

DON BOSCO COLLEGE

DEPARTMENT OF PHYSICS

STUDY MATERIAL

SUBJECT NAME : COMPUTATIONAL PHYSICS & C++ PROGRAMMING

PAPER CODE : 21PPH06

CLASS : I -M.Sc., PHYSICS

SEMESTER : II

UNIT-I:

SOLUTIONS OF LINEAR AND NONLINEAR EQUATIONS

Simultaneous Linear Equations: Gauss elimination method - Jordan’s modification - Gauss-

Seidel method. Curve fitting - Method of least squares - Normal equations - Straight line fit -

Interpolation - Least squares Approximation - Newton Interpolation polynomials - Linear

Interpolation - Gregory-Newton Interpolation polynomials.

Roots of Non-linear Equations: Bisection method - Iteration method - Newton-Raphson

method - Termination criteria – Pitfalls - Order of convergence.

UNIT-II:

NUMERICAL INTEGRATION AND DIFFERENTIATION

Numerical Differentiation - Numerical Integration - Trapezoidal rule - Simpson’s 1/3 and 3/8

rules - Random number generation - Park and Miller method - Newton-Cotes formulas -

Gaussian quadrature formula - Estimation of errors in evaluating the integrals - Roots of

Equation.

UNIT-III:

NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS:

Ordinary Differential equation: Taylor’s series method - Euler and Picard methods - Predictor -

corrector methods - Chaotic dynamics of a driven pendulum - Boundary-value and eigenvalue

problems - The Shooting Method - Linear equations and the Sturm - Liouville problem.

First order equations: Euler and improved Euler methods - Formulas - Second order equation

-Euler methods - Solution of Ordinary differential equation by Euler, Runge-Kutta Fourth

Order method for solving first order ordinary differential equations.

UNIT- IV

FUNDAMENTALS OF C++ PROGRAMMING

Basic structure of C++ programs - Creating the Source File - compiling and Linking. Tokens,

Keywords – Identifiers - Basic Data Types - Symbolic Constants - Type Compatibility -

Declarations of Variables - Dynamic Initialization of Variables - Reference Variables -

Reading and writing a character - formatted inputs and outputs.

Operators in C++: Arithmetic, relational, logical, assignment, increment, decrement, and

conditional, bitwise special operators - Operator Precedence - Type Cast Operator –

Expressions and Implicit Conversions - Operator Overloading - C++ math library functions-

C++ standard library header files.

UNIT V:

DECISION MAKING, ARRAYS, STRUCTURES, FUNCTIONS & POINTERS

Decision Making Statements: If-else statement - nested if-else, else-if ladder - switch case

statement - conditional statement - go to statement - break and continue statement - Nested

control statements.

Loops: While loop - do-while loop - For loop - Nested For loop.

Arrays: Defining, initializing arrays - accessing array elements - One/Two dimensional arrays.

Structures: Specifying the structure - accessing structure members. Functions: Function

declaration and definition - Calling the Function. Pointers: Address and pointers - Address of

operator & pointer variables.

UNIT – I

Solution of Simultaneous Linear Algebraic Equations

Gauss elimination Method (Direct Method)

This is a direct method based on the elimination of the unknowns by

combining equations such that the n equations in n unknowns are reduced to an

equivalent upper triangular system which could be solved by back substitution.

Consider the n li near equations in n unknowns.

a11x1 + a12 x2 + …… + a1nxn = b1

a21x1 + a22 x2 + …… + a2nxn = b2

……………………………………………………………… ……. (1)

an1x1 + an2 x2 + …… + annxn = bn

where aij and bi are known constants and xi’s are unknowns.

The system of equations given in (1) is equivalent to

AX = B ……(2)

where

a11 a12 ….. a1n x1 b1

a21 a22 ….. a2n x2 b2

A = ………………. , X = .. and B = …

an1 an2 ….. ann xn bn

The augmented coefficient matri x is gi ven by (A,B).

a11 a12 ….. a1n b1

a21 a22 ….. a2n b2

(A, B) = ………………. …

an1 an2 ….. ann bn ……(3)

One has to reduce the augmented matrix (A, B) given in (3) in to an upper triangular

matrix Considering a11 as the pivot element multiply the first row of (3) by (–ai1/a11)

and add to the ith row of (A,B), where i = 2,3, … n so that all elements i n the first

column of (A, B) except a11 are made zero.

Now matrix (A,B) will l be of the form

a11 a12 ….. a1n b1

0 b22 ….. b2n c2

………………. …

0 bn2 ….. bnn cn ……(4)

Considering b22 as the pivot, we have to make all elements below b22 in the second

column of (4) as zero. This is achieved by multiplying second row of (4) by – bi2/b22

and add to the corresponding elements of the i th row (i= 3, 4, … n). Now all the

elements below b22 are reduced to zero. Now the augmented matrix in (4) has the

elements as given below.

a11 a12 a13 ….. a1n b1

0 b22 b23 ….. b2n c2

0 0 c33 ….. c3n d3

………………………. …

0 0 cn3 …… cnn kn ……(5)

Continui ng the process, all elements below the leading diagonal elements of A are

made to zero. Repeating the procedure of making the lower diagonal elements to

zero for all the columns, we fi nd that the augmented coefficient matri x (A,B) is

converted into an upper triangular matrix as shown below.

a11 a12 a13 a14 ….. a1n b1

0 b22 b23 b24 ….. b2n c2

0 0 c33 c34 ….. c3n d3

………………………………. …

0 0 0 0 …… αnn kn ……(6)

From (6), the given system of li near equations is equivalent to

a11x1 + a12 x2 + a13 x3 + …….. + a1n xn = b1

b22 x2 + b23 x3 + …….. + b2n xn = c2

c33 x3 + …….. + c3n xn = d3

…………………………

αnn xn = kn

Going from the bottom of these equations, we solve for xn = kn / αnn. Usi ng this i n the

penultimate equation, we get xn-1 and so on. B y this back substitution method, we

solve for

xn, xn-1, xn-2, ……….. x2 , x1

Gauss-Jordan elimination method (Direct Method)

In this method, the coefficient matrix A of the system AX= B is converted i nto

a diagonal matri x by making all the off diagonal elements to zero by similarity

transformations. Now the system (A,B) wi ll be reduced to the form

a11 0 0 ….. 0 b1

0 b22 0 ….. 0 c2

0 0 c33 ….. 0 d3

From (7) we get

………………………. .

0 0 0 …… αnn kn ……(7)

xn = kn / αnn , …….. x2 = c2 / b22, x1 = b1 / a11

Problems

1. Solve the system of equations by (i) Gauss elimination method and by

(ii) Gauss-Jordan method.

X+2y+z=3, 2x+3y+3z=10, 3x-y+2z=13

Gauss elimination method:

The set of equations are gi ven in matrix form as

1 2 1 x 3

2 3 3 y = 10

3 -1

A

2 Z

X

=

13

B

The augmented coefficient matri x (A ,B) for the given system of equations is gi ven as

 1 2 1 3

(A,B) = 2 3 3 10

 3 -1 3 13

By maki ng the transformations given by the side of the corresponding row of the

matri x (A,B), we get

 1 2 1 3

(A,B) = 0 -1 1 4 R2 =R2 + (-2)R1

 0 -7 -1 4 R3 =R3 + (-3)R1

Now take b22 = -1 as the pivot and make b32 as zero

 1 2 1 3

(A,B) = 0 -1 1 4

 0 0 -8 -24 R3 = R3 + (-7) R2

From this, we get

x+ 2y+ z = 3

-y + z = 4

-8z = -24

Solvi ng the above equations by back substitution we

get z = 3, y = -1 and x = 2

Gauss – Jordan method:

The upper triangular matrix (A,B) is

1 2 1 3

(A,B) = 0 -1 1 4

0 0 -8 -24

The off diagonal elements of (A,B) are made to zero by the following

transformations given below.

 1 0 3 11 R1 = R1 + 2 R2

(A,B) = 0 -1 1 4

 0 0 -1 -3 R3=R3*(1/8)

 1 0 0 2 R1 = R1 + 3 R3

= 0 -1 0 1 R2 = R2 + R3

 0 0 -1 -3

Therefore we get , x = 2, y = -I, and z= 3. By substituti ng these values i n the given

equations, we find that the values satisfy the equations.

2. Solve the system of equations given below by Gauss elimination method.

2x + 3y – z = 5, 4x + 4y - 3z = 3 and 2x - 3y + 2z = 2

The set of equations are gi ven in matrix form as

2 3 -1 x 5

4 4 -3 y = 3

2 -3 2 Z 2

A

X

=

B

The augmented coefficient matrix (A ,B) is

 2 3 -1 5

(A,B) = 4 4 -3 3

 2 -3 2 2

Taking a11 = 2 as the pivot, reduce all elements below i n the first column to zero

 2 3 -1 5

(A,B) = 0 -2 -1 -7 R2=R2 +(-2)*R1

 0 -6 3 -3 R3=R3+(-1)*R1

Taking the element -2 in the position (2,2) as pivot, reduce the element below that to

zero, we get

 2 3 -1 5

(A,B) = 0 -2 -1 -7

 0 0 6 18 R3 =R3+(-3)*R2

Hence 2x + 3y – z = 5

-2y – z = -7

6z = 18

Then by back substitution we get z = 3, y = 2 and x = 1.

These values are substituted i n the given equations and are found to satisfy them.

3. Solve the system of equations by Gauss – elimination method.

10 x – 2 y + 3 z = 23

2 x + 10 y – 5 z = -33

3 x – 4 y + 10 z = 41

The given system of equations are written in augmented matrix form as

10 -2 3 23

2 10 -5 -33

3 -4 10 41

Using the transformations given by the side, we can write

1 -1/5 3/10 23/10 R1=R1 10

2 10 -5 -33

3 -4 10 41

1 -1/5 3/10 23/10

0 52/5 -28/5 -188/5 R2=R2 – 2 R1,

0 -17/5 91/10 341/10 R3 = R3 – 3R1

1 -1/5 3/10 23/10

0 1 -7/13 -47/13 R2 = R2 52/5

0 -17/5 91/10 341/10

1 -1/5 3/10 23/10

0 1 -7/13 -47/13

0 0 189/26 567/26 R3 =R3 + 17/5 R2

1 -1/5 3/10 23/10

0 1 -7/13 -47/13

0 0 1 3 R3 = R3 189/26

Now the coefficient matrix is upper diagonal and usi ng back substitution we get

Z=3

y - 7/13 (z) = -47/13

13 y – 7 (3) = - 47

13 y = - 47 + 21

13 y = - 26

Y=2

x – 1/5 y + 3/10 z = 23/10

10 x – 2y + 3 z = 23

10 x – 2 (-2) + 3 (3) = 23

X=1

The solution is x=1, y=2, z=3

4. Solve the given system o f equations

x + 3y + 3 z = 16, x + 4y +3z = 18, x + 3y + 4z = 19

by Gauss – Jordan method.

x + 3y + 3 z = 16

x + 4y +3z = 18

x + 3y + 4z = 19

Write the gi ven system of equations in augmented matri x form as

1 3 3 16

1 4 3 18

1 3 4 19

Add multiples of the first row to the other rows to make all the other components i n

the first column equal to zero.

1 3 3 16

0 1 0 2 R2 = R2 – R1

0 0 1 3 R3 = R3 – R1

1 0 3 10 R1= R1 – 3 R2,

0 1 0 2

0 0 1 3

1 0 0 1 R1 = R1 – 3 R3

0 1 0 2

0 0 1 3

The coefficient matrix finally reduces to the diagonal form and the matri x equation is

given by

1 0 0 x 1

0 1 0 y = 2

0 0 1 z 3

We get x = 1, y = 2, z = 3

5. Solve the given system o f equations

10 x + y + z = 12

2 x + 10 y + z = 13

x + y + 5 z = 7

by Gauss – Jordan method.

The given system of equations are written i n augmented matrix form as

10 1 1 12

2 10 1 13

1 1 5 7

Make the element in the first row and first column as 1by

1 1/10 1/10 12/10 R1 = R1 10

2 10 1 13

1 1 5 7

Add multiples of the first row to the other rows and make all the other components in

the first column equal to zero

1 1/10 1/10 12/10

0 49/5 4/5 106/10 R2=R2 – 2 R1,

0 9/10 49/10 58/10 R3 = R3 – R1

Make the element in the second row and second column as 1

1 1/10 1/10 12/10

0 1 4/49 53/49 R2 =R2 49/5

0 9/10 49/10 58/10

Add multiples of the second row to the other rows to make all the other components

in the second column equal to zero.

1 0 0.0918 1.0918 R1 = R1 – (1/10)R2

0 1 4/49 53/49

0 0 4.8265 4.8265 R3=R3 – (9/10) R2,

Make the element in the third row and third column as 1

1 0 0.0918 1.0918

0 1 4/49 53/49

0 0 1 1 R3 =R3 4.8265

Add multiples of the third row to the other rows to make the components i n the third

column equal to zero

1 0 0 1 R1 R1 – 0.0918 R3,

0 1 0 1 R2 R2 – 4/49 R3

0 0 1 1

The matri x finally reduces to the form gi ven by

1 0 0 x 1

0 1 0 y = 1

0 0 1 z 1

Therefore x = 1, y = 1, z = 1

Gauss – Seidel Iterative Method

Let the gi ven system of equations be

a11x1 + a12 x2 + a13 x3 + …….. + a1n xn = C1

a21x1 + a22 x2 + a23 x3 + …….. + a2n xn = C2

a31x1 + a32 x2 + a33 x3 + …….. + a3n xn = C3

…………………………………………………

………………………………………………….

an1x1 + an2 x2 + an3 x3 + …….. + ann xn = Cn

The system of equations is first rewritten in the form

x1 = (1/a11) (C1 - a12 x2 - a13 x3 - …….. - a1n xn) …. (1)

x2 = (1/a22) (C2 – a21 x1 - a23 x3 - …….. – a2n xn) …. (2)

x3 = (1/a33) (C3 – a31 x1 - a32 x2 - …….. – a3n xn) …. (3)

……………………………………………………………..

Xn = (1/ann) (Cn – an1x1 - an2x2 - …….. – an,n-1xn-1) …. (4)

First let us assume that x2 = x3 = x4 = ………= xn = 0 in (1) and find x2 . Let it be x1 *.

Putti ng x1 * for x1 and x3 = x4 = ……….. = xn = 0 in (2) we get the value for x2 and let it

be x2*. Putti ng x1* for x1 and x2 * for x2 and x3 = x4 = ……….. = xn = 0 in (3) we get

the value for x3 and let it be x3*. In this way we can find the first approximate values

for x1 , x2, ………….. xn by using the relation

x1* = (1/a11) (C1)

x2* = (1/a22) (C2 – a21 x1*)

x3* = (1/a33) (C3 – a31 x1* - a32 x2*)

………………………………………………………….

Xn* = (1/ann) (Cn – an1 x1* - an2 x2* - …….. – an,n-1xn-1*)

Substituti ng these values of X* in equations (1),(2),(3),…….(4) we get

x1** = (1/a11) (C1 - a12 x2* - a13 x3* - …….. - a1nxn *)

x2**

x3**

=

=

(1/a22) (C2 – a21 x1** - a23 x3* - …….. – a2nxn*)

(1/a33) (C3 – a31 x1** - a32x2 ** - …….. – a3n xn*)

……………………………………………………………………..

Xn** = (1/ann) (Cn – an1 x1** - an2x2 ** - …….. – an,n-1xn-1**)

Repeating this iteration procedure until two successive iterations give same value,

one can get the solution for the given set of equations. This method is efficient for

diagonally dominant equations.

Diagonally dominant matrix:

We say a matrix is diagonally dominant if the numerical value of the leading

diagonal element (aii) in each row is greater than or equal to the sum of the

numerical values of the other elements i n that row.

 5 1 -1

For example the matri x 1 4 2 is diagonally dominant.

 1 -2 5

 5 1 -1

But the matri x 5 2 3 is not, si nce in the

 1 -2 5

Second row, the leadi ng diagonal element 2 is less than the sum of the other two

elements vi z., 5 and 3 i n that row.

For the Gauss – Seidel method to converge quickly, the coefficient matrix must be

diagonally domi nant. If i t is not so, we have to rearrange the equations in such a

way that the coefficient matrix is diagonally dominant and then only we can apply

Gauss – Seidel method.

Problem

1. Solve the system of equations 4x + 2y + z = 14, x + 5y – z = 10, x + y + 8z = 20

using Gauss – Seidel iteration method.

The given system of equations is

4x + 2y + z = 14 …………..(1)

x + 5y – z = 10 …………...(2)

x + y + 8z = 20 …………...(3)

The coefficient matrix 4 2 1

1 5 -1

1 1 8

is diagonally dominant. Hence we can apply Gauss- Seidel method.

From (1), (2) and (3) we get

x = 1/4 (14 – 2y – z) …………….....(4)

y = 1/5 (10 – x + z) ……………….(5)

z = 1/8 (20 – x – y) …………….....(6)

First Iteration

Let y = 0, z = 0 i n (4) we get x = 14/4 = 3.5

Putti ng x = 3.5, z = 0 i n (5) we get

y = 1/5 [10 – 3.5 + 0] = 1.3

Putti ng x = 3.5, y = 1.3 in (6) we get

z = 1/8 [20 – 3.5 – 1.3] = 15.2/8 = 1.9

Therefore in the first iteration we get x=3.5, y=1.3 and z=1.9

Second Iteration

Putti ng y = 1.3, z = 1.9 in (4) we ge t

x = 1/4 [14 – 2 (1.3) – 1.9] = 2.375

Putti ng x = 2.375, z = 1.9 i n (5) we get

y = 1/5 [10 – 2.375 + 1.9] = 1.905

Putti ng x = 2.375, y = 1.905 i n (6) we get

z = 1/8 [20 – 2.375 – 1.905] = 1.965

In the second iteration we get x=2.375, y=1.905 and z=1.965

Third Iteration

Putti ng y = 1.905, z = 1.965 i n (4) we get

x = 1/4 [14 – 2 (1.905) – 1.965] = 2.056

Putti ng x = 2.056, z = 1.965 i n (5) we get

y = 1/5 [10 – 2.056 + 1.965] = 1.982

Putti ng x = 2.056, y = 1.982 i n (6) we get

z = 1/8 [20 – 2.0565 – 1.982] = 1.995

In the third iteration we get x=2.056, y= 1.982, z=1.995

Fourth Iteration

Putti ng y = 1.982, z = 1.995 i n (4) we get

x = 1/4 [14 – 2 (1.982) – 1.995] = 2.010

Putti ng x = 2.010 z = 1.995 in (5) we get

y = 1/5 [10 – 2.010 + 1.995] = 1.997

Putti ng x = 2.010, y = 1.997 i n (6) we get

z = 1/8 [20 – 2.010 – 1.997] = 1.999

In the fourth iteration we get x=2.01, y=1.997, z=1.999

Fifth Iteration

Putti ng y = 1.997, z = 1.999 in (4) we get

x = 1/4 [14 – 2 (1.997) – 1.999] = 2.001

Putti ng x = 2.001 z = 1.999 in (5) we get

y = 1/5 [10 – 2.001 + 1.999] = 1.999

Putti ng x = 2.010, y = 1.999 i n (6) we get

z = 1/8 [20 – 2.001 – 1.999] = 2

In the fifth iteration we get x=2, y=2 and z=2 and the values satisfy the equations.

2. Solve the system of equations x + y + 54 z = 110, 27 x + 6 y – z = 85,

6 x + 15 y + 2 z = 72 using Gauss – Seidel iteration method.

The given system is

x + y + 54 z = 110,

27 x + 6 y – z = 85,

6 x + 15 y + 2 z = 72

Interchanging the equations

27 x + 6 y – z = 85, …. (1)

6 x + 15 y + 2 z = 72 …. (2)

x + y + 54 z = 110, …. (3)

we get a diagonally dominant system of equations.

From (1), (2) and (3) we get

x = 1/27 (85 – 6 y + z) …………….....(4)

y = 1/15 (2 – 6 x - 2 z) ……………….(5)

z = 1/54 (110 – x – y) …………….....(6)

First Iteration

Putti ng y = 0, z = 0 in (4) we get x = 85/27 = 3.148

Putti ng x = 3.148, z = 0 i n (5) we get

y = 1/15 [72 – 3.148 – 2 (0)] = 3.5408

Putti ng x = 3.148, y = 3.5408 i n (6) we get

z = 1/54 [110 – 3.148 – 3.5408] = 1.913

In the first iteration we get x=3.148, y=3.5408, z=1.913

Second Iteration

Putti ng y = 3.5408, z = 1.913 i n (4) we get

x = 1/27 [85 – 6 (3.5408) – 1.913] = 2.4322

Putti ng x = 2.4322, z = 1.913 in (5) we get

y = 1/15 [72 – 2.4322 – 2 (1.913)] = 3.572

Putti ng x = 2.4322, y = 3.572 i n (6) we get

z = 1/54 [110 – 2.4322 – 3.572] = 1.92585

In the second iteration we get x=2.4322, y=3.572, z=1.92585

Third Iteration

Putti ng y = 3.572, z = 1.92585 i n (4) we get

x = 1/27 [85 – 6 (3.572) – 1.92585] = 2.42569

Putti ng x = 2.42569, z = 1.92585 in (5) we get

y = 1/15 [72 – 2.42569 – 2 (1.92585)] = 3.5729

Putti ng x = 2.42569, y = 3.5729 in (6) we get

z = 1/54 [110 – 2.42569 – 3.5729] = 1.92595

In the third iteration we get x=2.42569, y=3.5729, z=1.92595

Fourth Iteration

Putti ng y = 3.5729, z = 1.92595 in (4) we get

x = 1/27 [85 – 6 (3.5729) – 1.92595] = 2.42550

Putti ng x = 2.42550, z = 1.92595 in (5) we get

y = 1/15 [72 – 2.42550 – 2 (1.92595)] = 3.5730

Putti ng x = 2.42550, y = 3.573 i n (6) we get

z = 1/54 [110 – 2.42550 – 3.573] = 1.92595

In the fourth iteration we get x=2.425, y=3.573, z= 1.92595

Since the values of successive iterations are same, the answer is

x=2.425, y=3.573, z= 1.92595

INT ERPOLAT ION

INTERPOLATION WITH UNEQUAL INTERVALS

Lagrange’s Interpolation Formula for unequal intervals

Let f (x0), f (x1), …… f (xn) be the values of the function y = f (x) corresponding to the

arguments x0. x1, x2, …….. xn. The arguments are not equally spaced. Let f (x) be a

polynomial in x of degree n. f (x) can be written as

f (x) = a0 (x – x1) (x – x2) ……… (x – xn)

+ a1 (x – x0) (x – x2) …. (x – xn) + ……

……………………………………………

+ an (x – x0) (x – x1) ….. (x – xn-1) …. (1)

Where a0, a1, ….. an are constants. Their values can be obtai ned by

replacing x = x0 i n (1) we get

f (x0) = a0 (x0 – x1) (x0 – x2) ……… (x0 – xn)

i.e. a0 = f (x0)

Putti ng x = x1 in (1) we get

(x0 – x1) (x0 – x2) ……… (x0 – xn) …. (2)

f (x1) = a1 (x1 – x0) (x1 – x2) ……… (x1 – xn)

i.e. a1 = f (x1)

(x1 – x0) (x1 – x2) ……… (x1 – xn) …. (3)

Similarly

. a2 = f (x2)

(x2 – x0) (x2 – x1) ……… (x2 – xn) …. (4)

………………………………………………………………

an = f (xn)

(xn – x0) (xn – x1) ……… (x0 – xn-1) …. (5)

Substituti ng (2), (3), (4), (5) i n (1) we get

f (x) = (x – x1) (x – x2) ……. (x – xn) f (x0)

(x0 – x1) (x0 – x2) ……… (x0 – xn)

+ (x – x0) (x – x2) ……. (x – xn) f (x1)

(x1 – x0) (x1 – x2) ……… (x1 – xn)

+ …………………………………………..

+ (x – x0) (x – x1) …… . (x – xn-1) f (xn)

(xn – x0) (xn – x1) … (xn – xn-1)

If we denote f (x0), f (x1), ….. f (xn) by y0, y1, …… yn, we get

f (x) = (x – x1) (x – x2) ……. (x – xn) y0

(x0 – x1) (x0 – x2) ……… (x0 – xn)

+ (x – x0) (x – x2) ……. (x – xn) y1

(x1 – x0) (x1 – x2) ……… (x1 – xn)

+ …………………………………………..

+ (x – x0) (x – x1) …… . (x – xn-1) yn

(xn – x0) (xn – x1) ……… (xn – xn-1) …….(6)

and this is known as Lagrange’s Interpolation formula.

Problem:

1. Using Lagrange’s interpolation formula calculate y(3) from the data given

below.

x

0

1

2

4

5

6

y (x)

1

14

15

5

6

19

Here x0 = 0 x1 = 1 x2 = 2 x3 = 4 x4 = 5 x5 = 6

Y0 = 1 y1 = 14 y2 = 15 y3 = 5 y4 = 9 y5 = 19

Lagrange’s interpolation formula is

y (x) = (x – x1) (x – x2) (x – x3) (x – x4) (x – x5) y0

(x0 – x1) (x0 – x2) (x0 – x3) (x0 – x4) (x0 – x5)

+ (x – x0) (x – x2) (x – x3) (x – x4) (x – x5) y1

(x1 – x0) (x1 – x2) (x1 – x3) (x1 – x4) (x1 – x5)

+ (x – x0) (x – x1) (x – x3) (x – x4) (x – x5) y2

(x2 – x0) (x2 – x1) (x2 – x3) (x2 – x4) (x2 – x5)

+ (x – x0) (x – x1) (x – x2) (x – x4) (x – x5) y3

(x3 – x0) (x3 – x1) (x3 – x2) (x3 – x4) (x3 – x5)

+ (x – x0) (x – x1) (x – x2) (x – x3) (x – x5) y4

(x4 – x0) (x4 – x1) (x4 – x2) (x4 – x3) (x4 – x5)

+ (x – x0) (x – x1) (x – x2) (x – x3) (x – x4) y5

(x5 – x0) (x5 – x1) (x5 – x2) (x5 – x3) (x5 – x4)

Substituti ng the values, we can write

y (x) = (x – 1) (x – 2) (x – 4) (x – 5) (x – 6) X 1

(0 – 1) (0 – 2) (0 – 4) (0 – 5) (0 – 6)

+

(x – 0) (x – 2) (x – 4) (x – 5) (x – 6)

(1 – 0) (1 – 2) (1 – 4) (1 – 5) (1 – 6)

X14

+

(x – 0) (x – 1) (x – 4) (x – 5) (x – 6)

X15

(2 – 0) (2 – 1) (2 – 4) (2 – 5) (2 – 6)

+

(x – 0) (x – 1) (x – 2) (x – 5) (x – 6)

(4 – 0) (4 – 1) (4 – 2) (4 – 5) (4 – 6)

X5

+

(x – 0) (x – 1) (x – 2) (x – 4) (x – 6)

X6

(5 – 0) (5 – 1) (5 – 2) (5 – 4) (5 – 6)

+

(x – 0) (x – 1) (x – 2) (x – 4) (x – 5)

(6 – 0) (6 – 1) (6 – 2) (6 – 4) (6 – 5)

X19

Substituti ng x = 3, we get y(3) =10.

2. using Lagrange’s interpolation formula for unequal intervals find the

value of y when x = 10 using the values of x and y g iven below.

x 5 6 9 11

y 12 13 14 16

Given: x0 = 5, x1 = 6, x2 = 9, x3= 11, y0 = 12 y1 = 12 y2 = 14 y3 = 16

Lagrange’s interpolation formula is

y (x) = (x – x1) (x – x2) (x – x3)

(x0 – x1) (x0 – x2) (x0 – x3)

y0

+

(x – x0) (x – x2) (x – x3)

(x1 – x0) (x1 – x2) (x1 – x3)

y1

+

(x – x0) (x – x1) (x – x3)

y2

(x2 – x0) (x2 – x1) (x2 – x3)

+

(x – x0) (x – x1) (x – x2)

(x3 – x0) (x3 – x1) (x3 – x2)

y3

Substituti ng the values with x=10, we get

y(10) = (10 – 6) (10 – 9) (10 – 11)

(5 – 6) (5 – 9) (5 – 11)

x (12)

+

(10 – 5) (10 – 9) (10 – 11)

(6 – 5) (6 – 9) (6 – 11)

x (13)

+

(10 – 5) (10 – 6) (10 – 11)

x (14)

(9 – 5) (9 – 6) (9 – 11)

+

(10 – 5) (10 – 6) (10 – 9)

(11 – 5) (11 – 6) (11 – 9)

x (16)

= 2 - 4.33 + 11.66 + 5.3

Y(10) =14.63

3. Use Lagrange’s interpolation formu la to find the form of the function for the

Data given below.

x 3 2 1 -1

f (x) 3 12 15 -21

Solution:

Here x0 = 3, x1 = 2, x2 = 1, x3 = -1, y0=3, y1=12, y2 = 15, y3 = -21

f (x) = (x -2) (x - 1) (x + 1) x 3

(3 - 2) (3 -1) (3 + 1)

+ (x – 3) (x – 1) (x +1) x 12

(2 – 3) (2 – 1) (2 + 1)

+ (x – 3) (x – 1) (x +1) x 15

(1 – 3) (1 – 2) (1 + 1)

+ (x – 3) (x – 1) (x +1) x (-21)

(-1 – 3) (-1 – 3) (-1 – 1)

Simplifying, we get f (x) = x3 - 9 x2 + 17 x + 6.

f(x) is the required form of function for the gi ven data.

Newton’s Forward Interpolation Formula

We know that

 y0 = y1 – y0 i.e. y1 = y0 + y0 = (1 +) y0

 y1 = y2 – y1 i.e. y2 = y1 + y1 = (1 +) y1 = (1 +)2 y0

 y2 = y3 – y1 i.e. y3 = y2 + y2 = (1 +) y2 = (1 +)3 y0

In general yn = (1 +)n y0

Expandi ng (1 +)n by using Binomial theorem we have

yn = 1 + n + n (n-1)
2 + n (n-1) (n-2)

3 + ……… y0

2! 3!

yn = y0 + n y0 + n (n-1)
2 y0 + n (n-1) (n-2) 3 y0 + ………

2! 3!

This result is known as Gregory-Newton forward i nterpolation formula(or) Newton’s

formula for equal intervals.

Problem:

1. The following table gives the population of a town taken during six

censuses. Estimate the increase in the population during the period 1946 to

1948.

Year

1911

1921

1931

1941

1951

1961

Population

(in thousands)

12

13

20

27

39

52

The difference table is given below.

x y = f(x) y
2 y 3 y 4 y 5 y

1911 (xo)

1921

1931

1941

1951

1961

12 (y0)

13

20

27

39

52

1 (y0)

7

7

12

13

6 (2
y0)

0

5

1

-6 (3
y0)

5

-4

11 (4
y0)

-9

-20 (5
y) 0

Here x0 = 1911 h = 10 y0 = 12

Newton’s forward interpolation formula is

y (x0 + nh) = y0 + n y0 + n (n-1) 2 y0 + n (n-1) (n-2) 3 y0 + ………

2! 3!

The population i n the year 1946 ie y(1946) is to be calculated.

Here x0 + nh = 1946

i.e., 1911 + n X 10 = 1946 i.e., n = 3.5

Therefore y (1946) = 12 + (3.5) (1) + (3.5) (3.5 -1) x 6

2

+ (3.5) (3.5 -1) (3.5 -2) x (- 6)

6

+ (3.5) (3.5 -1) (3.5 -2) (3.5 -3) x (11)

24

+ (3.5) (3.5 -1) (3.5 -2) (3.5 -3) (3.5 – 4) x (-20)

120

= 12 + 3.5 + 26.25 – 13.125 + 3.0078 + 0.5469

= 32.18 Thousands

The population in the year 1948 ie y (1948) is calculated as below.

Here x0 + nh = 1948

i.e. 1911 + n.10 = 1948, i.e., n = 3.7

Therefore y (1946) = 12 + (3.7) (1) + (3.7) (3.7 -1) x 6

2

+ (3.7) (3.7 -1) (3.7 -2) x (- 6)

6

+ (3.7) (3.7 -1) (3.7 -2) (3.7 -3) x (11)

24

+ (3.7) (3.7 -1) (3.7 -2) (3.7 -3) (3.7 – 4) x (-20)

120

= 12 + 3.7 + 29.97 – 16.983 + 5.4487 + 0.5944

= 34.73 thousands

Increase in the population during the period 1946 to 1948 is

= Population i n 1948 - Population in 1946

= 34.73 - 32.18 = 2.55 thousands.

2. From the following data, find θ at x = 43.

x

40

50

60

70

80

90

θ

184

204

226

250

276

304

Since the vale to be i nterpolated is at the beginning of the table, we can use

Newton’s forward i nterpolation formula.

The difference table is given below.

x y = f(x) y 2 y 3 y

40 (=xo)

50

60

70

80

90

184 (=y0)

204

226

250

276

304

20 (= y0)

22

24

26

28

2(=

2
y) 0

2

2

2

0 (=
3

y0)

0

0

Here x0 = 40 h = 10 y0 = 184

By Newton’s formula we have

y (x0 + nh) = y0 + n y0 + n (n-1) 2 y0 + n (n-1) (n-2)
3 y0 + ………

2! 3!

We have to find the value of y at x=43 ie. y(43)

i.e., x0 + nh = 43

i.e., 40 + n.10 = 43 i.e., n = (43 – 40) /10 = 0.3

Therefore y (43) = 184 + (0.3) (20) + (0.3) (0.3 - 1) x (2)

2

= 184 + 6 - 0.21 = 189.79

Newton – Gregory Formula for Backward Interpolation

The backward difference formula for any function f (x) is gi ven as

f (x) = f (x) – f (x – h), h being interval of data x. If f (a), f(a+h), f(a+2h) ………..

f(a+nh) are the (n+1) values for the function f (x) correspondi ng to an independent

values of x at equal intervals x = a, a+h, a+2h, …. (a+nh). We can write f(x) in a

polynomial of the form

f (x) = a0 + a1 { x – (a+nh) } + a2 { x – (a + nh) } { x - a +(n – 1) h}

+ ………. + an { x – (a + nh)} { x + a + (n – 1) h} …. { x – (a+h)} …(1)

Where the constant a0 , a1 , a2, …… an, are to be determined.

Putti ng x = a + nh, a + n – 1 h, ….. a in succession in (1) we get

f(a + nh) = a0 ie. a0 = f (a + nh)

f(a + (n -1) h) = a0 + a1 (-h)

ie. a1 = f (a + nh) - f (a + (n – 1) h) = f (a + nh)

h h

Similarly, a2 = 2f (a + nh) an = nf (a + nh)

2! h2 n! hn

Substituti ng these values of a0 , a1 , a2, ……. an in (1) we get

f (x) = f (a + nh) + { x – (a – nh)} f (a + nh) +

h

+ { x – (a + nh)} { x – (a + n-1 h)} * 2f (a + nh)

2! h2

+ { x – (a + nh)} { x – (a + n-1 h)} …. { x – (a + h) } * nf (a + nh) …. (2)

n! hn

This is Newton – Gregory formula for backward interpolation.

y
2

Putti ng u = x – (a + nh) / h or x = a + nh + hu in (2) we get

f (x) = f [a + h (u+n)]

= f(a + nh) + u f(a + nh) + u (u + 1) 2 f(a + nh) + ……

2!

+ u (u + 1) …….. (u + n – 1) n f(a + nh)

n!

This is the usual form of Newton-Gregory interpolation formula.

Problems:

1. Using Newton’s backward interpolation method, fit a polynomial of degree

three for the gi ven data.

x

3

4

5

6

y

6

24

60

120

Solution

The Newton-Gregory backward interpolation formula is

y (x0 + nh) = y0 + n y0 + n (n-1) 2 y0 + n (n-1) (n-2)

3 y0 + ………

2! 3!

Here x0 + n h = x x0 = 6, n=?, h=1

n = x-6

x y y

2
y

3
y

3 6 18

4 24 36 18 6=
3
y0

5 60 60= y0 24 0

6= x0 120=y0

0

Y(x)= 120 +(x-6) 60 +(1/2) (x-6)(x-5) 24 + (1/6) (x-6) (x-5) (x-4) 6

Therefore Y(x)= x3-3x2+2x

2. Find the value of y(63) from the data given below.

x

45

50

55

60

65

y

114.84

96.16

83.32

74.48

68.48

Solution

The Newton-Gregory backward i nterpolation formula is

y (x0 + nh) = y0 + n y0 + n (n-1) 2 y0 + n (n-1) (n-2)

3 y0 + ………

2! 3!

Here, x0 + n h = x x0 = 65, h=5, x= 63, n=?

n = (63 – 65)/5 = -2/5

x y y
2
y

3
y

4
y

45 114.84 -18.68

50 96.16 -12.84 5.84 -1.84

55 83.32 -8.84 4 -1.16=
3
y

60 74.48 -6= y0 2.84 2
y0

0.68=
4
y

65= x0 68.48=y0

Y(63) = 68.48 + (-
 2

)(-6) + (
 1

)(-
 2

)(-
2

+1)(2.84) + (
 1

)(-
2

)(-
2

+1) (-
2

+2) (-1.16)
5 2! 5 5 3! 5 5 5

+ (
 1

)(-
 2

)(-
 2

+1) (-
 2

+2) (-
 2

+3) (0.68)
4! 5 5 5 5

Y(63) = 68.48+2.4 – 0.3408 + 0.07424 – 0.028288

Y(63) = 70.585

3. Using Newton’s backward interpolation formula evaluate y(9.5) from the data

given below.

x

6

7

8

9

10

y

46

66

81

93

101

Solution

y (x0 + nh) = y0 + n y0 + n (n-1) 2 y0 + n (n-1) (n-2)

3 y0 + ………

2! 3!

Here, x0 + n h = x x0 = 10, h=10, x= 9.5, n=?

n = (9.5 – 10)/10 = - 0.5

x y y

2
y

3
y

4
y

6 46 20

7 66 15 -5 2

8 81 12 -3 -1=
3
y0

-3

=
4
y

9 93 8= y0 -4

2
y0

10= x0 101=y0

Y(9.6) = 101 + (-0.5)(8) + (
 1

)(-0.5)(-0.5+1)(-4) + (
 1

)(-0.5)(-0.5+1) (-0.5+2) (-1)
2! 3!

+ (
 1

)(-0.5)(-0.5+1) (-0.5+2) (-0.5+3) (-3)
4!

2

2

Y(9.6) = 101-4 + 0.5 + 0.0625+0.1172

Y(9.6) = 97.68

The Method of Least Squares:

Given n-paired observations (x1, y1), (x2, y2), ……. (xn , yn) of two variables x and y

and we want to determine a function f (x) such that

f (xi) = yi, i = 1, 2, 3, ……. n

we have to fit a straight line of the form y = a + bx and choose the parameters a

and b such that the sum of squares of deviations of the fitted value with the given

data is least or minimum. This method of fitti ng a curve is called least squares

fitting method. The sum of squares of deviations of the fitted value with the given

value is given by

n

s = [f (xi)
1

yi]

is a function of a1, a2, a3 ,…. an

According to the pri nciple of least squares a’s may be determi ned by the

requirement that

s is least i.e.
i

s / a1 = 0, s / a2 = 0, …… s / ai = 0,

A set of these equations is called the normal equations. The unknowns in y = f (x)

are determined usi ng these normal equations. For the li near equation y=a+bx

the residuals are given by vi = a + bxi – yi, and the sum of residues is gi ven by

n

s = [a
1

bxi yi]

Differentiating with respect to a and b, we get

n

s / a = 2. [a
1

bxi yi] = 0

and s / b = 2.
n

xi [a
1

bxi

yi] = 0

n

xi

x

2

2 3

2 3 4 2

2

= 2

collecti ng the coefficients of a and b i n the above equations, we get

n

na + b xi

i 1

n

= yi

i 1

and

n n

a xi
+ b

i yi

i 1 i 1 i 1

These equations are called the normal equations. Solvi ng these two equations

simultaneously we can get the values of a and b..

In the case of a quadratic polynomial the normal equations are given by

na0 + a1 ∑ xi + a2 ∑ xi = ∑ yi

a0 ∑ xi + a1 ∑ xi + a2 ∑ xi = ∑ xi yi

a0 ∑ xi + a1 ∑ xi + a2 ∑ xi = ∑ xi yi

Solvi ng these three equations simultaneously one get the values of a0,a1 and a2 and

the quadratic equation is fitted as y= a0+a1 x+a2 x
2.

Problems:

1. Using the method of least squares, fit a straight line of the form y=a+bx to

the given data

x

1

2

3

4

y

1.7

1.8

2.3

3.2

Solution: In this case n = 4

∑ xi = 1 + 2 + 3 + 4 = 10

∑ yi = 1.7 + 1.8 + 2.3 + 3.2 = 9

∑ xi = 1 + 4 + 9 + 16 = 30

2

2 3

2 3 4 2

2

3

∑ xi yi= (1x1.7) + (2x1.8) + (3x2.3) + (4x32) = 25

The normal equations are given by

4 a + 10 b = 9

10 a + 30 b = 25

Solvi ng for a and b, we get

a = 1, b = ½

The linear equation fitted to the gi ven data is

y = 1 + (½) x

2. Fit a quadratic curve from the following data using the principle of least

squares.

x

0

1

2

3

4

y

1

1.8

1.3

2.5

6.3

The normal equations are

na0 + a1 ∑ xi + a2 ∑ xi

= ∑ yi

a0 ∑ xi + a1 ∑ xi + a2 ∑ xi = ∑ xi yi

a0 ∑ xi + a1 ∑ xi + a2 ∑ xi = ∑ xi yi

Here number of data n=5

∑ xi = 0 + 1 + 2 + 3 + 4 = 10

∑ xi yi = (0x1) + (1x1.8) + (2x1.3) + (3x2.5) + (4x6.3) = 37.1

∑ xi

= 0 + 1 + 4 + 9 + 16 = 30

∑ xi

= 0 + 1 + 8 + 27 + 64 = 100

4

2

∑ xi

= 0 + 1 + 16 + 81 + 256 = 354

∑ xi

yi = 0 + (1x1.8) + (4x1.3) + (9x2.5) + (16x6.3) = 103.3

With these substitutions equation (2) becomes

5a0 + 10a1 + 30a2 = 12.9

10a0 + 30a1 + 100a2 = 37.1

30a0 + 100a1 + 354a2 = 103.3

Solvi ng these we get

a0 = 1.42, a1 = -1.07, a2 = 0.55

The fitted quadratic curve becomes

Y = 1.42 - 1.07 x + 0.55 x2

Unit I - Solut ion of algebr aic and transcendental equat ions

An equati on f(x)=0 which i s only a polynomi al in x i s known as an algebr aic

equati on.

eg. X
5

– x
4

+ x – 26 = 0.

Whereas, an equation containing transcendental terms, such as exponential

terms, trigonometric terms, logarithmic terms etc, are known as

transcendental equations.

eg. e
x

– x + 5 = o ; x + 5 cos x + 2 = 0

The point at which the function y = f (x) cuts in the x – axis is known as

the root of the equation (or) zero of the equation .

y = f (x)

38

y = f (a) is positive

-f(a) y = f (b) is neative y

= f (c) is zero

b Therefore c is the root

a c of the equation

- f(b)

Two points a and b are to be identified f or the given equation, such that for

one of the points a, y=f(a) is positive and for the point b, f(b) is negative.

Then the first approximate root is given be x0 = (a + b) /2.

39

Iteration Met hod :

The root of the given equation f(x) = 0 can be determined by iteration method.

Let x0 be the approximate initial root of the given equation calculated as

mentioned above. We have to rewire the g iven equat ion in the f or m of

x = Φ (x)

The first approximate root is given by x1 = Φ(x0)

The successive approxi mations are given by

X2 = Φ (x1)

x3 = Φ (x2)

…………..

xn = Φ (xn-1)

The process of finding root is continued until the successive roots are same to

the required accuracy.

Not e

The iteration method will give converging results if

Φ' (x) < 1.

e.g. Consider the equation f (x) = x
2

+ x – 3 = 0

f (0) =-3, negative; f (1) = -1, negative; f (2) = 3, positive

Hence the root lies between 1 and 2. The initial root is calculated a s

x0 = (1 + 2) / 2 = 1.5

From the given equation, we can write x = 3 – x
2

= Φ (x).

Differentiating, we get Φ' (x) = - 2 (x)

40

Φ' (1. 5) = 3 > 1

Therefore this form of Φ(x) will not give converging solut ions.

If we rewrite the given equation as x (x + 1) = 3; then we can write

x = 3 / (x + 1) = Φ (x)

Φ' (x) = - 3 / (1 + x)
2

and Φ' (1. 5) < 1

Therefore this form of Φ (x) wi ll gi ve convergi ng solutions.

Problems:

1. Find the root of the equation x
3 +

 x
2 –

 1 = 0 by iteration method

correct to two decimal places.

Given f (x) = x
3

+ x
2 –

 1 = 0 f

(0) = -1 negative

f (1) = 1, positive

Therefore the initial root is x0 = (0 + 1) / 2 = 0. 5

We can rewrite the given equation x
3

+ x
2

– 1 = 0 as

x
2

(x + 1) = 1

x = 1/

Therefore Φ (x) = 1/ and Φ' (x) = - 1/ 2(x + 1)
3/ 2

Φ′(x) x = 0. 5 < 1

Therefore this form of Φ(x) will give converging solutions.

The first approximate solution i s

x1 = Φ (x0) = 1/ (1+ x0) = 1 / (1+ 0. 5) = 0.81649

x2 = Φ (x1) = 1/ (1 + 0. 81649) = 0. 74196

41

x3 = Φ (x2) = 1/ (1 + 0.74196) = 0. 75767

x4 = Φ (x3) = 1/ (1+ 0.75767) = 0.75427

Since x3 x4 up to two decimal places, the root of the given equation is

0.7543.

2. Find the root of the equation 3 x – log10 x – 6 = 0 by iteration method.

Given f (x) = 3 x – log10 x – 6

f (1) = - 3 (negative) f (2) = - 0.3010 (negative)

f (3) = 2.5229 (positive)

The root lies between 2 and 3.

Let the initial approximate root be, x0 = 2

We can rewrite the equation 3 x – log10 x – 6 = 0 as

X = 1/3(6 + log10 x)

Therefore Φ (x) = 1/3(6 + log10 x)

The first approximate solution i s

x1 = Φ(x0) = 1/3(6 + log10 x0) = 1/3 (6 + log10 2) = 2.1003

x2 = Φ(x1) = 1/3 (6 + log10 2. 1003) = 2.1074

x3 = Φ(x2) = 1/3 (6 + log10 2. 1074) = 2.1079

Since x2 x3 up to three decimal places, the root of the given equation is

2.1079

3. Find the root of the equation f(x) = 3 x – cos x – 1 = 0 by itera ion

method.

Given f(x) = 3 x – cosx -1 = 0 Now f (0) = negative and f(1) = positive

42

Let us take initial root as x0 = 0. 6

We can write x = 1/3 (1 + cos x) = Φ (x)

x1 = Φ (x0) = 1/3 (1 + cos 0.6) = 0.60845

x2 = Φ (x1) = 1/3 (1 + cos 0.60845) = 0.60684

x3 = Φ (x2) = 1/3 (1 + cos 0.60684) = 0.60715

x4 = Φ (x3) = 1/3 (1 + cos 0.60715) = 0.6071

Since x3 x4 correct to three decimal places, the root of the given equation

is 0.6071.

Bisect ion method:

If f (a) and f (b) are of opposite signs, then the equation f (x) = 0 will have at

least one real root between a and b. The bi section method is useful to find the

root between a and b. The first approximate root is taken as the midpoint of

the range a and b. i.e. x0 = (a + b) / 2

Then we have to find f(x0). Let us assume f(a) as positive and f(b) as

negative. Let f (x0) be negative. Then the root lies between a and x0.

If f (x0) is positive, then the root lies between x0 and b. We have to bisect the

interval in which the root lies and the process is to be repeated.

Y

-- f(a)

b

a .x2 . x1

-- f(b)

43

In the above diagram, for the given curve y = f (x), f (a) is positive and f (b) is

negative. The first approximate root is the midpoint of a and b

i.e. x1 = (a + b) / 2

f (x1) i s negative. Therefor e the next approxi mation is the midpoi nt of x1 and a

x2 = (a + x1) / 2

Similarly x3 = (x1 + x2)/ 2

The process is repeated until two successive roots are equal to the required

degree of approximation.

Problems :

1. Find the root of t he equat ion x
3
– x – 1 = 0 correct to two decimal

places by bisect ion method.

Let f (x) = x
3

– x – 1

f (0) = -1 ie negative

f (1) = -1 negative

f (1.5) = 0.875 is positive

Therefore the initial root is x0 = (1 + 1.5) / 2 = 1. 25

f (x0) = f (1.25) = (1. 25)
3

– 1. 25 – 1 = - 0. 29688

Since f (x0) is negati ve, the root lies between 1.25 and 1. 5. The next

approximate root is

x1 = (1. 25 + 1.5)/ 2 = 1.375

f (1.375) = (1.375)
3

– 1.375 – 1 = 0. 22461

Since f (1. 375) is positive, the next root lies between 1. 25 and 1.375

Ie. x2 = (1.25 + 1. 375) / 2 = 1. 3125

44

f (1.3125) = (1. 3125)
3

– 1.3125 – 1 = - 0.051514 (negative)

Therefore the root lies between 1. 3125 and 1. 375

x3 = (1. 3125 + 1.375) / 2 = 1.3438

f (x3) = f (1.3438) = 0.0824 (Positive)

Therefore the root li es between 1. 3438 and 1. 3125

Ie. x4 = (1. 3125 + 1.3438) / 2 = 1. 3282

f (x4) = 0. 014898 (Positive)

Therefore the root li es between 1. 3282 and 1. 3125

Therefore x5 = (1. 3125 + 1.3282) / 2 = 1.3204

Since x4 x5 correct to two decimal places, the root is 1. 3204

Note: If f(x) 0, then x is the root. Here f (x5) = 0. 0183 which i s very small

and near to zero. Therefore the root is 1. 3204.

2. Find the root of t he equation x log10 x – 1.2 = 0 by bisection method.

Let f (x) = x log10 x – 1. 2

f (2) = 2 log10 2 – 1.2 = - 0. 598 (negative)

f (3) = 3 log10 3 – 1.2 = 0.2313 (positive)

Therefore the root lies between 2 and 3

x0 =(2 + 3) / 2 = 2.5

f (x0) = f (2.5) = 2.5 log10 2. 5 – 1.2 = - 0.2053

Since f (2. 5) is negative and f (3) is positive the root lies between 2.5 and 3

Therefore the next approximate root is

x1 = (2. 5 + 3) / 2 = 2. 75

f (2.75) = 2. 75 log10 2. 75 – 1.2 = 0. 008

45

2

Since f (2. 75) is > 0 and f (2.5) is < o the next root lies between 2. 75 and 2.5

Therefore x2 = (2. 75 + 2.5) / 2 = 2. 625

f (x2) = f (2.625) = - 0.10

Therefore the next approximation i s

x3 = (2. 625 + 2. 75) / 2 = 2.6875

f (x3) = f (2.6875) 0

Therefore the root of the equation i s 2. 6875

Newton- Raphson Method:

Let x0 be the approximate root of the equation f (x) = 0

Let x1 = x0 + h be the exact root of the equation

Therefore f (x1) = 0

By Taylor’ s series expansion, we can write

f (x1) = f (x0 + h) = f (x0) + h/1! f'(x0) + (h /2!) f'' (x0) + …..

Since h i s very small, h
2

i s negligibly small and we c an ignore the higher

order terms. Therefore we can write

f (x1) = f (x0) + h f' (x0) = 0

i.e. h = - f (x0) / f' (x0)

Therefore x1 = x0 + h = x0 - f (x0) / f' (x0)

The next approximation i s

x2 = x1 - f (x1) / f' (x1)

46

0

In general, xn +1 = xn - f (xn) / f' (xn)

This is known as Newton – Raphson iteration formula.

Problems:

1. Find the root of the equat ion x
3
– 3 x + 1 = 0 by Newt on – Raphson

method.

Gi ven f(x) = x
3

– 3 x + 1 = 0

f (x) = 3 x
2

– 3

f (1) = 1 – 3 + 1 = - 1 (Negative)

f (2) = 2
3

– 6 + 1 = 3 (Positive)

Therefore x0 =(1 + 2) / 2 = 1.5

f (x0) = 1.5
3

– 3 x 1. 5 + 1 = - 0. 125

f

!
(x) = 3 (1.5)

2
– 3 = 3.75

x1 = 1. 5 – (- 0. 125/3. 75) = 1.5333

f (x1) = (1. 5333)

3
– 3 x 1.5333 + 1 = 0.0049

f (x1) = 3 (1.5333)
2

– 3 = 4. 053

x2 = 1. 5333 – (0. 0049/4. 053) = 1. 5321

Since x2 x3 the root of the given equation i s 1. 5321

2. Find t he root of t he equation cos x – xe
x

= 0 by Newton – Raphson

method.

f (x) = cos x – xe
x

f
'
(x) = - si n x – xe

x
– e

x

Let x0 = 0.5

47

! !

x1 = x0 - f (x0) / f (x0) = 0. 5 – f (0. 5)/ f (0. 5)

= 0.5 – (0.533/-2.9525)

= 0.5 + 0.0181 = 0.5181

x2 = x1- f (x1) / f
!
(x1) = 0. 5181 – f (0. 5181)/ f

!
(0. 5181)

= 0.5181 – (- 0.00104 /-3. 0438)

= 0.5181 - 0.00034 = 0. 5178

x3 = x2 - f (x2) / f
!
(x2) = 0.5178 – f (0. 5178)/ f

!
(0. 5178)

= 0.5178 – (- 0.00012 /-3. 0422)

= 0.5178

Since x2 x3 the root of the given equation i s 0. 5178.

Rat e of convergence of Newt on- Raphson method

Let α be the root of the equation f(x) = 0

Let xn be the approximate root of the equation and en be the small error by

which xn and α differ s

Therefore xn = α + en

Similarly xn +1 = α + en+1

Newton- Raphson formula i s

xn +1 = xn – f(xn) / f’(xn)

α + en+1 = α + en - f(α + en) / f‘(α + en)

en +1 = en – [f(α + en) / f ‘(α + en)]

using Taylor’s series expansion we c an write

48

n n

e
2

n

0 1 2

f

en+1 = en -

= en -

= en f
!
(α) + e

2
 f

!!
(α) – f (α) - en f

!
 (α) - e

2
 f

!!
(α)/2

n
!!
(α)

f
!
(α) + en f

!!
(α)

= 2!

f
!
(α) [1 + en f

!!
(α)/ f

!
(α)]

= K e
2

n

en +1 e
2

i.e. the err or in successive steps decreases as the square of error in the

previous step. Thus the order of convergence is two.

Birge – Vieta method :

The real root of a polynomial equation f(x) = 0 c an be obtained by this method.

Let f (x) = a x
n

 + a x
n-1

+ a x
n-2

+ …………. + an

Let (x – r) be a f actor of f (x).

f (x) = (x - r) q (x) + R

where q (x) = b0 x
n-1

+ b1 x
n- 2

+ b2 x
n-3

+ …………. + bn-1

and R i s the remainder

Let r0 be the ini tial approximation to r. Using Newton – Raphson method,

the close approximation to the root r is given by r1 = r0 – f (r0)/ f
!
(r0).

49

0

!

0

!

The values of f (r0) and f

Brge – Vi eta method.

(r0) are calculated by synthetic division formula in

Substituting f (x) and q (x) i n the equation f (x) = (x - r) q (x) + R and

comparing the coefficients of like power of x on both sides we get

b0 = a0

b1 = a1 + r0 a0

b2 = a2 + r0 b1

R =bn = an + r0 bn-1

In the synthetic division method,

f (r0) = R = bn and Ci = bi + r0 C i-1 where C0 = b0 and

f
!
(r) = dR / dr = Cn-1

Substituting in the formula r1 = r0 – f (r0)/ f (r0)

we get r1 = r0 - bn / Cn-1

Synthetic division

a0 a1 a2 ……….. an-2 an-1 an

r0 r0b0 r0b1 ……….. r0bn-3 r0bn-2 r0bn-1

--

b0 b1 b2 ……….. bn-2 bn-1 bn

r0 r0c0 r0c1 ……….. r0cn-3 r0cn-2 ……

--- -----

c0 c1 c2 ……….. cn-2 cn-1 ……..

Using the f ormula r1 = r0 - bn / Cn-1 the approximate root r1 is calculated.

50

Replacing the value of r1 in r0 in the above synthetic division method the next

approxi mated value r2 = r1 - bn / Cn-1 can be obtained.

Problem:

1. Find the root of t he equation x
4

+ 2 x
3
– 21 x

2
– 22 x + 40 = 0 using

Bir ge – Vieta method. Per for m two iterative. Take initial root as 3.5.

Solution:

Her e

a0 = 1

a1 = 2

a2 = -21

a3 = -22

a4 = 40

ro = 3.5

1

2

-21

-22

40

3.5 3.5 19. 25 -6.125 -98. 4375

 1 5.5 -1.75 -28. 125 -58. 4375 (= bn)

3.5 3.5 31. 5 104.125

-- ------

1 9 29. 75 76 (=cn-1)

r1 = r0 - bn / Cn-1 = 3.5 + (58.4375 / 76) =4. 2689

Second iteration

1 2 -21 -22 40

4.2689 4.2689 26. 7613 24. 5944 11. 0752

1 6.2689 5.7613 2.5944 51. 0752 (= bn)

3.5 4.2689 44. 9848 216.63

--

1 10. 5378 50. 7461 219.224 (= cn-1)

r2 = r1 - bn / Cn-1 = 4.2689 - (51. 0752 / 219. 224) = 4. 0359

The root of the given equation i s 4. 0359

2. Find the root of t he equation x
3

+ 2 x
2

+ 10 x - 20 = 0 using Bir ge –

Vieta method. Take initial root as 1. Perform two it eations.

51

Solution:

Her e a0 = 1 a1 = 2 a2 = 10 a3 = -20

ro = 1

1 2 10 -20

1 1 3 13

--

1 3 13 -7 (= bn)

1 1 4 17

1 4 17 (= cn-1)

r1 = r0 - bn / Cn-1 = 1 + (7 / 17) = 1.4118

The Second iteration is

1 2 10 -20

1.4118 1.4118 4.8168 20. 9184

 1 3.4118 14. 8168 0.9184 (= bn)

1.4118

1.4118

6.8100

-- ------------

1 4.8236 21. 6268 (= cn-1)

r2 = r1 - (bn / Cn-1) = 1.4118 – (0.9184 / 21.6268) = 1.3693

The root of the given equation i s 1. 3693.

52

UNIT II

Numerical Differentiation and Integration

Numerical differentiation is a process by which one can evaluate the

approximate numerical value of the derivative of a function at some assigned value

of the independent variable, by using the set of given values of that function. To

solve the problem of differentiation, we first approximate the function by an

interpolation formula and then differentiate it as many times as …..

In case the given argument values are equally spaced, we represent the

function by Newton-Gregory formula. If the derivative of the function is to be

evaluated at a point near the beginning of the tabular values, we use Newton-

Gregory forward formula. If the derivative of the function is to be evaluated at a point

near the end of the tabular values, we use Newton- Gregory backward formula.

Newton’s forward difference formula to find numerical differentiation

We are given with (n+1) ordered pairs (xi , yi) i = 0, 1, 2, ….. n.

We want to find the derivative of y = f (x) passing through the (n+1) points, at a

point nearer to the starting value x = x0.

Newton’s forward difference interpolation formula is

y (x0 + uh) = yu = y0 + u y0 +u(u-1) 2 y0 + u (u-1)(u-2)
3 y0 + …… (1)

2! 3!

Where y (x) is a polynomial of degree n in x and u = (x – x0) / h

Differentiati ng y (x) w.r.t. x,

dy/dx = (dy/du)(du/dx) = 1/h (dy/du)

= 1/h{ [y0 + [(2u-1)/2] 2 y0 + [(3u2 – 6u + 2)/6]
3 y0 +

[(4u3 – 18u2 + 22u – 6)/24] 4 y0 + ……} (2)

when x = x0 , i.e., u = 0, equation (2) can be written as

(dy/dx)x=x0 =, (dy/dx)u=0

53

= 1/h [Δ y0 – 1/2 Δ2 y0 + 1/3 Δ3 y0 – 1/4 Δ4 y0 + …] … (3)

Differentiating (2) again w.r.t. x

d2y/dx2

=

d/du (dy/dx) .(du/dx)

=

=

d/du (dy/dx) . 1/h

1/h2 [2 y0 + (u-1) 3 y0 + (6u2 – 18u +11)/12

4 y0 + … (4)

Equation (4) gives the second derivative value of y with respect to x.

Setting x = x0 i.e., u = 0 in (4)

(d2 y/dx2)x=x0 = 1/h2 [2 y0 -
3 y0 + (11/12) 4 y0 + …] … (5)

Therefore, the Newton’s forward difference formula to evaluate

numerical differentiation is

(dy/dx)x=x0 = 1/h [Δ y0 – 1/2 Δ2 y0 + 1/3 Δ3 y0 – …]

(d2 y/dx2)x=x0 = 1 /h2 [2 y0 -
3 y0 + 11/12

4 y0 + …]

Newton’s backward difference formula for numerical differentiation

Newton’s backward difference interpolation formula is

y (x) = y (xn + vh)

= yn + v yn + v (v+1) 2yn + v (v+1) (v+2) 3yn + …. (6)

2! 3!

Here v = x – xn / h

Differentiate (6) w.r.t. x

dy/dx = (dy/dv) (dv/dx) = (dy/dv) (1/h)

dy/dx = 1/h [yn + 2v+1 2 yn + 3 v2 + 6 v + 2 3 yn +

2 6

4 v3 + 18 v2 + 22 v + 6 4 yn + …] … (7)

24

d2y/dx2 = 1/h2 [2 yn + (v+1) 3 yn + 6 v2 + 18 v + 11v 4yn + …] … (8)

12

54

Equations (7) and (8) give the first second derivative at general x.

Setting x = xn or v = 0 in (7) and (8) we get

dy/dx = 1/h [yn + 1/2 2 yn + 1/3 3 yn + 1/4 4 yn + …] … (9)

d2y/dx2 = 1/h2 [2 yn + 3yn + 11/12 4yn + …] … (10)

Equations (9) and (10) are the Newton’s backward difference formulae to

evaluate numerical differentiation.

Problems

1. Find the first two deri vatives of (x) 1/3 at x = 50 and y = 56

given in the table below

x

50

51

52

53

54

55

56

y= x1/3

3.6840

3.7084

3.7325

3.7563

3.7798

3.8030

3.8259

Solution:

Since we require f! (x) at x = 50, we use Newton’s forward difference formula and

to get f! (x) at x= 56 we have to use Newton’s backward difference formula

Difference Table

x

50

y

3.6840

Δ y Δ2 y Δ3 y

51

3.7084

0.0244
- 0.0003

 0.0241 0

52 3.7325
0.0238

- 0.0003
0

53

54

3.7563

3.7798

0.0235

- 0.0003

- 0.0003

0

55

3.8030

0.0232
- 0.0003

0

56

3.8259

0.0229

55

By Newton’s forward difference formula,

dy = dy

dx x=x0 dx u=0

= 1/h [Δ y0 – 1/2 Δ2 y0 + 1/3 Δ3 y0 ….]

= 1/1 [0.0244 – 1/2 (- 0.0003) + 1/3 (0)]

d2y

= 0.02455

d2x x=50 = 1/h2 [Δ2 y0 - Δ
3 y0 + ….]

= 1 [- 0.0003]

= - 0.0003

By Newton’s backward difference formula,

dy = dy

dx

x=xn

=

dx v=v0

1/h [yn – 1/2
2 yn + 1/3

3 yn ….]

=

1/1 [0.0229 + 1/2 (- 0.0003) + 1/3 (0)]

 = 0.02275

d2y

d2x x=56 = 1/h2 [
2 yn +

3 yn + ….]

= 1 [- 0.0003]

= - 0.0003

2. The population of a town is given below. Find the rate of growth of the

population i n the years 1931, 1941, 1961 and1971.

Year x 1931 1941 1951 1961 1971

Population in
thousands y

40.62 60.80 79.95 103.56 132.65

56

Solution

x y Δ y Δ2 y Δ3 y Δ4 y

1931 40.62

20.18
1941 60.80 -1.03

19.15 5.49

1951 79.95 4.46 -4.47
23.61 1.02

1961 103.56 5.48
29.09

1971 132.65

(i) To get f1 (1931) and f1(1941) we use forward formula.

x0 = 1931, x1 = 1941, ….

u = x – x0 / h Here x0 = 1931 Corresponding to u = 0

By Newton’s forward difference formula,

dy = dy

dx x=1931 dx u=0

= 1/h [Δ y0 – 1/2 Δ2 y0 + 1/3 Δ3 y0 – 1/4 Δ4 y0 + ….]

= 1/10 [(20.18) – 1/2(-1.03) + 1/3(5.49) – 1/4(-4.47)]

= 1/10 [20.18 + 0.515 + 1.83 + 1.1175]

= 2.36425

(ii) when x = 1941, we get u = x – x0 / h = (1941 – 1931)/10 = 1

Putti ng u = 1 in the formula given below

We get

dy

dx = 1/h [y0 + [(2u-1)/2]
2 y0 + [(3u2 – 6u + 2)/6] 3 y0 +

(4u3 – 18u2 + 22u – 6)/24] 4 y0 + ……

57

dy

dx u=1 = 1/10 [(20.18) + 1/2(-1.03) -1/6(5.49) + 1/12(-4.47)]

= 1/10 [20.18 – 0.515 – 0.915 – 0.3725]

= 1.83775

(iii) To get f! (1971), we use the formula

dy

dx x=x0 = 1/h [yn + 1/2 2 yn + 1/3 3 yn + 1/4 4 yn + …]

dy

dx 1971 = 1/10 [29.09 + 1/2(5.48) + 1/3(1.02) + 1/4 (-4.47)]

= 1/10 [31.10525]

= 3.10525

(iv) To get f! (1961), we use

v = x - xn /h = (1961 – 1971) /10 = -1

dy

dx x=1961 = 1/h [yn + 2v+1 2 yn + 3 v2 + 6 v + 2 3 yn + …]

2 6

= 1/10 [29.09 - 1/2(5.48) - 1/6(1.02) - 1/4 (-4.47)]

= 1/10 [29.09 – 2.74 – 0.17 + 0.3725]

= 2.65525

3. Find the first and second derivatives of the function tabulated below at the

point x = 1.5

x

1.5

2.0

2.5

3.0

3.5

4.0

f (x)

3.375

7.0

13.625

24.0

38.875

59.0

58

Solution

The difference table is as follows:

x y = f(x) y 2 y
3 y

4 y

1.5 (xo)

2.0

2.5

3.0

3.5

4.0

3.375 (y0)

7.0

13.625

24.0

38.875

59.0

3.625 = y0

6.625

10.375

14.875

20.125

3.0 = 2 y0

3.75

4.5

5.25

0.75
3 y0

0.75

0.75

0 = 4 y0

0

Here we have to find the derivative at the point x = 1.5 which is the initial value of

the table. Therefore by Newton’s forward difference formula for derivatives at

x = x0 , we have

f! (x0) = 1/h [Δ y0 – 1/2 Δ2 y0 + 1/3 Δ3 y0 – …]

Here x0= 1.5, h = 0.5

f! (1.5) = (1/0.5) [(3.625) – 1/2 (3.0) + 1/3 (0.75)]

f! (1.5) = 4.75

At the poi nt x = x0 ,

f!! (x0) = 1 /h2 [2 y0 -
3 y0 + 11/12

4 y0 + …]

Here x0 = 1.5, h = 0.5

f!! (1.5) = [1/(0.5)2] [(3.0) – (0.75)]

f! (1.5) = 9.0

59

Numerical Integration

Introduction:

We know that represents the area between y = f (x), x-axis and the

ordinates x = a and x = b. This integration is possible only if the function is

explicitly given and if it is integrable. We can replace f (x) by an interpolating

polynomial Pn (x) and obtain

n

for .

Pn(x) dx which is approximately taken as the value

Newton-cote’s formula for Numerical Integration

For equally spaced intervals, we have Newton’s forward difference formula as

f (x) = y (x0 + uh) = y0+ u y0 +u(u-1) 2 y0 + u (u-1)(u-2)
3 y0 + …… (1)

2! 3!

f (x) can be replaced by Newton’s i interpolating formula in integration.

Here, u = (x - x0)/h where h is i interval of differencing

Since xn = x0 + nh and u = (x - x0)/h, we have (x - x0)/h = n = u

 =

= Pn (x) dx, where Pn (x) is the i interpolating

polynomial of degree n

= y0+ u y0 +u(u-1)
2 y0 + u (u-1)(u-2) 3 y0 + … hdu

2! 3!

Since dx = hdu, and when x = x0 , the lower limit u = 0 and

when x = x0 + nh, the upper limit u = n

= h y0+ u y0 + u2 - u 2 y0 + u3 – 3u2 + 2u 3 y0 + …) du

2! 3!

= h y0 (u) + (u2 /2) y0 +1/2 (u3/3) – (u2/2) 2 y0 + 1/6 (u4 /4) – u3 + u2 3 y0 + …

 = h [n y0 + (n2/2) y0 +1/2 (n3/3) – (n2 /2)
2 y0 +

1/6 (n4 /4) – n3 + n2 3 y0 + … … (2)

60

Equation (2) is called as Newton-Cote’s quadrature formula or in general

quadrature formula. Various values for n yield number of special formulae.

Trapezoidal rule

When n = 1, in the quadrature formula (i.e. there are only two paired values

and the interpolating polynomial is li near) we get

 = h [y0 + 1/2 Δ y0] since other differences do not exist when n=1

= h [y0 + 1/2 (y1 – y0)]

= h/2 (y0 + y1)

 =

= + + …. +

= h/2 (y0 + y1) + h/2 (y1 + y2) + … + h/2 (yn-1 + yn)

= h/2 [(y0 + yn) + 2 (y1 + y2 + y3 + ….. + yn-1)]

= h/2 [(sum of the first and last ordinates) +

2(sum of the remaining ordinates)]

This is known as Trapezoidal Rule.

This method is very simple for calculation purposes of numerical integration. The

error in this case is significant. The accuracy of the result can be improved by

increasing the number of intervals and decreasing the value of h.

Truncation error in Trapezoidal rule

In the neighborhood of x = x0, we can expand y = f (x) by Taylor series in

powers of x – x0. That is,

y (x) = y0 + (x – x0) y0' + (x – x0)
2 y0'' + ….. … (1)

1! 2!

61

Where y0' = [y' (x)]x=x0

=

[y0 + (x – x0) y0' + (x – x0)
2 y0'' + …..] dx

1! 2!

= y0 x + (x – x0) y0' + (x – x0)
2 y0'' + ….. with upper limit x1 and

lower limit x0

= y0 (x1 – x0) + (x1 – x0)
2 y0' + (x1 – x0)

3 y0''+ ….

2! 3!

= h y0 + (h2/2!) y0' + (h3/3!) y0'' + … … (2)

where h is the equal i nterval length.

Also = h/2 (y0 + y1) = area of the first trapezium = A0 … (3)

Putti ng x = x1 i n (1)

y (x1) = y1 = y0 + (x1 – x0) y0'+ (x1 – x0)
2 y0'' + …..

1! 2!

i.e.

y1

= y0 + (h/1!) y0' + (h2 /2!) y0'' + … … (4)

A0

=

=

h/2 [y0 + y0 + (h/1!) y0' + (h2 /2!) y0'' + …] usi ng (4) i n (3)

h y0 + (h2 /2) y0' + (h3/ 2x2!) y0''+ …

Subtracting A0 value from (2)

 - A0 = h3 y0'' [(1/3!) – (1/2x2!)] + ….

= - (1/12) h3 y0'' + ….

Therefore the error i n the first interval (x0 , x1) is - (1/12) h3 y0'' (neglecting other

terms)

Similarly the error in the ith interval = - (1/12) h3 yi-1''

Therefore, the total error is E = - 1/12 h3 (y0'' + y1'' + y2'' + …. + yn-1'')

E nh3 /12 . M, where M is the maximum value of

y0'' y1'' y2'' …..

|E | (b – a) h2 / 12 . M

62

If the i interval is (a, b) and h = (b – a) /n

Hence, the error i n the trapezoidal rule is of the order h2

Simpson’s one-third ru le

Setting n = 2 in Newton-cote’s quadrature formula, we have

 = h [2 y0 + 4/2 Δ y0 + 1/2(8/3 – 4/2) Δ2 y0]

(since other terms vanish)

= h [2y0 + 2 (y1 – y0) + 1/3 (E – 1)2 y0]

= h [2y0 + 2y1 – 2y0 + 1/3 (y2 – 2y1 + y0)]

= h [1/3 y2 + 4/3 y1 + 1/3 y0]

= h/3 [y2 + 4y1 + y0]

Similarly, = h/3 [y2 + 4y3 + y4]

 = h/3 [yi + 4yi+1 + yi+2]

If n is an even integer, last i ntegral will be

 = h/3 [yn-2 + 4yn-1+ yn]

Adding all these integrals, if n is an even positive integer, that is, the number of

ordinates y0, y1 , …. Yn is odd, we have

 = + + …. +

= h/3 [(y0 + 4y1 + y2) + (y2 + 4y3 + y4) + … + (yn-2 + 4yn-1 + yn)]

= h/3 [(y0 + yn) + 2 (y2 + y4 + …) + 4 (y1 + y3 + …)]

= h/3 [sum of the first and last ordinates

+ 2 (sum of remaining odd ordinates)

+ 4 (sum of the even ordinates)]

Note: Though y2 has suffi x even, it is the third ordinate (odd)

63

Simpson’s three-eighths ru le

Putting n = 3 i n Newton-cote’s formula we get

 = h [3 y0 + 9/2 Δ y0 + 1/2(9/2) Δ2 y0 + 1/6(81/4 – 27 + 9) Δ3y0]

= h [3 y0 + 9/2 (y1 – y0) + 9/4(E – 1)2 y0 + 3/8(E - 1)3 y0]

= h [3 y0 + (9/2) y1 - (9/2) y0 + 9/4 (y2 – 2y1 + y0) +

3/8 (y3 – 3y2 + 3y1 – y0)]

= 3h/8 [y3 + 3y2 + 3y1 + y0]

If n is a multiple of 3,

 = + + …. +

= 3h/8 [(y0 + 3y1 + 3y2 + y3) + (y3 + 3y4 + 3y5 + y6) + …..

+ (yn-3 + 3yn-2 + 3yn-1 + yn)]

= 3h/8 [(y0 + yn) + 3 (y1 + y2 + y4 + y5 + …. + yn-1)

+ 2 (y3 + y6 + y9 + … + yn)]

The above equation is called Simpson’s three-eighths rule which is applicable only

when n is a multiple of 3.

Problems

1. Evaluate x4 dx by using (1) Trapezoidal rule (2) Simpson’s rule.

Verify your results by actual integration.

Solution

Here y (x) = x4 . Interval length (b – a) = 6, so, we divide equal intervals with

h = 6/6 = 1, we form below the table

x

-3

-2

-1

0

1

2

3

y

81

16

1

0

1

16

81

64

By Trapezoidal rule,

 = h/2 [(sum of the first and last ordinates) +

2(sum of the remaining ordinates)]

= 1/2 [(81 + 81) + 2 (16 + 1 + 0 + 1 + 16)]

= 115

By Simpson’s one – third rule (since number of ordinate is odd)

 = 1/3 [(81 + 81) + 2 (1 + 1) + 4 (16 + 0 + 16)]

= 98

Since n = 6, (multiple of three), we can use Simpson’s three-eighths rule. By this

rule

 = 3/8 [(81 + 81) + 3 (16 + 1 + 1 + 16) + 2 (0)]

= 99

By actual integration

 x4 dx = 2 x x5 /5 with upper limit 3 and lower limit 0.

= 2 x 243 / 5

= 97.2

From the results obtained by various methods, we see that Simpson’s rule gives

Better result than Trapezoidal rule (It is true in general)

2. Evaluate / 1+x2, using Trapezoidal rule and h = 0.2. Hence obtain

an approximate value of .

Solution

Let y (x) = 1/(1+x2)

Interval is (1 – 0) = 1 Since the value of y are calculated as points using h = 0.2

x

0

0.2

0.4

0.6

0.8

1.0

y = 1/(1+x2)

1

0.96154

0.86207

0.73529

0.60976

0.50000

(1) By Trapezoidal rule

65

/ 1+x2

=

h/2 [(y0 + yn) + 2 (y1 + y2 + ….+ yn-1)]

=

0.2/2 [(1 + 0.5) + 2 (0.96154 + 0.086207 + 0.73529 +

0

0.60976)

= (0.1) [1.5 + 6.33732]

= 0.783732

By actual integration,

 / 1+x2 = (tan-1 x)1

/4 = 0.783732.

= /4

Hence = (4X0.783732) = 3.13493

3. From the following table, find the area bounded by the f (x) and the x-axis

from x = 7.47 to x = 7.52

x

7.47

7.48

7.49

7.50

7.51

7.52

Y= f (x)

1.93

1.95

1.98

2.01

2.03

2.06

Solution

Using Trapezoidal rule we can write the area as the integral of f(x).

 = 0.01/2 [(1.93 + 2.06)+2(1.95 + 1.98 + 2.01 + 2.03)]

= 0.09965

4. Evaluate I = dx / (1 + x) using (1) Trapezoidal rule (2) Simpson’s

rule. Verify your results by actual integration.

Solution

66

I = 1/3 [(1 + 1/7) + 2 (1/3 + 1/5) + 4 (1/2 + 1/4 + 1/6)]

 =

=

1/3 [1 + 1/7 + 16/15 + 22/6

1.95873016

Take the number of intervals as 6. Therefore h = 6 – 0 / 6 = 1

x

0

1

2

3

4

5

6

y=1/(1+x)

1

1/2

1/3

1/4

1/5

1/6

1/7

(1) By Trapezoidal rule,

/1+x = 1/2 [(1 + 1/7) + 2 (1/2 + 1/3 + 1/4 + 1/5 + 1/6)]

 = 2.02142857

(2) By Simpson’s one – third rule

(3) By Simpson’s three-eighths rule.

I = 3/8 [(1 + 1/7) + 3 (1/2 + 1/3 + 1/5 + 1/6) + 2 (1/4)]

 = 1.96607143

(4) By actual integration

6

/1+x = [log (1 + x)]0

= loge 7

= 1.94591015

5. Evaluate e-x2 dx by di viding the range of integration i nto equal parts

using Simpson’s one-third rule.

Solution

Here the length of the interval is h = 1- 0/4 = 0.25. The values of the function

y = e-x2 for each point of subdi vision are given below

x

0

0.25

0.5

0.75

1

e-x2

1
y0

0.9394

y1

0.7788

y2

0.5698

y3

0.3678

y4

67

By Simpson’s rule we have

 e-x2 dx = h/3 [(y0 + y4) + 2 y2 + 4 (y1 + y3)]

= 0.25/3 [1.3678 + 1.5576 + 6.0368]

 e-x2 dx = 0.7468

Gauss Quadrature formula

Carl Frederich Gauss approached the problem o f numerical integration in a

different way. Instead of finding the area under the given curve, he tried to evaluate

the function at some points along with the abscissa. Here the values of abscissa are

not equal. Then apply certain weight to the evaluated function.

Thus for Gauss two point formula

 =

= 1 f (t1) + 2 f (t2) … (1)

The function f (t) is evaluated at t1 and t2 . 1 and 2 are the weights given

to the two functions.

The basic methodology is explained as given below for Gauss Two Point

Formula.

Gauss Two Point Formula

First one has to change the interval (a,b) to (-1, 1) by using the following

transformation equation

X = [(a + b)/2] + [(b – a)/2] t

Thus the independent variable ‘x’ is changed to ‘t’.

Then we use an interpolation formula which will give the true value of the

integral at certain points. Here the interpolation points are t1 and t2 .

In equation (1), we want to find the four unknown quantities 1, 2 and t1 t2.

So we need four algebraic equations to solve it. Let the equation (1) be exact for

68

-1

-1 1 2

-1 1 2

1 2

t 2 1

f (t) = 1

f (t)

=

t

 f (t) = t2 and

t3

when

f (1)

f (t)

= 1

=

we get

=

2

=

 1 +

2

…

(2)

[since f (t1) = f (t2) = 1]

When f (t) = t

= t2/2 1
 = 0 = 1t1 + 2 t2 … (3)

When f (t) = t 2 we get

t2 dt = t3/3 1
 = 2/3 = 1t

2 + 2 t
2 … (4)

when f (t) = t 3

t3 dt = t4/4 1
 = 0 = 1t

3 + 2 t
3 … (5)

This set of equations (2), (3), (4) and (5) can be solved as follows

From (3) we get

1t1 = - 2 t2 … (6)

From (5) we get

1t
3 = -

2 t
3 … (7)

From (6) and (7) we get

t1 = - t2

 1 = 2 = 1

From (4) we get

2 + t 2 = 2/3

t1 = 1/√3

69

t

t2 = - 1/√3

From equation (1) we get

I = = 1 f (t1) + 2 f (t2)

I = f (1/√3) + f (- 1/√3) … (A)

[since 1 = 2 = 1]

Problems

1. Evaluate using Gauss two point formula.

Solution

Transform the variable x to t by the transformation

X = [(a + b)/2] + [(b – a)/2] t

= [(1 + 2)/2] + [(2 -1)/2)] t

X = 3/2 + t/2 = (3 + t)/ 2

i.e. dx = dt/2

Therefore I = =
1

2 dt

1
3 t 2

1

dt
=

Here f (t) =
1

3

1
3 t

f (1/√3) = 1/(3 + √3) = 0.2795

f (-1/√3) = 1/(3 - √3) = 0.41288

I = f (1/√3) + f (- 1/√3)

I = 0.6923

70

2. Evaluate

(1+x3) using Gauss 2 point formula.

Solution

Transform the variable x to t by the transformation equation

X = [(a + b)/2] + [(b – a)/2] t

X = 3/2 + t/2 = (3 + t) / 2

and dx = dt/2

Therefore I = (1+x3)

1

=

1
1 ((3

1 dt

t) / 2)3 2

 =

=

4 dt/ 8 + (3+t)3

4 [f (1/√3) + f (- 1/√3)]

Here f (t)

=

1 / [8 + (3 +t)3]

f (1/√3)

=

1/[8 + (3 + 1/√3)3 =

0.0185

f (-1/√3)

=

1/[8 + (3 - 1/√3)3 =

0.045

I =

4

[f (1/√3) + f (- 1/√3)]

 = 4 [0.0185 + 0.045]

I

=

0.254

Gauss three point formula

=

Where the interval (a, b) is changed into (-1, 1) by the transformation

X = [(b + a)/2] + [(b – a)/2] t

Then

= A1 f (t1) + A2 f (t2) + A3 f (t3)

71

Where

A1 = A3 = 0.5555

A2

=

0.8888

t1 = - 0.7745

t2

=

0

t3 = 0.7745

Problem

1. Evaluate using Gauss three point formula.

Solution

Transform the variable x to t by the transformation

X = [(b + a)/2] + [(b – a)/2] t

= [(1 + 2)/2] + [(2 -1)/2] t

x = 3/2 + t/2 = (3 + t)/ 2 and dx = dt/2

Therefore I = = f (t) dt

= A1 f (t1) + A2 f (t2) + A3 f (t3)

A1 = A3 = 0.5555

A2 = 0.8888

1
In this problem f(x) =

x

and f(t)= 1/(3+t)

f (t1) = f (-0.7745)

= 1/ (3 – 0.7745) = 0.4493

f (t2) = f (0)

= 1/ 3 = 0.3333

f (t3) = f (0.7745)

= 1/ (3 + 0.7745) = 0.2649

72

Substituting the values of A1 , A2, A3 and f (t1), f (t2), f (t3) in the formula, we get

I = 0.5555 (0.4493) + 0.8888 (0.3333) + 0.5555 (0.2649)

I

=

0.6929

2. Evaluate e-x2 dx by using the three point Gaussian Quadrature formula.

Solution

Transform the variable from x to t by the transformation

X = [(b + a)/2] + [(b – a)/2] t

where a = 0.2 b = 1.5

= (1.7/2) + (1.3/2) t

i.e. x = (1.7 + 1.3t)/2 and dx = 1.3 t/2 = 0.65 t

I = e-x2 dx

= e -[(1.7 +1.3t)/2]2 (0.65)dt

= 0.65 e- [(1.7 +1.3t)/2]2 dt

Using Gauss three point formula we can write

I = 0.65 [A1 f (t1) + A2 f (t2) + A3 f (t3)]

Where f(t) = e - [(1.7 +1.3t)/2]2

A1 = A3 = 0.5555

A2 = 0.8888

f (t1) = f (- 0.7745) = e - [(1.7 +1.3 (-0.7745)/2]2

= 0.8868

f (t2) = f (0) = e - [(1.7 +1.3 (0)/2]2

= 0.48555

f (t3) = f (0.7745) = e - [(1.7 +1.3 (0.7745)/2]2

= 0.16013

73

x

Substituti ng the values of A1 , A2, A3 and f (t1), f (t2), f (t3) in the formula, we get

I = 0.5555 (0.8868) + 0.8888 (0.4855) + 0.5555 (0.16013)

I

=

=

0.4926 + 0.4315 + 0.08895

1.01307

3. Evaluate dx/ 1+x2, using Gauss 3 point formula

Solution

Transform the variable from x to t by the transformation

X = [(b + a)/2] + [(b – a)/2] t

where a = 0 b = 1

x = (1/2) + (t/2)

i.e. x = (t + 1)/2 when x = 0, t = -1

x = 1, t = 1

dx = dt/2 = 0. 5t

I =
 dx

(1 2)

= [1/ (1 + ((t + 1)/2)2)]* dt/2

= 2 dt/ 4 + (t + 1)2 usi ng Gauss three point formula we get

I = 2 [A1 f (t1) + A2 f (t2) + A3 f (t3)]

Where f (t) = 1/ 4 + (t+1)2

A1 = A3 = 0.5555

A2 = 0.8888

f (t1) = f (- 0.7745) = 1/ 4 + (- 0.7745 + 1)2

= 0.2468

f (t2) = f (0) = 1/ 4 + 1 = 0.2

74

f (t3)

=

f (0.7745)

= 1/ 4 + (0.7745 + 1)2

 = 0.13988

Substituti ng the values of A1 , A2, A3 and f (t1), f (t2), f (t3) in the formula, we get

I = 2 [0.5555 (0.2468) + 0.8888 (0.2) + 0.5555 (0.13988)]

I

=

=

2 [0.39256]

0.78512

75

 Unit III

Solution of first order differential equations – Taylor series method

Initial value problem is an ordinary differential equation given along with a

specified initial value of the unknown function at a given point in the domain of the

solution. In other words, initial value problem is defined as the problem of finding a

Function y of x when we know its derivative and its value y 0 at a particular point x 0 .

A first order differential equation is given by
dy

= y' = f(x,y) with the condition that
dx

y(x0)=y0. The approximate solution of a first order differential equation is given by

(ym - ym-1) = f(xm,ym). (or) ym = ym-1 + f(xm,ym) and this method is called as single step

method. Taylor series method is one such single step method.

Let us consider a first order differential equation
dy

= f(x,y) with the i nitial
dx

condition y(x0)=y0. We can expand y(x) about a point x0 i n Taylor series as

y(x) = y(x0) + (x-x0)/1! [y'(x)]x0 + (x-x0)
2/2! [y''(x)]x0 +(x-x0)

3/3! [y'''(x)]x0 +……

=y0 + (x-x0)/1! y'0 + (x-x0)
2/2! y''0 +(x-x0)

3 /3! y'''x0 +……

When x=x0+h =x1 we can write,

y(x1) = y0 + h /1! y'0 + h2/2! y''0 + h3/3! y'''0 +…..

In general we can write ym +1 = ym + h /1! y'm + h2/2! y''m + h3/3! y'''m +…..

https://en.wikipedia.org/wiki/Ordinary_differential_equation

76

0

0

1

1

Problems

1. Solve the i nitial value problem
dy

= x2 -y with the initial condition y(0)=1 by
dx

Taylor series method and find y(0.1) and y(0.2).

The formula we have to use is y1 = y0 + h /1! y'0 + h2/2! y''0 + h3 /3! y'''0 +…..

Here
dy

= y' = x2-y and it is gi ven that y=1 when x=0.
dx

Differentiating y' = x2-y wrt x we get y'' = - y'

Ie . y'' = -(x2-y) =y-x2

Here

x0=0, y0=1 and h= (x-x0) = 0.1

y'0= x 2
 - y0 = 0-1= -1

y''0 = y0 - x 2
 =1-0=1

y1 = y0 + h /1! y'0 + h2/2! y''0

y(0.1)= y1 = 1+ (0.1) [(-1)+(0.1)2/2] (1) =1-0.1+
0.01

2

=0.905

Similarly y2= y1 + h /1! y'1 + h2 /2! y''1

Here y1= 0.905, y'1 = x 2
 – y1 =(0.1)2-0.905 =-0.895

y''1 = y1 – x 2
 = 0.905 -(0.1)2

 = 0.895

Therefore y2 = 0.905 +(0.1)(-0.895) +
0.001

0.895 = 0.82
2

Answer: y1 =0.905 and y2 = 0.82

2. Using Taylor Series method solve the initial value problem y' =1 + y2 with the

initial condition y(0) =0 and find the value y(0.2) and y(0.4).

The formula we have to use is y1 = y0 + h /1! y'0 + h2 /2! y''0

Here x0=0, y0= 0 , h=0.2 and x1=.2

77

x

y

x

0

1

y'0=1+ y 2
 =1+0 =1

y''0 = 2 y0 y'0 = 0

y1 = y(0.2) = 0 + [0.2 /1!] 1 + [(0.2)2 /2!] 0 =0.2

y1 =0.2

To find y(0.4) let us use the formula y2= y1 + h /1! y'1 + h2 /2! y''1

Here y'1=1+ y 2
 = 1+(0.2)2

 = 1.04and y''1 = 2 y1 y'1 =2 (0.2) (1.04) = 0.416

y2= 0.2+0.2 (1.04)+[(0.2)2/2]0.416 =0.4163

Therefore y(0.4) = 0.4163

Euler’s Method

Consider the first order differential equation
dy

= y' = f(x,y) with the initial condition
dx

y(x0)=y0. Let us assume that the intervals x0 ,x1,x2,x ,.. are equi distant and at each

interval the given function is nearly linear. The problem is to find y1 at the poi nt x=x1

having known the value of y0 at x=x0. The equation of tangent for the given function

dy
= y' = f(x,y) is written as

dx

y 0
= (dy / dx)

x 0 x 0

=f(x0,y0)

Ie. y-y0 = (x-x0) f(x0 ,y0)

y = y0 + (x-x0) f(x0,y0)

When x1 =x0+h and y=y(x1)=y1 we can write

y1 = y0 + h f(x0 ,y0) In a similar manner

y2 = y1 + h f(x1 ,y1) OR i n general

78

yn+1 = yn + h f(xn,yn) This is the Euler’s formula to solve an initial value

problem.

Improved Euler’s formula

yn+1 = yn +
h

{ f(xn,yn) + f(xn+h , yn+h f(xn,yn)) }
2

Modified Euler’s formula

yn+1 = yn + h { f(xn+ h/2 , yn+h/2 f(xn,yn)) }

Problems

1.Solve the initial value problem y' = - y with the i nitial condition y(0)=1 by E uler’s

method , improved E uler’s method and modified Euler’s method. And find the value

of y(0.01)

Solution

Given
dy

= y' = -y , x0=0, h=0.01 , y0=1 and f(x0,y0) = -y0 = -1
dx

Euler’s formula is y1 = y0 + h f(x0 ,y0)

y(0.01) =1 +0.01 (-1) =0.99

Euler’s Improved formula is y1 = y0 +

h

{ f(x0 ,y0) + f(x0+h , y0+h f(x0,y0)) }
2

y(0.1)=y1 = 1+
 0.01

[(-1)+(-0.99)] =1-0.00995 = 0.9901
2

Euler’s modified formula is y1 = y0 + h { f(x0 + h/2 , y0+h/2 f(x0,y0)) }

y(0.1) = y1 = 1+0.01[-1+
0.01

2

(-1)] = 0.9901

79

2 . Solve the differential equation
dy

= y' = y-x with the initial condition y(0)=2
dx

evaluate y (0.1) by E uler’s methods.

Given:
dy

= y' = f(x,y)= y - x
dx

x0= 0, y0 =2, h=0.1, f(x0,y0) = y0 -x0 = 2 -0 =2

Euler’s formula is y1 = y0 + h f(x0 ,y0)

y(0.1) =2 +0.1 (2) =2.2

Euler’s Improved formula is y1 = y0 +

h

{ f(x0,y0) + f(x0+h , y0 +h f(x0,y0)) }
2

y(0.1)=y1 = 2+
 0.1

[(2-0)+(2.2 - 0.1)] = 2.21
2

Euler’s modified formula is y1 = y0 + h { f(x0 + h/2 , y0+h/2 f(x0,y0)) }

y(0.1) = y1 = 2+0.1[(2+
 0.1

(2-0) – (0+
0.1

)] = 2.205
2 2

3. Using E uler’s method evaluate y(0.2),y(0.4), y(0.6) by solving the equation

y' = x + y with the initial condition y(0)=1.

Given:

Solution:

dy
= y' = f(x,y)= x +y

dx

x0= 0, y0 =1 h=0.2, f(x0 ,y0) = y0+x0 = 1 +0 =1

Euler’s formula is y1 = y0 + h f(x0 ,y0)

Y(0.2) =1+(0.2)(0+1) =1.2 Now

Y2 = y1 + h f(x1 ,y1) ie. Y(0.4)=1.2 +(0.2) (0.2+1.2) =1.48

Y3 = y2 + h f(x2 ,y2) = 1.48 +0.2(0.4+1.48) =1.856

80

0

FOURTH ORDER RUNGE-KUTTA METHOD

This method is most commonly used in practice. Let dy/dx = f(x,y) be a

given differential equation to be solved under the condition y (x0) = y0. Let h

be the length of the interval between equidistant values. The first increment in y is

computed using the formulae given below.

k1 = h f (x0 , y0)

k2 = h f (x0 + h/2, y0 + k1/2)

k3 = h f (x0 + h/2, y0 + k2/2)

k4 = h f (x0 + h, y0 + k3)

Δ y = 1/6(k1 + 2 k2 + 2 k3 + k4)

Now x1 = x0 + h, y1 = y0 + Δ y

The increment i n y for the second interval is computed in a similar manner

by using the formulae given above.

Problem:

1. Find the values of y (1.1) using fourth order Runge -Kutta method, given that

dy/dx = y2 + xy and y (1) = 1

Solution:

Given y’ = f (x, y) = y2 + xy

Here it is gi ven that x0 = 1, y0 = 1 and let h = 0.1

Now k1 = h f (x0, y0)

= h (y 2
 + x0 y0)

81

= (0.1) [12 + (1) (1)] = (0.1) (2)

Therefore k1 = 0.2

k2 = h f (x0 + h/2, y0 + k1 /2)

k2 = h [(y0 + k1/2)2 + (x0 + h/2) (y0 + k1 /2)]

= (0.1) [(1 + 0.2/2)2 + (1 + 0.1/2) (1 + 0.2/2)]

= (0.1) [(1.1)2 + (1.05) (1.1)]

= 0.2365

k3 = h f (x0 + h/2, y0 + k2 /2)

k3 = h [(y0 + k2 /2)2 + (x0 + h/2) (y0 + k2/2)]

= (0.1) [(1 + 0.2365/2)2 + (1 + 0.1/2) (1 + 0.2365/2)]

= (0.1) [(1.11825)2 + (1.05) (1.11825)]

= (0.1) [2.4246]

= 0.24246

k4 = h f (x0 + h, y0 + k3)

k4 = h [(y0 + k3)

2 + (x0 + h) (y0 + k3)]

= (0.1) [(1 + 0.24246)2 + (1 + 0.1) (1 + 0.24246)]

= (0.1) [(1.24246)2 + (1.01) (1.24246)]

= (0.1) [1.5437 + 1.366706]

= (0.1) [2.9104]

= 0.29104

Δ y = 1/6(k1 + 2 k2 + 2 k3 + k4)

Δy = 1/6 [0.2 + 2 (0.2365) + 2 (0.24246) + 0.29104]

= 1/6 [1.44896]

= 0.24149

Therefore y1 = y0 + Δ y

82

= 1 + 0.24149

= 1.24149

y (1 .1) = 1.24149

2. Solve the differential equation y’ = y – x with the initial condition y(0.1) = 2.20517

and find y(0.2) by fourth order Runge-Kutta method.

Solution:

Given: f(x,y) = y – x and x0 = 0.1, y0 = 2.20517 and let h = 0.1

Now k1 = h f (x0, y0) = 0.1(2.20517-0.1) = 0.210517

k2 = h f (x0 + h/2, y0 + k1 /2) = h [y0 + k1/2 - (x0 + h/2)]

= 0.1[(92.20517 + 0.2105/2) - (0.1 + 0.1/2)]

= 0.1[2.31042-0.15] = 0.21604

k3 = h f (x0 + h/2, y0 + k2 /2)

= h[y0 + k2 /2 - (x0 + h/2)]

= 0.1[(2.20517 + 0.21604/2) - (0.1 + 0.1/2)]

= 0.1[2.31319- 0.15) = 0.21632

k4 = h f (x0 + h, y0 + k3)

k4 = h[(y0 + k3) - (x0 + h)]

= 0.1[(2.20517+ 0.21632) - (0.1 + 0.1)]

= 0.22214

Δ y = 1/6(k1 + 2 k2 + 2 k3 + k4)

Δ y = 1/6 [0.2105 + 2 (0.21604) + 2 (0.21632) + 0.22214]

= 0.21622

Therefore y1 = y0 + Δ y

= 2.20517 + 0.21622 = 2.42139

Y(0.2) = 2.42139

83

Now

y (x0 + h)

y (x0 + 2h)

=

=

y1 =>

y2 =>

yו (x0 + h)

yו (x0 + 2h)

=

=

y (x0 + 3h)

y (x0 + 4h)

=

=

y3 =>

y4 =>

yו (x0 + 3h)

yו (x0 + 4h)

=

=

y

y

y

y

y

y

y

3

2

3

4

MILNE’S PREDICTOR CORRECTOR METHOD

The function y (x0 + rh) can be expanded as

y (x0 + rh) = y0 +rΔ y0 + r (r–1) Δ2 y0 + r (r-1)(r-2) Δ3y0 + r (r–1)(r–2)(r–3) Δ4y0 +….

2! 3! 4!

Differentiating w.r.t. ‘r’ we get

h y (x0 + rh) = Δy0 + [(2r – 1)/2] Δ2 y0 + [(3r2 - 6r + 2)/6] Δ3 y0

+ [(2 r3 – 9 r2 + 11 r - 3)/12] Δ4 y0 + …. (1)

Putti ng r = 1 , 2 , 3 and 4 i n (1) we get

hy (x0 + h) = Δy0 + 1/2 Δ2y0 – 1/6 Δ3y0 + 1/12 Δ4 y0 + …. (2)

hyו (x0 + 2h) = Δy0 + 3/2 Δ2y0 + 1/3 Δ3 y0 - 1/12 Δ4 y0 + …. (3)

hyו (x0 + 3h) =

hyו (x0 + 4h) =

Δy0 + 5/2 Δ2y0 + 11/6 Δ3 y0 + 1/4 Δ4y0 + …. (4)

Δy0 + 7/2 Δ2y0 + 13/3 Δ3 y0 + 25/12 Δ4 y0 + …. (5)

 ו
1

 ו
2

 (6) .… ו

 ו
4

Substituti ng (6) i n (2) , (3) , (4) and (5)

4 3 2 ו

y1 = 1/h [Δ y0 + 1/2 Δ y0 – 1/6 Δ y0 + 1/12 Δ y0 + ….] … (7)

h [Δ y0 + 3/2 Δ2y0 + 1/3 Δ3/1 = ו
 y0 - 1/12 Δ4

 y0 + ….] … (8)

h [Δ y0 + 5/2 Δ2y0 + 11/6 Δ3/1 = ו
 y0 + 1/4 Δ4y0 + ….] … (9)

h [Δ y0 + 7/2 Δ2y0 + 13/3 Δ3/1 = ו
 y0 + 25/12 Δ4

 y0 + …] … (10)

We know that

Δy0 = y1 – y0

Δ2 y0

Δ3 y0

=

=

y2 – 2y1 + y0

y3 – 3y2 + 3y1 – y0

… (11)

84

y

y

y

y

y

1

y

1 3 2

1 2 3

1 2 3

2 1 n

2 1

1

1

2

3

4

2

Δ4 y0 = y4 – 4y3 + 6y2 – 4y1 + y0

Neglecting differences beyond the fourth power in (7) , (8), (9) and (10) and

replacing the remaining differences by (11) we get

 h [(y1 yo) + 1/2 (y2 -2y1 + y0) – 1/6 (y3 – 3y2 + 3y1 – y0/1 = ו

+ 1/12 (y4 – 4y3 + 6y2 – 4y1 + y0)]

 h [-3y0 – 10y1 + 18y2 – 6y3 + y4] … (12) 1/12 = ו

Similarly we get

 h [y0 – 8y1 + 8y3 - y4] … (13) 1/12 = ו

 h [-y0 + 6y1 - 18y2 + 10y3 + 3y4] … (14) 1/12 = ו

 h [3y0 – 16y1 + 36y2 – 48y3 + 25y4] … (15) 1/12 = ו

Now our aim is to find y4

2 (y ו
 + y3

 2/12h [-4 y0 – 4 y1 + 4 y3 + 4 y4] … (16) = (ו

 1/12h [y0 – 8 y1 + 8 y3 – y4] … (17) = ו

(16) – (17) => = 2 y ו
 + 2 y ו

 – y ו

= 1/12h [- 9 y0 + 9 y4]

= 9/12h [y4 – y0]

y4 – y0 = 4h/3 [2y ו
 – y ו

 + 2 y ו]

(or) y4 = y0 + 4h/3 [2y ו
 – y ו

 + 2 y ו
] … (18)

In general we can write (18) as

yn+1 = yn-3 + 4h/3 [2yn-
ו
 – yn-

ו
 + 2 y ו]

This is Milne’s Predictor formula and is denoted by

yn+1, p = yn-3 + 4h/3 [2yn-
ו
 – yn-

ו
 + 2 yn

ו
] … (19)

This formula is in general compatible for the step-by-step solution of

y ו= f (x, y). B ut, as a precaution against errors of various kinds, it is desirable to

have a second, independent formula into which yn+1 can be substituted as a

check. This formula is called Milne’s corrector formula and can be obtained as

follows.

85

= 1/12h [4 y0 – 24 y1 + 36 y2 – 40 y3 + 24 y4] … (20)

=

4/12h [- y0 + 6 y1 – 18 y2 + 10 y3 + 3 y4]

… (21)

and h = 0.2

y0

=

1

 y1 = 1.12186

y2

=

1.46820

 y3 = 1.7379

y4

=

?

4

3

y 3 4

2 3 4

2 3

1

2 1 n

2

y2
ו y +ו

4 y ו

(20) + (21) =>

ו y 4 + ו
 + y ו

 = 1/12h [36 y4 – 36 y2]

= 3h [y4 – y2]

i.e., y4 – y2 = h/3 [y ו
 + 4 y ו

 + y ו]

y4 = y2 + h/3 [y ו

+ 4 y ו

+ y4
 [ו

This formula is called Milne’s corrector formula and can be written in general as

yn+1, c = yn-1 + h/3 [yn-
ו
 + 4 yn

ו
 + yn+1

 [ו

If the initial four values are not given, we can obtain these values either by using

Taylor series method or by Runge-K utta method.

Problem:

1. The differential equation dy/dx = y – x2 is satisfied by y (0) = 1, y (0.2) =

1.12186, y (0.4) = 1.46820, y (0.6) = 1.7379. Compute the value of y (0.8)

by Milne’s Predictor – Corrector Method.

Solution:

Given dy/dx = yו = y – x2

x0 = 0

x1 = 0.2

x2 = 0.4

x3 = 0.6

x4 = 0.8

By Milne”s Predictor formula we have

yn+1 , p = yn-3 + 4h/3 [2yn-
ו
 – yn-

ו
 + 2 y ו

] … (1)

To get y4 , put n = 3 i n (1) we get

86

1 2 3

1 n

2 3

4 4

y4, p = y0 + 4h/3 [2y ו
 – y ו

 + 2 y ו
] … (2)

2 2 ו

Now y1 = (y – x)1 = y1 – x1

= 1.12186 - (0.2)2 = 1.08186 … (3)

2 2 ו

Y2 = (y – x)2 = y2 – x2

= 1.46820 - (0.4)2 = 1.3082 … (4)

2 2 ו

y3 = (y – x)3 = y3 – x3

= 1.7379 - (0.6)2 = 1.3779 … (5)

Substituting (3) , (4) and (5) i n (2) we get

y4, p = 1 + 4 (0.2)/3 [2 (1.08186) – 1.3082 + 2 (1.3779)]

= 1 + 0.266 [2.1637 – 1.3082 + 2.7558]

= 1.9630187

Therefore y (0.8) = 1.9630187 (By Milne’s Predictor Formula)

By Milne’s Corrector Formula we have

yn+1 , c = yn-1 + h/3 [yn-
ו
 + 4 y ו

 + yn+1
 [ו

To get y4 , put n = 3 , we get

y4, c = y2 + h/3 [y ו
 + 4 y ו

 + y4
 (6) … [ו

Now y ו
 = (y – x2

)4 = y4 – x 2

= 1.96301 – (0.8)2

= 1.3230187 … (7)

Substituting (4) , (5) and (7) i n (6) we get

y4, c = 1.46820+(0.2)/3[1.3082 + 4 (1.3779) + 1.3230187]

= 2.0110546

y (0.8) = 2.0110546 (By Milne’s Corrector Formula)

87

y 0

0 0

1 1

0

Problem

2. Usi ng Taylors series method, solve dy/dx = xy + y2 , y (0) = 1 at

x = 0.1 , 0.2 and 0.3 continue the solution at x = 0.4 by Milne’s predictor corrector

method.

Solution:

Given y ו = xy + y2 and x0 = 0 y0 = 1 and h = 0.1

Now y ו = xy + y2

yו ו = xyו + y + 2yyו

yו וו = xy2 + וו y2 + ו yy2 + וו y2 ו

Since the values of yוs are not given directly we can find them by using Taylors

method as gi ven below

To find y (0.1)

By Taylors series we have

וו 2 ו

ווו

y (0.1) = y1 = y0 + hy0 + (h /2 ו) y0 + (h3/3 ו) y0 + … … (1)

xy + y2) = ו
)0 = (x0 y0 + y 2

) = 1 … (2)

ו ו ו ו

y0 = (xy + y + 2 yy)0

= (x0 y ו
 + y0 + 2 y0 y ו

) = 3 … (3)

ווו

ו ו ו

ו2 ו

y0 = (xy + 2 y + 2 yy + 2 y)0 = 10 … (4)

Substituti ng (2) , (3) and (4) in (1) we get

y (0.1) = 1 + (0.1) + [(0.1)2 /2] 3 + [(0.1)3 /6] 10

= 1 + 0.1 + 0.015 + 0.001666

Therefore y (0.1) = 1.11666

To find y (0.2)

By Taylors series we have

וו 2 ו

ווו

y2 = y1 + hy1 + (h /2 ו) y1 + (h3/3 ו) y1 + … … (5)

Now y ו
 = (xy + y2

) = x1 y1 + y 2

= (0.1) (1.11666) + (1.11666)2

88

1 1

1 1 1 1

2 2

= 0.111666 + 1.2469

= 1.3585 … (6)

ו ו ו ו

y1 = (xy + y + 2 yy)

= x1 y ו
 + y1 + 2 y1 y ו

= (0.1) (1.3585) + 1.11666 + 2 (1.11666)(1.3585)

= 0.13585 + 1.11666 + 3.0339

= 4.2865 … (7)

ווו

ו ו ו

ו2 ו ו

y1 = (xy + 2 y + 2 yy + 2 y)

= (x1 y וו
 + 2 y ו

 + 2 y1 y וו
 + 2 y 2ו)

= (0.1)(4.2865) + 2 (1.3585) + 2 (1.1167)(4.2865) +

2 (1.3585)2

= 0.4287 + 2.717 + 9.5735 + 3.6910

= 16.4102 … (8)

Substituti ng (6) , (7) and (8) i n (5) we get

y (0.2) = 1.1167 + (0.1)(1.3585) + [(0.1)2/2)(4.2865)] +

[(0.1)3/6)(16.4102)]

= 1.1167 + 0.13585 + 0.0214 + 0.002735

= 1.27668

Therefore y (0.2) = 1.27668

To find y (0.3)

By Taylors series we have

וו 2 ו

ווו

Y3 = y2 + hy2 + (h /2 ו) y2 + (h3/3 ו) y2 + … … (9)

Now y ו
 = (xy + y2

)2 = x2 y2 + y 2

= (0.2) (1.2767) + (1.2767)2

= 0.2553 + 1.6299

= 1.8852 … (10)

89

6.4674

 וו ו וו
2 yy

2 2

y

2 2 2 2

2 1 n

y

2

3

ו ו ו ו

y2 = (xy + y + 2 yy)2

= x2 y ו
 + y2 + 2 y2 y ו

= (0.2) (1.8852) + 1.2767 + 2 (1.2767)(1.8852)

= 0.3770 + 1.2767 + 4.8136

= … (11)

 ווו
1 = (xy + 2 y + + 2 y2ו)2

= (x2 y וו
 + 2 y ו

 + 2 y2 y וו
 + 2 y 2ו)

= (0.2)(6.4674) + 2 (1.8852) + 2 (1.2767)(6.4674) +

2 (1.8852)2

= 1.2934 + 3.7704 + 16.5139 + 7.1079

= 28.6855 … (12)

Substituti ng (10) , (11) and (12) in (9) we get

y (0.3) = 1.2767 + 2 (1.8852) + [(0.1)2 /2)(6.4674)] +

[(0.1)3/6)(28.6855)]

= 1.2767 + 0.18852 + 0.0323 + 0.004780

= 1.5023

Therefore y (0.3) = 1.5023

Therefore we have the following values

x0 = 0 y0 = 1

x1 = 0.1 y1 = 1.11666

x2 = 0.2 y2 = 1.27668

x3 = 0.3 y3 = 1.5023

To find y (0.4) by Milne”s Predictor formula

yn+1 , p = yn-3 + 4h/3 [2yn-
ו
 – yn-

ו
 + 2 y ו

] … (13)

 3(xy + y2) = ו

= x3 y3 + y3

90

1 2 3

1 n

4 4

2 3

= [(0.3) (1.5023) + (1.5023)2]

= 0.45069 + 2.2569

= 2.7076

Putti ng n = 3 i n (13) we get

y4, p = y0 + 4h/3 [2y ו
 – y ו

 + 2 y ו]

y4, p = 1 + 4 (0.1)/3 [2 (1.3585) – 1.8852 + 2 (2.7076)]

= 1 + 0.1333 [2.717 – 1.8852+ 5.4152]

= 1.8329

Therefore y4, p = 1.8329 (By Milne’s Predictor Formula)

To find y = (0.4) by Milne’s Corrector Formula:

By Mi lne’s Corrector Formula we have

yn+1 , c = yn-1 + h/3 [yn-
ו
 + 4 y ו

 + yn+1
 (14) … [ו

Now y ו
 = (xy + y2

)4 = x4 y4 + y 2

= [(0.4)(1.8329) + 1.8329)2]

= 0.7332 + 3.3595

= 4.0927

,Putting n = 3 , i n (14) we get

y4, c = y2 + h/3 [y ו
 + 4 y ו

 + y4
 [ו

y4, c = 1.27668 + (0.1)/3 [1.8852 + 4 (2.7076) + 4.0927]

= 1.27668 + 0.0333 [1.8852 + 10.8304 + 4.0927]

= 1.8369

The value of y(0.4) calculated by Milne’s Corrector Formula is

y (0.4) = 1.8369

91

1

ADAM’S MOULTON METHOD:

Let dy/dx = f (x,y) be the differential equation to be solved with the i9nitial

condition y0 = y (x0). we have to compute

y-1 = y (x0 – h)

y-2 = y (x0 – 2h) and

y-3 = y (x0 – 3h) by Taylor series or Runge-Kutta Method.

Then calculate

f-1 = f (x0 – h, y-1)

f-2

f-3

=

=

f (x0 – 2h, y-2)

f (x0 – 3h, y-3)

y1

=

y0 +

Using Newton’s backward i nterpolation formula

f (x, y) = f0 + n f0 + n (n+1) 2 f0 + n (n+1) (n+2) 3 f0 +

2 6

We have

y1 = y0 +

2

Since x = x0 + nh dx = hdn

y1 = y0 +

2

y1 = y0 + h [f0 + 1/2 f0 + 5/12 2 f0 + 3/8 3 f0 +]

Substituti ng for f0 ,
2 f0 ….. we get

y1 = y (P)
 = y0 + h/24 [55 f0 – 59 f-1 + 37 f-2 – 9 f-3]

Here y1
P is the Predictor formula.

To derive the Adam’s Moulton Corrector formula, we have to use Newton’s backward

formula at f1 i.e.,

92

1

f (x, y) = f1 + n f1 + n (n+1) 2 f1 + n (n+1) (n+2) 3 f1 +

2 6

y1 = y0 +

2

Since x = x1+ nh dx = hdn

y1 = y0 +

2

y1 = y0 + h [f1 - 1/2 f1 - 1/12 2 f1 - 1/24 3 f1 +]

Substituti ng for f1 ,
2 f1 ….. we get

y1 = y (C)
 = y0 + h/24 [9 f1 + 19 f0 – 5 f1 + f-2]

This is Adam’s – Moulton Corrector Formu la

Problem:

1. Solve the equation dy/dx = x2 (1+y) with y (1) = 1 y (1.1) =

1.233 y (1.2) = 1.548 and y (1.3) = 1.979 evaluate y (1.4) by

Adam’s Moulton Method.

Solution:

Given f (x,y) = x2 (1 + y)

h = 0.1

When x = 1 y = 1

Therefore f-3 = f (x,y)

= (1)2 (1 + 1)

= 2

When x = 1.1 y = 1.233

Therefore f-2 = f (x,y)

=

(1.1)2 (1.1 + 1.233)

93

y

y

1

 = 2.702

When

x

=

1.2

y

=

1.548

Therefore f-1 =

=

f (x,y)

(1.2)2 (1.2 + 1.548)

=

3.669

When

x

=

1.3 y =

1.979

Therefore

f0

=

=

f (x,y)

(1.3)2 (1.3 + 1.979)

=

5.035

The Predictor formula is

(P)
1 = y0 + h/24 [55 f0 – 59 f-1 + 37 f-2 – 9 f-3]

= 2.4011 + (0.1/24) [(55 x 5.035) – (59 x 3.669)

+ (37 x 2.702) – (9 x 2)]

= 2.573

The Corrector formula is

(c)
1 = y0 + h/24 [9 f1 + 19 f0 - 5 f-1 + f-2]

f1 = f (x1,y1)

= x2 (1 + y)) when x = 1.4, y = 2.573

= (1.4)2 (1.4 x 2.573)

= 7.004

Therefore y (c)
 = 1.979 + (0.1/24) [(9 x 7.004) + (19 x 5.035)

- (5 x 3.609) + (2.702)]

= 2.575

Therefore y (1.4) = 2.575

94

y

y

2. Find y (0.4) given that y 1 = ו + xy and y (0) = 2, y (0.1) = 2.1103 ,

y (0.2) = 2.243 and y (0.3) = 2.4011 by Adam’s Moulton Predictor-Corrector

method.

Solution:

Given f (x,y) = 1 + xy

h = 0.1

f-3 = f (x,y) when x = 0, y = 2

= 1 + (0 x 2)

= 1

f-2 = f (x-2, y-2) when x = 0.1 y = 2.1103

= 1 + (0.1 x 2.1103)

= 1.21103

f-1 = f (x-1, y-1) when x = 0.2 y = 2.243

= 1 + (0.2 x 2.243)

= 1.4486

f0 = f (x0, y0) when x = 0.3 y = 2.4011

= 1 + (0.3 x 2.4011)

= 1.7203

The Predictor formula is

(P)
1 = y0 + h/24 [55 f0 – 59 f-1 + 37 f-2 – 9 f-3]

= 2.4011 + (0.1/24) [(55 x 1.72033) – (59 x 1.4486)

+ (37 x 1.21103) – (9 x 1)]

= 2.5884

The Corrector formula is

(c)
1 = y0 + h/24 [9 f1 + 19 f0 - 5 f-1 + f-2]

f1 = f (x1,y1)

95

1

= (1 + xy) when x = x1 , y = y1

= (1 + xy) when x = 0.4, y = 2.5884

= 1+ (0.4 x 2.5884)

= 2.0354

Therefore y (c)
 = 2.4011 + (0.1/24) [(9 x 2.0354) + (19 x 1.72033)

- (5 x 1.4486) + (1.21103
)]

= 2.5885

UNIT - 4

Structure of a C++ program

A C++ program is structured in a specific and particular manner. In C++, a program is divided

into the following three sections:

1. Standard Libraries Section

2. Main Function Section

3. Function Body Section

For example, let‘s look at the implementation of the Hello World program:

Run

Standard libraries section

 #include is a specific preprocessor command that effectively copies and pastes the entire

text of the file, specified between the angle brackets, into the source code.

 The file <iostream>, which is a standard file that should come with the C++ compiler, is

short for input-output streams. This command contains code for displaying and getting

an input from the user.

 namespace is a prefix that is applied to all the names in a certain set. iostream file defines

two names used in this program - cout and endl.

 This code is saying: Use the cout and endl tools from the std toolbox.

Main function section

 The starting point of all C++ programs is the main function.

 This function is called by the operating system when your program is executed by the

computer.

 { signifies the start of a block of code, and } signifies the end.

Function body section

 The name cout is short for character output and displays whatever is between

the << brackets.

 Symbols such as << can also behave like functions and are used with the keyword cout.

 The return keyword tells the program to return a value to the function int main

 After the return statement, execution control returns to the operating system component

that launched this program.

 Execution of the code terminates here.

Tokens in C++

Tokens act as building blocks of a program. Just like a living cell is the smallest possible unit of

life, tokens in C++ are referred to as the smallest individual units in a program. Keywords in

C++ help the user in framing statements and commands in a language. Each keyword conveys a

unique connotation to the compiler to perform a specific task. Just like the combination of words

helps us in framing sentences, the combination of keywords helps us in framing statements to

perform logical operations in a programming language. Simply combining keywords wouldn‘t

help to serve the purpose.

As we need to use proper grammar to form a meaningful sentence, we need to be well-

acquainted with the syntax of C++ to instruct the compiler what to do. If these statements are not

formed in a logical manner, they would sound gibberish and you would get a compilation error.

Let‘s discuss the concept of Tokens with Character set in C++ in detail.

1. C++ Character Set

Before we begin with C++ tokens, let us understand what Character set has to offer.

C++ Character set is basically a set of valid characters that convey a specific connotation to the

compiler. We use characters to represent letters, digits, special symbols, white spaces, and other

characters.

The C++ character set consists of 3 main elements. They are:

https://data-flair.training/blogs/wp-content/uploads/sites/2/2019/06/Tokens-in-C.jpg

1. Letters: These are alphabets ranging from A-Z and a-z (both uppercase and lowercase

characters convey different meanings)

2. Digits: All the digits from 0 – 9 are valid in C++.

3. Special symbols: There are a variety of special symbols available in C++ like mathematical,

logical and relational operators like +,-, *, /, \, ^, %, !, @, #, ^, &, (,), [,], ; and many

more.

2. Tokens in C++

As discussed earlier, tokens in C++ are the smallest individual unit of a program.

The following tokens are available in C++ which are similar to that seen in C with the addition

of certain exclusive keywords, strings, and operators:

 Keywords

 Identifiers

 Constants

 Strings

 Special symbols

 Operators

3. C++ Keywords

Keywords in C++ refer to the pre-existing, reserved words, each holding its own position and

power and has a specific function associated with it.

It is important to note that we cannot use C++ keywords for assigning variable names as it would

suggest a totally different meaning entirely and would be incorrect.

Here is a list of keywords available in C++ according to the latest standards:

Align as Align of asm auto bool break

case catch char char16_t char32_t class

const constexpr const_cast continue decltype default

delete double do dynamic_cast else enum

explicit export extern FALSE float for

friend goto if inline int long

mutable namespace new noexcept nullptr operator

private protected public register reinterpret_cast return

short signed sizeof static static_assert static_cast

struct switch template this thread_local throw

TRUE try typedef typeid typename union

unsigned using virtual void volatile wchar_t

while – – – – –

4. C++ Identifiers

C++ allows the programmer to assign names of his own choice to variables, arrays, functions,

structures, classes, and various other data structures called identifiers. The programmer may use

the mixture of different types of character sets available in C++ to name an identifier.

Rules for C++ Identifiers

There are certain rules to be followed by the user while naming identifiers, otherwise, you would

get a compilation error. These rules are:

1. First character: The first character of the identifier in C++ should positively begin with

either an alphabet or an underscore. It means that it strictly cannot begin with a number.

2. No special characters: C++ does not encourage the use of special characters while naming

an identifier. It is evident that we cannot use special characters like the exclamatory mark or

the “@” symbol.

3. No keywords: Using keywords as identifiers in C++ is strictly forbidden, as they are

reserved words that hold a special meaning to the C++ compiler. If used purposely, you

would get a compilation error.

4. No white spaces: Leaving a gap between identifiers is discouraged. White spaces

incorporate blank spaces, newline, carriage return, and horizontal tab.

5. Word limit: The use of an arbitrarily long sequence of identifier names is restrained. The

name of the identifier must not exceed 31 characters, otherwise, it would be insignificant.

6. Case sensitive: In C++, uppercase and lowercase characters connote different meanings.

Here is a table which illustrates the valid use of Identifiers:

Identifier

Name

Valid or

Invalid

Correction or alternative,

if invalid
Elucidation if invalid

5th_element Invalid element_5
It violates Rule 1 as it begins with a

digit

_delete Valid – –

school.fee Invalid school_fee
It violates Rule 2 as it contains a

special character ‗.‘

register[5] Invalid Register[5]
It violates Rule 3 as it contains a

keyword

Student[10] Valid – –

employee

name
Invalid employee _name

It violates Rule 4 as it contains a

blank space

perimeter() Valid – –

5. C++ Constants

Before we begin our discussion on constants in C++, it is important to note that we can use the

terms ―constants‖ and ―literals‖ interchangeably.

As the name itself suggests, constants are referred to as fixed values that cannot change their

value during the entire program run as soon as we define them.

Syntax:

const data_type variable_name = value;

Types of Constants in C++

The different types of constants are:

 Integer constants – These constants store values of the int data type.

 For instance:

 const int data = 5;

 Floating constants – These constants store values of the float data type.

 For instance:

 const float e = 2.71;

 .

 Character constants – These constants store values of the character data type.

 For instance:

 const char answer = „y‟;

 String constants – These constants are also of the character data type but differ in the

declaration part.

 For instance:

 const char title[] = „„DataFlair‟‟;

 Octal constants – The number system which consists of only 8 digits, from 0 to 7 is

called the octal number system. The constant octal values can be declared as:

 const int oct = 034;

 It is the octal equivalent of the digit 28 in the decimal number system.

 Hexadecimal constants – The number system which consists of 16 digits, from 0 to 9

and alphabets ‗a‘ to ‗f‘ is called hexadecimal number system. The constant hexadecimal

values can be declared as:

 const int hex = 0x40;

 It is the hexadecimal equivalent of the digit 64 in the decimal number system.

6. C++ Strings

Just like characters, strings in C++ are used to store letters and digits. Strings can be referred to

as an array of characters as well as an individual data type.

It is enclosed within double quotes, unlike characters which are stored within single quotes. The

termination of a string in C++ is represented by the null character, that is, ‘\0’. The size of a

string is the number of individual characters it has.

In C++, a string can be declared in the following ways:

char name[30] = „‟Hello!”; // The compiler reserves 30 bytes of memory for the string.

char name[] = “Hello!”; // The compiler reserves the required amount of memory for the string.

char name[30] = { „H‟ , ‟e‟ , ‟l‟ , ‟l‟ , ‟o‟};; // This is how a string is represented as a set of

characters.

string name = “Hello” // The compiler reserves 32 bytes of memory.

7. Special Symbols

Apart from letters and digits, there are some special characters in C++ which help you

manipulate or perform data operations. Each special symbol has a specific meaning to the C++

compiler.

Here is a table which illustrates some of the special characters in C:

Special

Character

Trivial

Name
Function

[]
Square

brackets

The opening and closing brackets of an array symbolize single and

multidimensional subscripts.

()
Simple

brackets

The opening and closing brackets represent function declaration and

calls, used in print statements.

{ } Curly braces
The opening and closing curly brackets to denote the start and end of a

particular fragment of code which may be functions, loops or

https://data-flair.training/blogs/strings-in-c-cpp/
https://en.wikipedia.org/wiki/C%2B%2B

conditional statements

, Comma
We use commas to separate more than one statements, like in the

declaration of different variable names

Hash /

Pound /

Preprocessor

The hash symbol represents a preprocessor directive used for denoting

the use of a header file

* Asterisk
We use the asterisk symbol in various respects such as to declare

pointers, used as an operand for multiplication

~ Tilde We use the tilde symbol as a destructor to free memory

. Period / dot The use the dot operator to access a member of a structure

C++ Operators

In this tutorial, we will learn about the different types of operators in C++ with the help of

examples. In programming, an operator is a symbol that operates on a value or a variable.

Operators in C++ can be classified into 6 types:

1.Arithmetic Operators

2.Assignment Operators

3.Relational Operators

4.Logical Operators

5.Bitwise Operators

6.Other Operators

https://www.programiz.com/cpp-programming/operators#arithmetic
https://www.programiz.com/cpp-programming/operators#assignment
https://www.programiz.com/cpp-programming/operators#relational
https://www.programiz.com/cpp-programming/operators#logical
https://www.programiz.com/cpp-programming/operators#bitwise
https://www.programiz.com/cpp-programming/operators#other-operators

1. C++ Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations on variables and data. For

example,

a + b;

Here, the + operator is used to add two variables a and b. Similarly there are various other

arithmetic operators in C++.

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo Operation (Remainder after division)

Example 1: Arithmetic Operators

#include <iostream>

using namespace std;

int main() {

 int a, b;

 a = 7;

 b = 2;

 // printing the sum of a and b

 cout << "a + b = " << (a + b) << endl;

 // printing the difference of a and b

 cout << "a - b = " << (a - b) << endl;

 // printing the product of a and b

 cout << "a * b = " << (a * b) << endl;

 // printing the division of a by b

 cout << "a / b = " << (a / b) << endl;

 // printing the modulo of a by b

 cout << "a % b = " << (a % b) << endl;

 return 0;

}

Output

a + b = 9

a - b = 5

a * b = 14

a / b = 3

a % b = 1

Here, the operators +, - and * compute addition, subtraction, and multiplication respectively as

we might have expected.

Division Operator

Note the operation (a / b) in our program. The / operator is the division operator.

As we can see from the above example, if an integer is divided by another integer, we will get

the quotient. However, if either divisor or dividend is a floating-point number, we will get the

result in decimals.

In C++,

7/2 is 3

7.0 / 2 is 3.5

7 / 2.0 is 3.5

7.0 / 2.0 is 3.5

% Modulo Operator

The modulo operator % computes the remainder. When a = 9 is divided by b = 4, the remainder

is 1.

Increment and Decrement Operators

C++ also provides increment and decrement operators: ++ and -- respectively.

 ++ increases the value of the operand by 1

 -- decreases it by 1

For example,

int num = 5;

// increment operator

++num; // 6

Here, the code ++num; increases the value of num by 1.

Example 2: Increment and Decrement Operators

// Working of increment and decrement operators

#include <iostream>

using namespace std;

int main() {

 int a = 10, b = 100, result_a, result_b;

 // incrementing a by 1 and storing the result in result_a

 result_a = ++a;

 cout << "result_a = " << result_a << endl;

 // decrementing b by 1 and storing the result in result_b

 result_b = --b;

 cout << "result_b = " << result_b << endl;

 return 0;

}

Output

result_a = 11

result_b = 99

In the above program, we have used the ++ and -- operators as prefixes (++a and --b).

However, we can also use these operators as postfix (a++ and b--).

2. C++ Assignment Operators

In C++, assignment operators are used to assign values to variables. For example,

// assign 5 to a

a = 5;

Here, we have assigned a value of 5 to the variable a.

Operator Example Equivalent to

= a = b; a = b;

+= a += b; a = a + b;

-= a -= b; a = a - b;

*= a *= b; a = a * b;

/= a /= b; a = a / b;

%= a %= b; a = a % b;

Example 3: Assignment Operators

#include <iostream>

using namespace std;

int main() {

 int a, b;

 // 2 is assigned to a

 a = 2;

 // 7 is assigned to b

 b = 7;

 cout << "a = " << a << endl;

 cout << "b = " << b << endl;

 cout << "\nAfter a += b;" << endl;

 // assigning the sum of a and b to a

 a += b; // a = a +b

 cout << "a = " << a << endl;

 return 0;

}

Output

a = 2

b = 7

After a += b;

a = 9

3. C++ Relational Operators

A relational operator is used to check the relationship between two operands. For example,

// checks if a is greater than b

a > b;

Here, > is a relational operator. It checks if a is greater than b or not.

If the relation is true, it returns 1 whereas if the relation is false, it returns 0.

Operator Meaning Example

== Is Equal To 3 == 5 gives us false

!= Not Equal To 3 != 5 gives us true

> Greater Than 3 > 5 gives us false

< Less Than 3 < 5 gives us true

>= Greater Than or Equal To 3 >= 5 give us false

<= Less Than or Equal To 3 <= 5 gives us true

Example 4: Relational Operators

#include <iostream>

using namespace std;

int main() {

 int a, b;

 a = 3;

 b = 5;

 bool result;

 result = (a == b); // false

 cout << "3 == 5 is " << result << endl;

 result = (a != b); // true

 cout << "3 != 5 is " << result << endl;

 result = a > b; // false

 cout << "3 > 5 is " << result << endl;

 result = a < b; // true

 cout << "3 < 5 is " << result << endl;

 result = a >= b; // false

 cout << "3 >= 5 is " << result << endl;

 result = a <= b; // true

 cout << "3 <= 5 is " << result << endl;

 return 0;

}

Output

3 == 5 is 0

3 != 5 is 1

3 > 5 is 0

3 < 5 is 1

3 >= 5 is 0

3 <= 5 is 1

4. C++ Logical Operators

Logical operators are used to check whether an expression is true or false. If the expression

is true, it returns 1 whereas if the expression is false, it returns 0.

Operator Example Meaning

&&
expression1 &&

expression2

Logical AND.

True only if all the operands are

true.

||
expression1 ||

expression2

Logical OR.

True if at least one of the operands

is true.

! !expression
Logical NOT.

True only if the operand is false.

In C++, logical operators are commonly used in decision making. To further understand the

logical operators, let's see the following examples,

Suppose,

a = 5

b = 8

Then,

(a > 3) && (b > 5) evaluates to true

(a > 3) && (b < 5) evaluates to false

(a > 3) || (b > 5) evaluates to true

(a > 3) || (b < 5) evaluates to true

(a < 3) || (b < 5) evaluates to false

!(a < 3) evaluates to true

!(a > 3) evaluates to false

Example 5: Logical Operators

#include <iostream>

using namespace std;

int main() {

 bool result;

 result = (3 != 5) && (3 < 5); // true

 cout << "(3 != 5) && (3 < 5) is " << result << endl;

 result = (3 == 5) && (3 < 5); // false

 cout << "(3 == 5) && (3 < 5) is " << result << endl;

 result = (3 == 5) && (3 > 5); // false

 cout << "(3 == 5) && (3 > 5) is " << result << endl;

 result = (3 != 5) || (3 < 5); // true

 cout << "(3 != 5) || (3 < 5) is " << result << endl;

 result = (3 != 5) || (3 > 5); // true

 cout << "(3 != 5) || (3 > 5) is " << result << endl;

 result = (3 == 5) || (3 > 5); // false

 cout << "(3 == 5) || (3 > 5) is " << result << endl;

 result = !(5 == 2); // true

 cout << "!(5 == 2) is " << result << endl;

 result = !(5 == 5); // false

 cout << "!(5 == 5) is " << result << endl;

 return 0;

}

Output

(3 != 5) && (3 < 5) is 1

(3 == 5) && (3 < 5) is 0

(3 == 5) && (3 > 5) is 0

(3 != 5) || (3 < 5) is 1

(3 != 5) || (3 > 5) is 1

(3 == 5) || (3 > 5) is 0

!(5 == 2) is 1

!(5 == 5) is 0

Explanation of logical operator program

 (3 != 5) && (3 < 5) evaluates to 1 because both operands (3 != 5) and (3 <

5) are 1 (true).

 (3 == 5) && (3 < 5) evaluates to 0 because the operand (3 == 5) is 0 (false).

 (3 == 5) && (3 > 5) evaluates to 0 because both operands (3 == 5) and (3 >

5) are 0 (false).

 (3 != 5) || (3 < 5) evaluates to 1 because both operands (3 != 5) and (3 < 5) are 1 (true).

 (3 != 5) || (3 > 5) evaluates to 1 because the operand (3 != 5) is 1 (true).

 (3 == 5) || (3 > 5) evaluates to 0 because both operands (3 == 5) and (3 > 5) are 0 (false).

 !(5 == 2) evaluates to 1 because the operand (5 == 2) is 0 (false).

 !(5 == 5) evaluates to 0 because the operand (5 == 5) is 1 (true).

5. C++ Bitwise Operators

In C++, bitwise operators are used to perform operations on individual bits. They can only be

used alongside char and int data types.

Operator Description

& Binary AND

| Binary OR

^ Binary XOR

~ Binary One's Complement

<< Binary Shift Left

>> Binary Shift Right

6. Other C++ Operators

Here's a list of some other common operators available in C++. We will learn about them in later

tutorials.

Operator Description Example

sizeof returns the size of data type sizeof(int); // 4

?:
returns value based on the

condition

string result = (5 > 0) ?

"even" : "odd"; // "even"

& represents memory address of # // address of num

the operand

.
accesses members of struct

variables or class objects
s1.marks = 92;

->
used with pointers to access the

class or struct variables
ptr->marks = 92;

<< prints the output value cout << 5;

>> gets the input value cin >> num;

UNIT 5

Decision Making in C / C++ (if , if..else, Nested if, if-else-if)

There come situations in real life when we need to make some decisions and based on these

decisions, we decide what should we do next. Similar situations arise in programming also where

we need to make some decisions and based on these decisions we will execute the next block of

code. For example, in C if x occurs then execute y else execute z. There can also be multiple

conditions like in C if x occurs then execute p, else if condition y occurs execute q, else execute

r. This condition of C else-if is one of the many ways of importing multiple conditions.

Decision-making statements in programming languages decide the direction of the flow of

program execution. Decision-making statements available in C or C++ are:

1. if statement

2. if..else statements

3. nested if statements

4. if-else-if ladder

5. switch statements

6. Jump Statements:

1. break

2. continue

3. goto

https://www.geeksforgeeks.org/decision-making-c-c-else-nested-else/#if
https://www.geeksforgeeks.org/decision-making-c-c-else-nested-else/#if-else
https://www.geeksforgeeks.org/decision-making-c-c-else-nested-else/#nested-if
https://www.geeksforgeeks.org/decision-making-c-c-else-nested-else/#if-else-if
https://www.geeksforgeeks.org/switch-statement-cc/
https://www.geeksforgeeks.org/decision-making-c-c-else-nested-else/#jmp
https://www.geeksforgeeks.org/decision-making-c-c-else-nested-else/#brk
https://www.geeksforgeeks.org/decision-making-c-c-else-nested-else/#cont
https://www.geeksforgeeks.org/decision-making-c-c-else-nested-else/#got

4. return

if statement in C/C++

if statement is the most simple decision-making statement. It is used to decide whether a certain

statement or block of statements will be executed or not i.e if a certain condition is true then a

block of statement is executed otherwise not.

Syntax:

if(condition)

{

 // Statements to execute if

 // condition is true

}

Here, the condition after evaluation will be either true or false. C if statement accepts boolean

values – if the value is true then it will execute the block of statements below it otherwise not. If

we do not provide the curly braces ‗{‗ and ‗}‘ after if(condition) then by default if statement will

consider the first immediately below statement to be inside its block.

Example:

if(condition)

 statement1;

 statement2;

// Here if the condition is true, if block

// will consider only statement1 to be inside

// its block.

Flowchart

https://www.geeksforgeeks.org/decision-making-c-c-else-nested-else/#ret

if-else in C/C++

The if statement alone tells us that if a condition is true it will execute a block of statements and

if the condition is false it won‘t. But what if we want to do something else if the condition is

false. Here comes the C else statement. We can use the else statement with if statement to

execute a block of code when the condition is false.

Syntax:

if (condition)

{

 // Executes this block if

 // condition is true

}

else

{

 // Executes this block if

 // condition is false

}

Flowchart:

nested-if in C/C++

A nested if in C is an if statement that is the target of another if statement. Nested if statements

mean an if statement inside another if statement. Yes, both C and C++ allow us to nested if

statements within if statements, i.e, we can place an if statement inside another if statement.

Syntax:

if (condition1)

{

 // Executes when condition1 is true

 if (condition2)

 {

 // Executes when condition2 is true

 }

}

Flowchart

if-else-if ladder in C/C++

Here, a user can decide among multiple options. The C if statements are executed from the top

down. As soon as one of the conditions controlling the if is true, the statement associated with

that if is executed, and the rest of the C else-if ladder is bypassed. If none of the conditions are

true, then the final else statement will be executed.

Syntax:

if (condition)

 statement;

else if (condition)

 statement;

.

.

else

 statement;

Jump Statements in C/C++

These statements are used in C orC++ for the unconditional flow of control throughout the

functions in a program. They support four types of jump statements:

1. C break: This loop control statement is used to terminate the loop. As soon as the break

statement is encountered from within a loop, the loop iterations stop there, and control

returns from the loop immediately to the first statement after the loop.

Syntax:

break;

1. Basically, break statements are used in situations when we are not sure about the actual

number of iterations for the loop or we want to terminate the loop based on some condition.

https://www.geeksforgeeks.org/break-statement-cc/

1. C continues: This loop control statement is just like the break statement.

The continue statement is opposite to that of the break statement, instead of terminating the

loop, it forces to execute the next iteration of the loop.

As the name suggests the continue statement forces the loop to continue or execute the next

iteration. When the continue statement is executed in the loop, the code inside the loop

following the continue statement will be skipped and the next iteration of the loop will

begin.

Syntax:

continue;

1.

https://www.geeksforgeeks.org/continue-statement-cpp/
https://www.geeksforgeeks.org/continue-statement-cpp/
https://www.geeksforgeeks.org/break-statement-cc/

C goto:

The goto statement in C/C++ also referred to as unconditional jump statement can be used to

jump from one point to another within a function.

Syntax:

Syntax1 | Syntax2

goto label; | label:

. | .

. | .

. | .

label: | goto label;

1. In the above syntax, the first line tells the compiler to go to or jump to the statement marked

as a label. Here label is a user-defined identifier that indicates the target statement. The

statement immediately followed after ‗label:‘ is the destination statement. The ‗label:‘ can

also appear before the ‗goto label;‘ statement in the above syntax.

https://www.geeksforgeeks.org/goto-statement-in-c-cpp/

C return:

The return in C or C++ returns the flow of the execution to the function from where it is

called. This statement does not mandatorily need any conditional statements. As soon as the

statement is executed, the flow of the program stops immediately and return the control from

where it was called. The return statement may or may not return anything for a void function,

but for a non-void function, a return value is must be returned.

Syntax:

return[expression];

while loop in c++

 A while loop in C++ programming repeatedly executes a target statement as long as a

given condition is true.

https://www.geeksforgeeks.org/return-statement-in-c-cpp-with-examples/

 Its called a loop because control keeps looping back to the start of the statement until the

test becomes false.

 The loop iterates as long as the defined condition is true. When it ceases to be true and

becomes false, control passes to the first line after the loop.

 The reserved word while begins the while statement.

 The Boolean expression condition determines whether the body will be (or will continue

to be) executed. The expression must be enclosed within parentheses as shown.

 The statement is the statement to be executed while the Boolean expression is true. The

statement makes up the body of the while statement.

Syntax

while(condition)

 {

 statements(s);

 }

Flow Diagram

C++ while and do...while Loop

In this tutorial, we will learn the use of while and do...while loops in C++ programming with the

help of some examples.

In computer programming, loops are used to repeat a block of code.

http://www.crazytutorialpoint.com/img/tutorial-img/while-loop.png

For example, let's say we want to show a message 100 times. Then instead of writing the print

statement 100 times, we can use a loop.

That was just a simple example; we can achieve much more efficiency and sophistication in our

programs by making effective use of loops.

There are 3 types of loops in C++.

1. for loop

2. while loop

3. do...while loop

In the previous tutorial, we learned about the C++ for loop. Here, we are going to learn

about while and do...while loops.

C++ while Loop

The syntax of the while loop is:

while (condition) {

 // body of the loop

}

Here,

 A while loop evaluates the condition

 If the condition evaluates to true, the code inside the while loop is executed.

 The condition is evaluated again.

 This process continues until the condition is false.

 When the condition evaluates to false, the loop terminates.

 To learn more about the conditions, visit C++ Relational and Logical Operators.

https://www.programiz.com/cpp-programming/for-loop
https://www.programiz.com/cpp-programming/relational-logical-operators

Flowchart of while Loop

Flowchart of C++ while loop

Iteration Variable i <= 5 Action

1st i = 1 true 1 is printed and i is increased to 2.

2nd i = 2 true 2 is printed and i is increased to 3.

3rd i = 3 true 3 is printed and i is increased to 4

4th i = 4 true 4 is printed and i is increased to 5.

5th i = 5 true 5 is printed and i is increased to 6.

6th i = 6 false The loop is terminated

C++ do...while Loop

The do...while loop is a variant of the while loop with one important difference: the body

of do...while loop is executed once before the condition is checked.

Its syntax is:

do {

 // body of loop;

}

while (condition);

Here,

 The body of the loop is executed at first. Then the condition is evaluated.

 If the condition evaluates to true, the body of the loop inside the do statement is

executed again.

 The condition is evaluated once again.

 If the condition evaluates to true, the body of the loop inside the do statement is

executed again.

 This process continues until the condition evaluates to false. Then the loop stops.

Flowchart of do...while Loop

Flowchart of C++ do...while loop

Example 3: Display Numbers from 1 to 5

// C++ Program to print numbers from 1 to 5

#include <iostream>

using namespace std;

int main() {

 int i = 1;

 // do...while loop from 1 to 5

 do {

 cout << i << " ";

 ++i;

 }

 while (i <= 5);

 return 0;

}

Output

1 2 3 4 5

Here is how the program works.

Iteration Variable i <= 5 Action

 i = 1
not

checked

1 is printed and i is increased to

2

1st i = 2 true
2 is printed and i is increased to

3

2nd i = 3 true
3 is printed and i is increased to

4

3rd i = 4 true
4 is printed and i is increased to

5

4th i = 5 true
5 is printed and i is increased to

6

5th i = 6 false The loop is terminated

Example 4: Sum of Positive Numbers Only

// program to find the sum of positive numbers

// If the user enters a negative number, the loop ends

// the negative number entered is not added to the sum

#include <iostream>

using namespace std;

int main() {

 int number = 0;

 int sum = 0;

 do {

 sum += number;

 // take input from the user

 cout << "Enter a number: ";

 cin >> number;

 }

 while (number >= 0);

 // display the sum

 cout << "\nThe sum is " << sum << endl;

 return 0;

}

Output 1

Enter a number: 6

Enter a number: 12

Enter a number: 7

Enter a number: 0

Enter a number: -2

The sum is 25

Here, the do...while loop continues until the user enters a negative number. When the number is

negative, the loop terminates; the negative number is not added to the sum variable.

Output 2

Enter a number: -6

The sum is 0.

The body of the do...while loop runs only once if the user enters a negative number.

Infinite while loop

If the condition of a loop is always true, the loop runs for infinite times (until the memory is

full). For example,

// infinite while loop

while(true) {

 // body of the loop

}

Here is an example of an infinite do...while loop.

// infinite do...while loop

int count = 1;

do {

 // body of loop

}

while(count == 1);

In the above programs, the condition is always true. Hence, the loop body will run for infinite

times.

for vs while loops

A for loop is usually used when the number of iterations is known. For example,

// This loop is iterated 5 times

for (int i = 1; i <=5; ++i) {

 // body of the loop

}

Here, we know that the for-loop will be executed 5 times.

However, while and do...while loops are usually used when the number of iterations is

unknown. For example,

while (condition) {

 // body of the loop

}

Declaring, Defining and Calling a Function

Function declaration, is done to tell the compiler about the existence of the function. Function's

return type, its name & parameter list is mentioned. Function body is written in its definition.

Lets understand this with help of an example.

#include < iostream>

using namespace std;

//declaring the function

int sum (int x, int y);

int main()

{

 int a = 10;

 int b = 20;

 int c = sum (a, b); //calling the function

 cout << c;

}

//defining the function

int sum (int x, int y)

{

 return (x + y);

}

Copy

Here, initially the function is declared, without body. Then inside main() function it is called, as

the function returns sumation of two values, and variable c is there to store the result. Then, at

last, function is defined, where the body of function is specified. We can also, declare & define

the function together, but then it should be done before it is called.

Calling a Function

Functions are called by their names. If the function is without argument, it can be called directly

using its name. But for functions with arguments, we have two ways to call them,

1. Call by Value

2. Call by Reference

Call by Value

In this calling technique we pass the values of arguments which are stored or copied into the

formal parameters of functions. Hence, the original values are unchanged only the parameters

inside function changes.

void calc(int x);

int main()

{

 int x = 10;

 calc(x);

 printf("%d", x);

}

void calc(int x)

{

 x = x + 10 ;

}

In this case the actual variable x is not changed, because we pass argument by value, hence a

copy of x is passed, which is changed, and that copied value is destroyed as the function

ends(goes out of scope). So the variable x inside main() still has a value 10.

But we can change this program to modify the original x, by making the function calc() return a

value, and storing that value in x.

int calc(int x);

int main()

{

 int x = 10;

 x = calc(x);

 printf("%d", x);

}

int calc(int x)

{

 x = x + 10 ;

 return x;

}

Copy

Call by Reference

In this we pass the address of the variable as arguments. In this case the formal parameter can be

taken as a reference or a pointer, in both the case they will change the values of the original

variable.

void calc(int *p);

int main()

{

 int x = 10;

 calc(&x); // passing address of x as argument

https://www.studytonight.com/cpp/pointer-to-members.php

 printf("%d", x);

}

void calc(int *p)

{

 *p = *p + 10;

}

Copy

.

Pointers in C/C++

Pointers are symbolic representation of addresses. They enable programs to simulate call-by-

reference as well as to create and manipulate dynamic data structures. It‘s general declaration in

C/C++ has the format:

Syntax:

datatype *var_name;

int *ptr; //ptr can point to an address which holds int data

How to use a pointer?

 Define a pointer variable

 Assigning the address of a variable to a pointer using unary operator (&) which returns

the address of that variable.

 Accessing the value stored in the address using unary operator (*) which returns the value

of the variable located at the address specified by its operand.

The reason we associate data type to a pointer is that it knows how many bytes the data is

stored in. When we increment a pointer, we increase the pointer by the size of data type to

which it points.

References and Pointers

There are 3 ways to pass C++ arguments to a function:

 call-by-value

 call-by-reference with pointer argument

 call-by-reference with reference argument

Array Name as Pointers

An array name contains the address of first element of the array which acts like constant pointer.

It means, the address stored in array name can‘t be changed.

For example, if we have an array named val then val and &val[0] can be used interchangeably.

https://media.geeksforgeeks.org/wp-content/uploads/pointers-in-c.png
https://media.geeksforgeeks.org/wp-content/uploads/Untitled-presentation-2.png
https://media.geeksforgeeks.org/wp-content/uploads/pointers-in-c.png
https://media.geeksforgeeks.org/wp-content/uploads/Untitled-presentation-2.png

If pointer ptr is sent to a function as an argument, the array val can be accessed in a similar

fashion.

Pointer vs Array

Pointer Expressions and Pointer Arithmetic

A limited set of arithmetic operations can be performed on pointers which are:

 incremented (++)

 decremented (—)

 an integer may be added to a pointer (+ or +=)

 an integer may be subtracted from a pointer (– or -=)

 difference between two pointers (p1-p2)

Advanced Pointer Notation

Consider pointer notation for the two-dimensional numeric arrays. consider the following

declaration

int nums[2][3] = { { 16, 18, 20 }, { 25, 26, 27 } };

In general, nums[i][j] is equivalent to *(*(nums+i)+j)

Pointers and String literals

https://www.geeksforgeeks.org/difference-pointer-array-c/
https://media.geeksforgeeks.org/wp-content/uploads/Untitled-presentation-31.png
https://media.geeksforgeeks.org/wp-content/uploads/Screenshot-222.png
https://media.geeksforgeeks.org/wp-content/uploads/Untitled-presentation-31.png
https://media.geeksforgeeks.org/wp-content/uploads/Screenshot-222.png

String literals are arrays containing null-terminated character sequences. String literals are arrays

of type character plus terminating null-character, with each of the elements being of type const

char (as characters of string can‘t be modified).

 const char * ptr = "geek";

This declares an array with the literal representation for ―geek‖, and then a pointer to its first

element is assigned to ptr. If we imagine that ―geek‖ is stored at the memory locations that start

at address 1800, we can represent the previous declaration as:

As pointers and arrays behave in the same way in expressions, ptr can be used to access the

characters of string literal. For example:

char x = *(ptr+3);

char y = ptr[3];

Here, both x and y contain k stored at 1803 (1800+3).

Pointers to pointers

In C++, we can create a pointer to a pointer that in turn may point to data or other pointer. The

syntax simply requires the unary operator (*) for each level of indirection while declaring the

pointer.

char a;

char *b;

char ** c;

a = ‘g‘;

b = &a;

c = &b;

Here b points to a char that stores ‗g‘ and c points to the pointer b.

Void Pointers

This is a special type of pointer available in C++ which represents absence of type. void pointers

are pointers that point to a value that has no type (and thus also an undetermined length and

undetermined dereferencing properties).

This means that void pointers have great flexibility as it can point to any data type. There is

payoff for this flexibility. These pointers cannot be directly dereferenced. They have to be first

https://www.geeksforgeeks.org/void-pointer-c-cpp/
https://media.geeksforgeeks.org/wp-content/uploads/Screenshot-23.png

transformed into some other pointer type that points to a concrete data type before being

dereferenced.

Invalid pointers

A pointer should point to a valid address but not necessarily to valid elements (like for arrays).

These are called invalid pointers. Uninitialized pointers are also invalid pointers.

int *ptr1;

int arr[10];

int *ptr2 = arr+20;

Here, ptr1 is uninitialized so it becomes an invalid pointer and ptr2 is out of bounds of arr so it

also becomes an invalid pointer.

(Note: invalid pointers do not necessarily raise compile errors)

NULL Pointers

Null pointer is a pointer which point nowhere and not just an invalid address.

Following are 2 methods to assign a pointer as NULL;

int *ptr1 = 0;

int *ptr2 = NULL;

 Nested Loop

In this tutorial, we will learn about nested loops in C++ with the help of examples. We

will also learn about break and continue in Nested Loop.

Introduction of Nested Loop in C++

A loop within another loop is called a nested loop. Nested loop means a loop statement

inside another loop statement. That's why nested loop are also called as loop inside loop.

https://www.geeksforgeeks.org/few-bytes-on-null-pointer-in-c/

Working of Nested Loop

 Execution of statement within the loop flows in a way that the inner loop of the

nested loop gets declared, initialized and then incremented.

 Once all the condition within the inner loop gets satisfied and becomes true it

moves for the search of the outer loop. It is often called a loop within a loop.

Let's take an example:-

Suppose we want to loop through each day of a week for 3 weeks. To achieve this, we can

create a loop to iterate three times (3 weeks). And inside the loop, we can create another

loop to iterate 7 times (7 days). This is how we can use nested loops.

Nested for Loop

A for loop within another for loop is called Nested For loop

The syntax of nested for loop is:

for (initialization; condition; update) {

 for (initialization; condition; update) {

 // body of inner for-loop

 }

 // body of outer for-loop

}

Nested while Loop

A while loop within another while loop is called Nested while loop.

The syntax of nested while loop is:

while (condition) {

 while (condition) {

 // body of inner while-loop

 }

 // body of outer while-loop

}

Nested do-while Loop

A do-while loop within another do-while loop is called Nested do-while loop.

The syntax of nested do-while loop is:

do {

 do{

 // body of inner do-while-loop

 }while (condition);

 // body of outer do-while-loop

}while (condition);

break and continue Inside Nested Loops

When we use a break statement inside the inner loop, it terminates the inner loop but not

the outer loop. For example,

https://www.algbly.com/Tutorials/Cpp-programming/Cpp-break-statement.html

