning,

(ii) conditions appearing at left hand side of symbol ':' in RTL statements for

our simple computer, given in previous section.

(iii) certain other issues, e.g. power-on-reset, control variables need to be

activated for intended operation of a particular hardware, etc.

Loading Registers

 Let us first see when parallel load control ofJR is to be activated.

 We find from discussion of previous section, only during T2 it is loaded. So TSD (Timing

counter decoder)T output 2 can be directly connected as parallel load control input of JR.

 Obviously, at that time BUS selector (BS) should place content of lvfDR into BUS. This

we'll discuss while designing control for BS.

 What happens if we allow loading of IR say, in every clock cycle instead of above? Whenever

there is some data made available in BUS by any hardware 3 MSB of that will be loaded into JR; ID

(decoder) will immediately change and execution corresponding to a different opcode, not the intended

one, may begin.

217

 Finally, the master clock remains enabled if flag Sis not set. Thus ENABLE clock K = S'

 Based on these equations the control unit of our simple computer can be made.

 We show the controlcircuit of ACC, TC and TSD, BS in following three examples. Refer to

problems.

PROGRAMMING COMPUTER

 Now that our simple computer is ready with hardware and instruction sets let us see

 what computer program can solve the problem with which we started designing our simple machine.

 we present the program in mnemonics along with comments on job done by each

 instruction. Program in binary code as exists in 32 x 8 memory module will be shown after that.

 Thus we need 14 instructions all single byte to solve the problem in our simple computer.

 We need 12 memory locations for storing numbers. So 14 + 12 = 26 bytes of our 32 byte memory

 are used for this problem.

 For bigger sized problems we need bigger memory and for more complex problem additional

 instruction sets and, of course, more complex computer architecture.

 Now let us see how program and data remain stored in memory in binary numbers.

 We know that due to power-on-reset PC is always initialized with 00000, the first location of

 the memory where first instruction of the program is to be stored.

 We use first 14 locations (address 00000 to 01101) of memory to store instructions. If

 we store data used in the program, i.e. 11 numbers in next consecutive locations then addresses

 O1110 to 11000 get filled. The location 11001, i.e. 26th location of memory can be used to store

 the result.

218

 Program Execution

 Now let us see how the program gets executed in first few instruction cycles. We note the

change in the value of the registers along with ID and TSD in each clock cycle since the program

begins. Table shows sequential progress of our simple computer with every trigger of system clock.

 As told before PC, TC and S are power on reset. They all contain zero in the beginning

when the computer is switched on.

 In first clock cycle, the machine is in T0 state given by TSD that decodes TC. At T0, content

of PC that contains the starting address of the program is copied to MAR. Corresponding micro

operation is shown in rightmost column of Table 16.4. TC is incremented by 1.

 In next clock cycle, TC and PC are incremented by 1, data from memory is loaded to MDR

that contains the first instruction.

 This completes the first instruction cycle. Note that timing counter (TC) is to be reset after

execution of data transfer from MDR to ACC and that begins the next

219

 The fetch cycle is repeated in clock cycle 6 to 8. Since the instruction fetched is ADD

 (op code 110) corresponding micro operations are performed in clock cycles 9 and 10 followed by

 next instruction fetch, starting again at 11th clock cycle.

 This continues till we reach 14th instruction HLT which when executed, sets S flag.

 This inhibits the system clock output in our design; thus content of all registers and memory will

 remain unchanged after that till the computer is switched off.

 Concluding Remark

 Before we conclude our computer design exercise let us see what we have achieved and what

 more is needed to make this computer fully functional.

 We have designed a simple processor comprising register arrays, flag, small memory, BUS

and control unit. In short, we have designed a central processing unit (CPU) that connects to a small

memory module and is able to execute programs built on a small instruction set.

 What we have not discussed is how data is entered into computer from an external device say,

 keypad and also how it displays data in some output device say, a monitor.

 These are covered in detail in titles related to modem computer design courses and an interested

reader can refer to the same.

220

Basic architecture of an 8-bit computer

 signals, connected to each of the memory and output module generating unique address ranges as

specified in the bottom of the figure. The calculation is as follows.

 CPU read is enabled by activating the control signal, RD (Read). This, in turn, requests outputs

 of the devices from which data is to be read to be enabled through OE (Output Enable) or through RD, if it

is a serial input-output port, following which CPU takes the value from data bus.

 The control signal WR (Write) is activated to enable CPU writing to devices. Note that WR

 and RD should not be activated simultaneously.

 This is usually used during power on of the computer and also in between, if the computer is

 asked to stop all operations and start afresh. The other time a computer may be asked to stop its usual

 fetch-decode-execute operations, but only temporarily, is when an interrupt is invoked. Then the

 computer's present state is stored in a designated memory space called stack.

 The computer comes back to its usual operating state once the interrupt is served usually

 through a interrupt service routine (ISR). There could be both software and hardware interrupts. The

 serial port control block shows how a hardware interrupt can ask service from CPU by activating INTR.

 Note that the mask able interrupts can be masked (disabled) by writing into a control register while

non-mask able interrupts cannot be disabled.

