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UNIT-I 

POPULATION: 

  The word population in statistics is used to refer to any collection of information 

about an individual which can be numerically specified. 

For example: Weights of persons, heights of persons, price of a particular commodity etc., 

 The population may be finite or infinite. 

Finite:  

 A population contains a finite number of values is called a finite population. 

For example: Number of students in a classroom, No. of. pages in a book. 

Infinite:  

A population which contains an infinite number of values is called a infinite population. 

For example: Number of stars in the sky, No. of. Leaves in a tree, etc., 

SAMPLE: 

 A Small part selected from a population is called a sample. 

For example: A handful of rice will access (find) the quality of pack of rice. 

Sample size: 

 The number of individual in a sample is called the sample size. 

For example: No. of. Courses in a college 

Parameter:  

 Any statistical constant obtained from a population is called the parameter. 

For example: 𝜇 → The population mean; 𝜎2 → The population variance. 

Statistic: 

           Any statistical constant obtained from a sample is called a statistic. 

For example: �̅�  - sample mean; 𝑆2 → sample variance. 

 

Parameter space: 



 The set of all possible values of a an unknown parameters is called parameter space  

  H →  [ Captheta] 

For example: If  X ~ N(𝜇, 𝜎2), then the parameter space  is defined as,  

              H   = {(𝜇, 𝜎2): -∞ < 𝜇 < ∞ ; 0< 𝜎 < ∞} 

Statistical Inference: 

 Statistical inference refers to the process of using a sample statistic to draw a valid 

inference or conclusion about a population parameter. There are two types of problems in 

statistical inference. Namely,  (i) Estimation,    (ii) Test of hypothesis. 

Estimation:  

Introduction: Given a random sample𝑥1,𝑥2,𝑥3,𝑥4.............𝑥𝑛 of size ‘n’ from a population 

with p.d.f f(x, 𝜃) but with known parameter𝜃. Our problem is to find and estimate for 𝜃 in terms 

of the sample values. In order to estimate the value of unknown parameter we may gives an 

procedure termed as estimation. 

Definition: Estimation is defined as a process by which sample information is used to estimate 

the numerical values of once or more parameter of the population. 

Estimator and Estimate: 

 A function of sample value is called an estimator. While its numerical value is called an 

estimate . thus the values of parameter is to be estimated is called estimator and the value of the 

sample is used to estimate the value of the parameter is called the estimate. 

For example: �̅� is an estimator of population mean 𝜇 and other hand, if the  �̅� =25, for a sample, 

the estimate of population mean  𝜇 is equal to 25. 

   (ie) 𝜇 = 25 → 𝜇= �̅�, the sample mean. 

The estimation may be classified into two types. They are (i) Point estimation 

                                                                                             (ii) Interval estimation. 

Point estimation: 

 Point estimation is a process in which a single statistics like mean, median, and standard 

deviation etc, is used as estimation of an population parameter. Thus, point estimation is defined 

as a single number which represents the estimate of a population parameter. 

 

 



Interval Estimation: 

 Interval estimation is also a process in which, it is possible to estimate an interval within 

which the values of parameter is expected to lie. The estimated interval is termed as confidence 

Interval. 

Best Estimate: 

 The best estimate would be one that falls nearest to the true value of the parameter to be 

estimated. 

Characteristics of Good Estimator or Best Estimator: 

 An estimator satisfies the following conditions: 

(i) Unbiasedness     (ii) Consistency         (iii) Efficiency           (Iv) Sufficiency       

Unbiasedness: 

 An estimator  𝑇𝑛 = T (𝑥1,𝑥2,𝑥3,𝑥4.............𝑥𝑛) is said to be an unbiased estimator of a 

population parameter 𝜗(𝜃) if  

E( 𝑇𝑛) , for all 𝜃 𝜖 H In general E( statistics) = parameter. 

Remarks: 

(i) If E(𝑇𝑛) > 𝜃, 𝑇𝑛 is said to be positively biased. 

(ii) If E(𝑇𝑛) < 𝜃, 𝑇𝑛 is said to be negatively biased. 

(iii) The amount of biased b(𝜃) 𝑏𝑒𝑖𝑛𝑔 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 b(𝜃) = E(𝑇𝑛) - 𝜗(𝜃), 𝜃 𝜖 H 

(iv) If E(𝑇𝑛) ≠  𝜃, it is said to be biased estimator of 𝜃. 

PROBLEM :1 

           𝑥1,𝑥2,𝑥3,𝑥4.............𝑥𝑛 is a  random sample from a normal population N(𝜇, 1). 

Show that t= 
1

𝑛
 ∑ 𝑥𝑖

2𝑛
𝑖=1  , is an unbiased estimator of 1+𝜇2. 

SOLUTION: 

 We have to prove that, E(t) = 1+ 𝜇2    , We are given that 𝑋𝑖 ~ N(𝜇, 1)    

            E(𝑥𝑖) = 𝜇    ; V(𝑥𝑖)=1 ∀ i=1,2, 3,...............n 

Now,  V(𝑥𝑖) = E(𝑥𝑖2) – [𝐸 (𝑥𝑖)]2 

 E(𝑥𝑖)
2 = V(𝑥𝑖) + [𝐸 (𝑥𝑖)]2 

E(𝑥𝑖)
2 =   1+ 𝜇2   ,     N(𝜇, 1) 



     ∴  Consider  t = 
∑ 𝑥𝑖

2𝑛
𝑖=1

𝑛
 

                 E(t) = E[
∑ 𝑥𝑖

2𝑛
𝑖=1

𝑛
]  

                         =  
1

𝑛
 ∑ 𝐸(𝑥𝑖

2 )𝑛
𝑖=1  

                        = 
1

𝑛
 ∑ (1 +  𝜇2  )𝑛

𝑖=1  

                        = 
1

𝑛
 . n(1 +  𝜇2  ) 

                 E(t) =  1+ 𝜇2 Hence t is an unbiased estimator of    1+ 𝜇2 

PROBLEM: 2 

 If T is an unbiased estimator for 𝜃 , show that 𝑇2  is a biased estimator for 𝜃 2. 

SOLUTION:   

 Since T is an unbiased estimator for 𝜃, we have  

 E(T)  =  𝜃 

  Also  V(T) = E(𝑇2) – [E(𝑇)]2 

 V(T) = E(𝑇2) - 𝜃2                          ∴V(T) > 0 

            E(𝑇2) – V(T) + 𝜃2 

 Since    E(𝑇2) ≠  𝜃2 

 𝑇2 is a biased estimator for 𝜃2. 

PROBLEM: 3 

 Show that 
[∑ 𝑥𝑖  ( ∑ 𝑥𝑖  −1)]

𝑛(𝑛−1)
 is an unbiased estimate of 𝜃2, for the sample   

𝑥1,𝑥2,𝑥3,𝑥4.............𝑥𝑛 drawn on X which takes the values 1 or 0 with respective probabilities 𝜃 

And (1- 𝜃). 

SOLUTION:  Since 𝑥1,𝑥2,𝑥3,𝑥4.............𝑥𝑛 is a random sample from Bernoulli population with 

parameter 𝜃 ,  T = ∑ 𝑥𝑖   ~    𝐵(𝑛,𝑛
𝑖=1  𝜃) 

E(T)  =  n𝜃;  V(T) = n𝜃 (1- 𝜃). 

∴    E  {
∑ 𝑥𝑖  ( ∑ 𝑥𝑖  −1)

𝑛(𝑛−1)
}  = {

𝑇( 𝑇−1)

𝑛(𝑛−1)
} 



                                       = 
1

𝑛(𝑛−1)
 E [ T(T-1)] 

                                 = 
1

𝑛(𝑛−1)
    {E(𝑇2) – [E(T)}                    ⸪ V(T) = E(𝑇2) – [E(T)] 

                                      =  
1

𝑛(𝑛−1)
 {V(T) = [E(𝑇)]2  – [E(T)}               E(𝑇2) = V(T) +   [E(T)]                                                                   

           =  
1

𝑛(𝑛−1)
 { n𝜃 (1- 𝜃) + 𝑛2𝜃2 − n𝜃} 

                         =  
1

𝑛(𝑛−1)
 { n𝜃 - n𝜃2 + 𝑛2𝜃2 − n𝜃} 

                         =  
1

𝑛(𝑛−1)
 [ n𝜃2(𝑛 − 1)] = 𝜃2. 

Hence 
∑ 𝑥𝑖  ( ∑ 𝑥𝑖  −1)

𝑛(𝑛−1)
  is an unbiased estimator of 𝜃2. 

PROBLEM: 4 

 Prove that a random sampling from the normal population. The sample mean is an 

unbiased estimator of the population mean 𝜇. 

SOLUTION: 

 Let 𝑥1,𝑥2,𝑥3,𝑥4.............𝑥𝑛 be a random sample of size n from N(𝜇, 𝜎2). 

           (Ie)     𝑋𝑖 ~ N(𝜇, 𝜎2)            E( 𝑥𝑖,)= 𝜇    and    V(𝑥𝑖)   =  𝜎2 

                 �̅� = 
∑ 𝑥𝑖

𝑛
    E(�̅�) =E[ 

∑ 𝑥𝑖

𝑛
 ] = 

1

𝑛
 ∑ 𝐸(𝑥 𝑖  

𝑛
𝑖=1 ) 

                                                                 = 
1

𝑛
 [ E(𝑥1 ) + 𝐸(𝑥2   ) +  … … . . +𝐸(𝑥𝑛 )]. 

                                                                 = 
1

𝑛
 [𝜇 + 𝜇 + ⋯ + 𝜇] 

                                                         = 
1

𝑛
  .n 𝜇  = 𝜇 

∴ The sample mean �̅� is an unbiased estimator of population mean 𝜇. 

PROBLEM: 5 

 For the normal population, prove that the sample variance is not an unbiased estimator of 

population variance 𝜎2. 

SOLUTION: 

 Let 𝑥1,𝑥2,𝑥3,𝑥4.............𝑥𝑛 be a random sample of size ‘n’ from N(𝜇, 𝜎2). 



            (Ie)     𝑋𝑖 ~ N(𝜇, 𝜎2)  ∀   i=1,2,3,.........n 

                        E( 𝑥𝑖,)= 𝜇    and    V(𝑥𝑖)   =  𝜎2 

 Consider, the sample variance 𝑆2 =  
1

𝑛
 ∑ (𝑥 𝑖 −  �̅� 𝑛

𝑖=1 )2 

                                                       = 
1

𝑛
 ∑ (𝑥 𝑖 −  𝜇 +  𝜇 −  �̅� )2𝑛

𝑖=1  

                                  =  
1

𝑛
 ∑ { (𝑥 𝑖 –  𝜇)2 + ( 𝜇 −  �̅� )2 + 2(𝑥 𝑖 –  𝜇)( 𝜇 − �̅�)}𝑛

𝑖=1  

           =  
1

𝑛
 ∑ { (𝑥 𝑖 –  𝜇)2 +

1

𝑛
( 𝜇 −  �̅� )2 +

2

𝑛
(𝑥 𝑖 –  𝜇)( 𝜇 − �̅�)}𝑛

𝑖=1  →  1 

Consider , ∑ (𝑥 𝑖 −   𝜇) 𝑛
𝑖=1 =  ∑ 𝑥 𝑖 −   𝑛

𝑖=1  ∑  𝜇 𝑛
𝑖=1                              �̅� = 

∑ 𝑥𝑖

𝑛
                        

                                            =  n �̅�  - n 𝜇                                                 n�̅� = ∑ 𝑥𝑖 

                                            = n( �̅�  - 𝜇 )  

                                            = - n( �̅�  - 𝜇 ) 

Now  put  ∑ (𝑥 𝑖 −   𝜇) 𝑛
𝑖=1 = - n(𝜇  -  �̅�) in equation 1 we get 

 𝑆2 = 
1

𝑛
 ∑ (𝑥 𝑖 –  𝜇)2 +𝑛

𝑖=1 ( 𝜇 − �̅� )2 +
2

𝑛
 [-n ( 𝜇 − �̅�). ( 𝜇 − �̅�)] 

      = 
1

𝑛
 ∑ (𝑥 𝑖 –  𝜇)2 +𝑛

𝑖=1 ( 𝜇 −  �̅� )2 – 2(( 𝜇 −  �̅� )2 

     = 
1

𝑛
 ∑ (𝑥 𝑖 –  𝜇)2 +𝑛

𝑖=1 ( 𝜇 −  �̅� )2 

Taking expectation on both sides, 

E(𝑆2) = E {
1

𝑛
 ∑ (𝑥 𝑖 –  𝜇)2 +𝑛

𝑖=1 ( 𝜇 −  �̅� )2} 

= E {
1

𝑛
 ∑ (𝑥 𝑖 –  𝜇)2} − {𝐸𝑛

𝑖=1 ( 𝜇 −  �̅� )2} 

= 
1

𝑛
 ∑ 𝐸(𝑥 𝑖 –  𝜇)2 − 𝐸𝑛

𝑖=1 ( 𝜇 −  �̅� )2 

= 
1

𝑛
 ∑ 𝜎2 − 𝐸𝑛

𝑖=1 {�̅� − 𝐸(�̅� )} 2 

= 
1

𝑛
 𝑛𝜎2 −  𝑉(�̅�) 

= 𝜎2  − 
𝜎2

𝑛
        = 𝜎2 (1-1/n) 

= 𝜎2 (n-1/n) 



= (
𝑛−1

𝑛
). 𝜎2 ≠  𝜎2  

Hence the sample variance is not an unbiased estimator of the population variance 𝜎2. 

CONSISTENCY: 

 An estimator 𝑇𝑛 = T( 𝑥1,𝑥2,𝑥3,𝑥4.............𝑥𝑛), based on a random sample of size n, is said 

to be consistent estimator of 𝜗(𝜃), 𝜃 ∈ H , the parameter space, if 𝑇𝑛 converges to 𝜗(𝜃) in 

probability , (i.e) if 𝑇𝑛   𝜗(𝜃)→
𝑝

 as n→ ∞. In other word’s, 𝑇𝑛 is a consistent estimator of 𝜗(𝜃) 

If for every 𝜀 > 0, ɳ > 0 , there exist a positive integer n ≥ 𝑚 (𝜀, ɳ) such that  

 P{ | 𝑇𝑛 −  𝜗(𝜃)| < 𝜀} → 1 

            P{ | 𝑇𝑛 −  𝜗(𝜃)| < 𝜀} → 1- ɳ ; ∀ 𝑛 ≥ 𝑚. where m is some very large value of n. 

Consistency as well as unbiased estimator 

PROBLEM:  

 Prove that in sampling from a N (𝜇, 𝜎2) population, the sample mean is a consistent 

estimator of  𝜇.     

  Solution:    

In sampling from a N(𝜇, 𝜎2)population, the sample mean  �̅� is also normally distributed 

as N(𝜇, 𝜎2/𝑛). 

(i.e) E(�̅�) = 𝜇 and V(�̅�)  = 𝜎2/𝑛 

Let 𝑥𝑖 ~ N (𝜇, 𝜎2), I = 1, 2,…..n  Thus , we have  

       E( 𝑥𝑖,)= 𝜇    and    V (𝑥𝑖)   =  𝜎2 

Consider the sample mean �̅�,  

                 �̅� = 
∑ 𝑥𝑖

𝑛
     

Taking Expectation on both sides, E (�̅�) =E[ 
∑ 𝑥𝑖

𝑛
 ]  

                                                      = 
1

𝑛
 ∑ 𝐸(𝑥 𝑖  

𝑛
𝑖=1 ) 

                                                                 = 
1

𝑛
 [ E(𝑥1 ) + 𝐸(𝑥2   ) +  … … . . +𝐸(𝑥𝑛 )]. 

                                                                 = 
1

𝑛
 [𝜇 + 𝜇 + ⋯ + 𝜇] 



                                                                 = 
1

𝑛
  .n 𝜇  = 𝜇  

                                                        V(�̅�) = V(
∑ 𝑥𝑖

𝑛
) 

                                                                 = 
1

𝑛2 V(∑ 𝑥𝑖) 

                                                                 = 
1

𝑛2 {𝑉(𝑥1) + 𝑉(𝑥2) + ⋯ … … . . +𝑉(𝑥𝑛)} 

                                                                  = 
1

𝑛2 [𝜎2 + 𝜎2+𝜎2 + ⋯ … + 𝜎2 

                                                                  = 
𝑛𝜎2

𝑛2    = 
𝜎2

𝑛
      

                                                          V(�̅�) = 
𝜎2

𝑛
 

Thus, lim
𝑛→∞

, 

             lim
𝑛→∞

𝐸( �̅�) = 𝜇 

             lim
𝑛→∞

𝑉( �̅�) = 
𝜎2

𝑛
 =0 

Thus E (�̅�) = 𝜇,    V(�̅�) = 0  

Hence, the sample mean �̅� is a consistent estimator of population mean(𝜇). 

Consistency as well as unbiased estimator 

PROBLEM:  

 Prove that the sample median is normal population is the consistent estimator of the 

population mean ‘𝜇′.  

Solution:  Let 𝑋𝑖  ~ N (𝜇, 𝜎2), i= 1,2,……n 

Then,  �̅� ~ N (𝜇, 𝜎2/𝑛) and the median �̃�~ N (𝜇,
𝜋

2
 , 𝜎2/𝑛) 

E(�̃�) = 𝜇  and V(�̃�)= 
𝜋

2
 , 𝜎2/𝑛  

 As, lim
𝑛 →∞

𝐸(𝑋)̃ = lim
𝑛→∞

𝜇 = 𝜇 

       lim
𝑛 →∞

𝑉(𝑋)̃ = lim
𝑛→∞

𝜋

2
 , 𝜎2/𝑛 = 0 

Thus, as 𝑛 → ∞ 𝐸(𝑋)̃ = 𝜇  & V(�̃�)=0 

Hence, the median in normal population is the consistent estimator of the population mean 𝜇.                           



INVARIANCE PROPERTY OF CONSISTENT ESTIMATOR: 

If Tn is a consistent estimator of )(  and   (  is a continuous function of )( , then 

)( nT  is a consistent estimator of  )( . 

Proof: 

Since Tn is a consistent estimator of  )(  , 

 
)(nT as n i.e., for every ,0,0   a positive integer n≥ m ( ),(   

Such that  P 

𝑃{|𝑇𝑛 − )( | < 𝜀} > 1-  , ∀    n ≥ 𝑚    →    (1) Since (.)

 is a continuous function, for every 0 , however small, ∃ a positive number 𝜀 , such that 

|𝛹(𝑇𝑛) −  𝛹(𝛾(𝜃)| < 𝜀,  whenever |𝑇𝑛 − )( | < 𝜀 

(i.e) |𝑇𝑛 − )( | < 𝜀 ⇒ |𝛹(𝑇𝑛) −  𝛹(𝛾(𝜃)| < 𝜀,    →    (2)   

For two events A and B , if A ⇒B, then 

A ∁ B ⇒ P(A) ≤ P(B)  or P(B) ≥ P(A)   →    (3) 

From (2) and (3) , we get 𝑃{|𝛹(𝑇𝑛) − 𝛹 )( | < 𝜀1} ≥P [|𝑇𝑛 − )( | < 𝜀] 

⇒ 𝑃{|𝛹(𝑇𝑛) − 𝛹 )( | < 𝜀1} ≥ 1-  ; ∀  n≥ 𝑚   [ using (1)] 

⇒ 𝛹(𝑇𝑛) 𝛹(𝛾(𝜃)→
𝑝

], as n→ ∞ or 𝛹(𝑇𝑛) is a consistent estimator of 𝛾(𝜃). 

Properties of Consistent estimator: 

1. The Consistency would give increasing with increasing the size of the sample. 

2. A Consistent estimator is unbiased I the limit but an unbiased estimator may or may not be 

consistent estimator. 

3. The property of Consistency is a limiting property. 

4. If there exists one consistent statistic we can construct an infinite number of consistent 

statistics. 

 Since each of the statistic converges in probability to the parameter. 

Theorem:  

 Let {𝑇𝑛} be the sequence of estimator of ‘𝜃’. Such that  



 i) E (𝑇𝑛) → 𝜃′  as n→ ∞ 

          ii) E (𝑇𝑛) → 𝜃 as n→ ∞ 

Then 𝑇𝑛 is a consistent estimator of 𝜃′. 

Solution:  

 Let  𝜀 > 0 by Tchebecheve’s inequality 

We have, P[|𝑇𝑛 – E(𝑇𝑛) < 𝜀 ] ≥ 1 – 
𝑉(𝑇𝑛)

𝜀2  

Taking limit as n→ ∞  

lim
n→ ∞

𝑃 [|𝑇𝑛 –  E(𝑇𝑛)|  <  𝜀 ]  ≥  lim
n→ ∞

1 – 
𝑉(𝑇𝑛)

𝜀2
| 

           i.e) lim
n→ ∞

 𝑃 [|𝑇𝑛 – θ′)|  <  𝜀 ]  ≥  1 – 
0

𝜀2
| 

                  lim
n→ ∞

 P[|𝑇𝑛 – θ′)|  <  𝜀 ]  ≥  1  | 

⇒ 𝑇𝑛 is a consistent estimator of 𝜃′ 

(i.e)  𝑇𝑛→
𝑝

 𝜃′ as n→ ∞.  

 Efficiency: 

 If  𝑇1  is the most efficient estimator with variance 𝑉1 and 𝑇2 is any other estimator with 

variance𝑉2, then the efficiency E of 𝑇2 is defined as: 

    E = 
𝑉1

𝑉2
 

Obviously, E cannot exceed unity. E = 
𝑉1

𝑉2
 < 1. 

More efficient: 

 Let V(𝑇1) and V(𝑇2) be the variance of the estimator 𝑇1 and 𝑇2 respectively. Then the 

estimator 𝑇1 is said to be more efficient then the estimator 𝑇2 .  

                         If V(𝑇1) < V(𝑇2). 

Example: If X ~ N (𝜇, 𝜎2) Then the mean �̅� ~ N (𝜇, 𝜎2/𝑛) and the median 

 �̃� ~ N (𝜇,
𝜋

2
. 𝜎2/𝑛)  Here, V(�̅�) = 𝜎2/𝑛 , V(�̃�) = 

𝜋

2
. 𝜎2/𝑛 



Hence V(�̅�)  is less than V(�̃�). Thus, the samples mean �̅� is more efficient, and then the sample 

median is normal results. 

Problem: 1 

 Consider the normal population N (𝜇, 𝜎2) the sample mean is the efficient of the 

population mean𝜇. 

Solution: 

 In this case Var (sample mean) = 𝜎2/𝑛 

                              Var (sample median) =  
𝜋

2
. 𝜎2/𝑛 

                               E = 
𝑉(𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛)

𝑉(𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑑𝑖𝑎𝑛)
 

                                  = 
 𝜎2/𝑛

 
𝜋

2
.𝜎2/𝑛

 

                               = 
𝜎2

𝑛
   x 

2𝑛

𝜋𝜎2 

                                 = 
2

𝜋
 =  

2

22/7
    ⇒ 2 x 

7

22
   = 

7

11
 = 0.64 

                             E = 0.64 

                             ∴  E < 1 

Thus, the sample mean is more efficient then sample median. 

Similarly, the sample mean is more efficient than any other estimator. Hence the sample mean is 

the most efficient estimator of the population mean 𝜇 for the normal population N (𝜇, 𝜎2). 

Problem: 2 

 A random sample (𝑋1,𝑋2,𝑋3,𝑋4,𝑋5) of size ‘5’ is drawn from a normal population with 

unknown mean ‘𝜇′. Consider the following estimators to estimate 𝜇.  

    𝑖)    𝑡1 = 
𝑋1 +𝑋2 +𝑋3+𝑋4 +𝑋5

5
         ii) 𝑡1 = 

𝑋1+𝑋2 

2
 + 𝑋3     

    𝑖𝑖𝑖) 𝑡3 = 
2𝑋1 +𝑋2 +𝜆𝑋3

3
  , where λ is such that  𝑡3 is unbiased estimator of ‘𝜇′  

    iv) Find λ,    𝑡1 and    𝑡2 unbiased. 

    v) State giving reasons, the estimator which is best among  𝑡1 ,𝑡2 and 𝑡3. 

 



Solution:  

 Given that ,  E(𝑥𝑖) = 𝜇, i = 1,2,3,4,5 

i) Consider, E (𝑡1) = E{
𝑋1 +𝑋2 +𝑋3+𝑋4 +𝑋5

5
 } 

                           = 
1

5
 {E (𝑋1 )+𝐸(𝑋2 ) + 𝐸(𝑋3) + 𝐸(𝑋4 )+𝐸(𝑋5)} 

                           = 
1

5
 { 𝜇 + 𝜇 + 𝜇 + 𝜇 + 𝜇} 

                           = 
5𝜇

5
 

                E (𝑡1) =  𝜇 

𝑡1 is an unbiased estimator of the parameter 𝜇. 

ii) E (𝑡2) = E{
𝑋1 +𝑋2 

2
+ 𝑋3} 

                           = 
1

2
 E (𝑋1 +𝑋2 ) + 𝐸(𝑋3) = 

1

2
 {E (𝑋1 )+𝐸(𝑋2 ) + 𝐸(𝑋3)} 

                                                                    = 
1

2
  2𝜇 + 𝜇 

                                                                                   = 𝜇 + 𝜇 

                                                                                   = 2𝜇 ≠ 𝜇 

                          Hence it is biased estimator of 𝜇. 

iii) Given that, 𝑡3 is unbiased estimator of 𝜇. 

(i.e) E(𝑡3) = 𝜇     →  (1) 

E (𝑡3) = E{
2𝑋1 +𝑋2 +𝜆𝑋3

3
 } 

           =  
1

3
 {E (2𝑋1 ) + 𝐸(𝑋2 ) + 𝐸(𝜆𝑋3)} 

           = 
1

3
 {2E (𝑋1 ) + 𝐸(𝑋2 ) + 𝜆𝐸(𝑋3)} 

          =  
1

3
 {2𝜇 +  𝜇 + 𝜆𝜇 } 

E (𝑡3) = 
1

3
 {3𝜇 +  𝜆𝜇 } →  (2) 

From (1) and (2),  we can write 

             𝜇 = 
1

3
 {3𝜇 +  𝜆𝜇 } 

                    3 𝜇 = 3𝜇 +  𝜆𝜇  

           3 𝜇 -  3𝜇 =  𝜆𝜇  

                     𝜆𝜇 = 0 

                       𝜆 = 0 

         𝑡3 = 
2𝑋1 +𝑋2 +0

3
   =          𝑡3 = 

2𝑋1 +𝑋2 

3
 



       𝐸( 𝑡3) =E[ 
2𝑋1 +𝑋2 

3
] =  

1

3
 {2E (𝑋1 ) + 𝐸(𝑋2 )} 

                                      =  
1

3
 [2𝜇 + 𝜇] = 

3𝜇

3
 

                       𝐸( 𝑡3)  = 𝜇 

             𝑡3  is an unbiased estimator of 𝜇. 

i) Consider, V(𝑡1) = V{
𝑋1 +𝑋2 +𝑋3+𝑋4 +𝑋5

5
 } 

                           = 
1

25
 {V (𝑋1 )+𝑉(𝑋2 ) + 𝑉(𝑋3) + 𝑉(𝑋4 )+𝑉(𝑋5)} 

                           = 
1

25
 { 𝜎2 + 𝜎2 + 𝜎2 + 𝜎2 + 𝜎2} 

                           = 
5𝜎2

25
 = 

𝜎2

5
 = (0.2) 𝜎2 

                 V(𝑡1) = (0.2) 𝜎2 

 

                               V (𝑡2) = V{
𝑋1 +𝑋2 

2
+ 𝑋3} 

                           = 
1

4
 {V (𝑋1 ) + 𝑉(𝑋2)} + 𝑉(𝑋3)  

                           = 
1

4
 { 𝜎2 + 𝜎2} + 𝜎2 

                                           = 
2 𝜎2 

4
  +𝜎2 

                                           = 
 𝜎2 

2
  +𝜎2 =  

3 𝜎2 

2
  = (1.5) 𝜎2 

                                 V (𝑡3) = V{
2𝑋1 +𝑋2 

3
} 

                           = 
1

9
 {V (2𝑋1 + 𝑋2)  

                          = 
1

9
 {4 V(𝑋1 ) + V(𝑋2 )} 

                          =  
1

9
 [4𝜎2 + 𝜎2 ] 

                                          = 
5 𝜎2 

9
   

                                          = (0.56) 𝜎2 

By comparing variance of  𝑡1 ,𝑡2 and 𝑡3 having the minimum variance. 

Thus  𝑡1 is best estimate of the parameter than 𝑡2 and 𝑡3. 

 



Cramer Rao Inequality :( meaning) 

 Cramer rao inequality provides a lower bound on the variance of an unbiased of the 

parameter. If an estimator 𝑡𝑛 is unbiased. Then, it is also efficient estimator if and only if. The 

variance of estimator  𝑡𝑛  attains the Cramer rao lower bound. In this case it must be a sufficient 

estimator of the parameters. 

 Thus, the ratio of the Cramer rao lower bound to the actual variance of any unbiased 

estimator for a parameter is called the efficiency of that estimator. 

Cramer Rao Inequality: (Theorem) 

Statement: Let ‘X’ be a continuous r.v with p.d.f f(x, 𝜃) and likelihood function ‘L’. Let‘t’ be an 

unbiased estimator of some function of 𝜃 say 𝛾(𝜃). 

Then, V (t) ≥ 
[

𝑑

𝑑𝜃
 𝛾(𝜃)]

2

𝐸{
𝜕

𝜕𝜃
log 𝐿}

2        (or)    V (t) ≥ 
[𝛾′(𝜃)]

2

𝐼(𝜃)
, Type equation here. 

   Where I (𝜃) =  𝐸 {
𝜕

𝜕𝜃
log 𝐿}

2

 

Proof: Given that t’ is an unbiased estimator of𝛾(𝜃). 

Let t = t (𝑥1,𝑥2,𝑥3, … … … 𝑥𝑛) be an unbiased estimator of 𝛾(𝜃). 

Such that,  E(t) = 𝛾(𝜃) 

                𝛾(𝜃) = E(t) = ∫ 𝑡. 𝐿dx                  [ L is joint pdf of 𝑥𝑖 ‘s  i= 1,2,3,....n] 

                𝛾(𝜃) =  ∫ 𝑡. 𝐿dx   

P differentiate with respect to  , we get 

    𝛾′(𝜃) =  ∫ 𝑡 
𝜕𝐿

𝜕𝜃
 dx   

Multiply and divide by L                                                        log L = 
1

𝐿
 

           𝛾′(𝜃) =  ∫ 𝑡 
1

𝐿
(

𝜕𝐿

𝜕𝜃
) L dx                                  L= L(x, 𝜃) = ∏ 𝑓(𝑥𝑖,

𝑛
𝑖=1 𝜃) 

                     =  ∫ 𝑡 (
𝜕𝐿

𝜕𝜃
) L dx                                                   ∫ 𝐿(𝑥, 𝜃)𝑑𝑥 = 1 

 𝛾′(𝜃) = E (𝑡.
𝜕 log 𝐿

𝜕𝜃
)    → (1) 

∴  L be the likelihood function of the r.v ‘X’ and also be a joint density function. Then, we have    

∫ 𝐿𝑑𝑥 = 1 p.D.w.r.to 𝜃 and using Since L is the joint pdf of  



(𝑥1,𝑥2,𝑥3, … … … 𝑥𝑛) regularity conditions given above,  

We get   ∫  
𝜕𝐿

𝜕𝜃
  dx  =  0 

Multiply and divided by L 

 ∫ 𝑡 (
1.

𝐿

𝜕𝐿

𝜕𝜃
) L dx  = 0 

          ∫ 𝑡 (
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
) L dx  = 0 

 E (
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
) = 0     →  (2) 

Now Consider, E (𝑡,
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
) = 𝛾′(𝜃)                    Cov(X,Y) = E(XY) – E(X).E(Y) 

Cov (𝑡.
𝜕 log 𝐿

𝜕𝜃
)   = E (𝑡,

𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
)  - E(t) . E[

𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
] 

Cov (𝑡.
𝜕 log 𝐿

𝜕𝜃
)   = E (𝑡,

𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
)  - 0      [using (2)] 

Cov (𝑡.
𝜕 log 𝐿

𝜕𝜃
)  = 𝛾′(𝜃)        (from (1)) 

Cov (𝑡.
𝜕 log 𝐿

𝜕𝜃
)  = 𝛾′(𝜃)    →  (3) 

For two variables say x & y we have , r 

 r (x,y) = 
𝐶𝑜𝑣 (𝑥,𝑦)

𝜎𝑥𝜎𝑦
      = 

𝐶𝑜𝑣 (𝑥,𝑦)

𝜎𝑥𝜎𝑦
  ≤ 1        (⸪ r ≤ 1) 

from this Cov (x,y) ≤ 𝜎𝑥𝜎𝑦 

[Cov(xy)]2 ≤ 𝜎𝑥
2𝜎𝑦

2      ⇒ [Cov (xy)]2 ≤  V(x). V(y) 

Now, {Cov (𝑡.
𝜕 log 𝐿

𝜕𝜃
) }2  ≤ V(t) . V(

𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
) 

        [𝛾′(𝜃)]2  ≤ V(t) . V(
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
)    → (4)     (from(3) ) 

Consider,  

      V(
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
)   = E{(

𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
)

2

}   - [E (
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
) ]

2

 

                         = E (
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
) 2   - 0                                   E (

𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
)  = 0 

     V(
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
)     = E (

𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
) 2    →   (5) 



Using (5), (4) become 

        [𝛾′(𝜃)]2  ≤ V(t) . E (
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
) 2   

       
    [𝛾′(𝜃)]

2
 

E (
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
) 2 

  ≤ V(t) 

            V(t)   ≥   
    [𝛾′(𝜃)]

2
 

E (
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
) 2 

 hence proved. 

Problem:    

 Let 𝑥1,𝑥2,𝑥3, … … … 𝑥𝑛 denotes a random sample from a Poisson distribution has the mean 

𝜃 > 0. It is known that y = ∑ 𝑥𝑖, i= 1,2,3,.....n is sufficient for 𝜃. 

Show that 
𝑦

𝑛
 = �̅� is an efficient statistic for 𝜃. 

Solution: 

        Given that, 𝑥𝑖 ~ p(𝜃), then p(x) = 
𝑒−𝜃𝜃𝑥

𝑥!
 

         Taking log on both sides, 

        Log p(x) = - 𝜃 + xlog 𝜃 - log 𝑥𝑖 

         P. D. w. r to 𝜃 

 

           
𝜕 𝑙𝑜𝑔𝑝(𝑥)

𝜕𝜃
   = -1 +

𝑥

𝜃
   ⇒  

−𝜃+𝑥

𝜃
     ⇒

𝑥−𝜃

𝜃
 

        𝐸 {
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
}

2

  = E {(
𝑥−𝜃

𝜃
)

2

}  

                           = 
1

𝜃2 E(x –  𝜃)2 

                           =  
1

𝜃2 E[x –  𝐸(𝑋)]2                                  V(X) =E[X –  E(X)]2 

                           =  
1

𝜃2  V(x)                                                Poisson distribution 

                           =     
𝜃 

𝜃2     ⇒  
1

 𝜃
                                              Mean E(x) = 𝜃 

         𝐸 {
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
}

2

 =     
1

 𝜃
                                                       Variance V(x)= 𝜃 

∴  Cramer Rao – Lower bound is given by  



          
1

𝑛 𝐸(
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
)

2   = 
1

𝑛(
1

 𝜃
)
  = 𝜃/n   = V(�̅�)                                       V(�̅�) = 

𝜃

𝑛
 

   �̅� is an efficient statistic for 𝜃. 

Sufficiency: 

 An estimator is said to be sufficient for a parameter, if it contains all the information in 

the sample regarding the parameter. 

 If T  = t (𝑥1,𝑥2,𝑥3,……….. 𝑥𝑛) is an estimator of a parameter 𝜃, based on a sample 

𝑥1,𝑥2,𝑥3,……….. 𝑥𝑛 of size n from the population with density f(x, 𝜃) such that the conditional 

distribution of 𝑥1,𝑥2,𝑥3,……….. 𝑥𝑛 given T, is independent of 𝜃, then T is sufficient estimator for 𝜃.  

Factorization Theorem (Neymann): 

 The necessary and sufficient condition for a distribution to admit sufficient statistics is 

provided by the ‘Factorization theorem’ to Neymann. 

Statement: T = t(x) is sufficient for 𝜃 if and only if the joint density function L (say), of the 

sample values can be expressed in the form: 

L = 𝑔𝜃 [t(x)]. h(x) 

Where (as indicated) 𝑔𝜃[t(x)] depends on 𝜃 and x only through the value of t(x) and h(x) is 

independent of  𝜃. 

Problem: 1 

 Let  𝑥1,𝑥2,𝑥3,……….. 𝑥𝑛 be a random sample drawn from a population with pdf f(x, 𝜃) = 𝜃 

𝑥𝜃−1 ; 0< 𝑥 < 1, 𝜃 > 0. 

(i) Show that 𝑡𝑛= ∏ 𝑥𝑖
𝑛
𝑖=1  is sufficient estimator for 𝜃. 

Solution: Consider, the likelihood function, 

L = ∏ 𝑓(𝑥𝑖,
𝑛
𝑖=1  𝜃) = ∏ 𝜃𝑥𝑖

𝜃−1𝑛
𝑖=1  

                      

  = 𝜃𝑛 
𝑥1

𝜃

𝑥1
,

𝑥2
𝜃

𝑥2
, … … … … . .

𝑥𝑛
𝜃

𝑥𝑛
 

  = 𝜃𝑛 ∏ 𝑥𝑖
𝜃𝑛

𝑖=1 . 
1

∏ 𝑥𝑖
𝑛
𝑖=1

 

             L = g(t, 𝜃) = h(𝑥1,𝑥2,𝑥3…………𝑥𝑛) 

    Where h(𝑥1,𝑥2,𝑥3…………𝑥𝑛)  = 1, g(𝑡𝑛,𝜃) = 𝜃𝑛 ∏ 𝑥𝑖
𝜃𝑛

𝑖=1 . 
1

∏ 𝑥𝑖
𝑛
𝑖=1

 



∴ 𝑡𝑛= ∏ 𝑥𝑖
𝑛
𝑖=1  is sufficient estimator for ‘𝜃’. 

Problem: 2 

 Obtain the sufficient statistic of parameter λ of Poisson distribution. 

Solution: 

 Let 𝑥1,𝑥2,𝑥3…………𝑥𝑛 be a random sample of size ‘n’ from Poisson distribution with 

parameter λ . Thus, we have  

  P(x) = 
𝑒−𝜆𝜆𝑥

𝑥!
 , x= 0,1,2,3,........ 

Consider, L =  ∏ 𝑓(𝑥𝑖,
𝑛
𝑖=1  𝜃) 

                    = ∏ 𝑃(𝑥𝑖,
𝑛
𝑖=1 ) =  P(𝑥𝑖), 𝑝(𝑥2), 𝑝(𝑥3), … … . . 𝑝(𝑥𝑛 ) 

                    = 
𝑒−𝜆𝜆𝑥

𝑥!
 . 

𝑒−𝜆𝜆𝑥2

𝑥2!
  . 

𝑒−𝜆𝜆𝑥3

𝑥3!
  ........... 

𝑒−𝜆𝜆𝑥𝑛

𝑥𝑛!
 

                    = 
(𝑒−𝜆)𝑛𝜆𝑥1+𝑥2+𝑥3+⋯…+𝑥𝑛

 ∏ 𝑥𝑖
𝑛
𝑖=1  !

 

                    = 
𝑒−𝑛𝜆𝜆

∑ 𝑥𝑖
𝑛
𝑖=1

 ∏ 𝑥𝑖
𝑛
𝑖=1  !

  = 𝑒−𝑛𝜆𝜆∑ 𝑥𝑖 . 
1

 ∏ 𝑥𝑖
𝑛
𝑖=1  !

 

            L = g(t, 𝜆 ) . h(x) 

Where g(t, 𝜆 ) = 𝑒−𝑛𝜆 𝜆∑ 𝑥𝑖 

               h(x) = ∏ 𝑥𝑖
𝑛
𝑖=1  ! 

t = ∑ 𝑥𝑖 is a sufficient estimator of the parameter  . 

Problem: 3 

 Let  𝑥1,𝑥2,𝑥3…………𝑥𝑛 be a random sample from a uniform distribution with pdf f(x, 𝜃) = 
1

𝜃
  

0< 𝑥 < 𝜃 , 𝜃 > 0. Obtain the sufficient statistic of the parameter𝜃. 

Solution:  

Consider, L = ∏ 𝑓(𝑥𝑖,
𝑛
𝑖=1  𝜃) 

                    = f (𝑥1, 𝜃). f (𝑥2, 𝜃)............... f(𝑥𝑛, 𝜃) 

                    = (
1

𝜃
) . (

1

𝜃
) . (

1

𝜃
) … … … … . . (

1

𝜃
) 



                    = (
1

𝜃
)

𝑛

  

               L  ≠ g(t, 𝜃) . h(x) 

  Now consider the order statistic, Let  𝑥(1),𝑥(2),𝑥(3)…………𝑥(𝑛) be an ‘n’ independent order 

samples from the uniform distribution. 

Thus,  ≤ 𝑥1, ≤ 𝑥2, ≤ ⋯ … … . . ≤ 𝑥𝑛 ≤  𝜃. 

𝑥(𝑛) ≤  𝜃 

Hence the largest sample 𝑥(𝑛) is related with the parameter𝜃. 

∴ 𝑥𝑛 Is sufficient statistic or sufficient estimator of the parameter 𝜃. 

Properties of Sufficient estimator or sufficient statistic: 

1. A sufficient estimator is always consistent. 

2. A sufficient estimator is most efficient. If an efficient estimator exist. 

3. A sufficient estimator may or may not be unbiased. 

Rao Blackwell Theorem: 

 Let X and Y be random variables such that  

E(y) = 𝜇  and V(y) = 𝜎𝑦
2 > 0 

Let E(Y/X=x) = ∅(x). Then (i) E [∅(X)] = 𝜇 and  (ii) Var[∅(X)] ≤ Var(Y). 

Proof: 

 Let f(x, y) be the joint pdf of random variables X and Y, 𝑓1(.) and 𝑓2(.) 

The marginal p.d.f’s of X and Y respectively and h(y/x) be the conditional p.d.f of y for given 

X=x such that h(y/x) = { f(x, y)/ 𝑓1(x)} 

 Now, we consider 

E(Y/X=x) = ∫ 𝑦. ℎ (
𝑦

𝑥
) 𝑑𝑦

∞

−∞
  

                 = ∫ 𝑦.
𝑓(𝑥,𝑦)

𝑓1(𝑥)
𝑑𝑦

∞

−∞
 s 

                 =
1

𝑓1(𝑥)
  ∫ 𝑦. 𝑓(𝑥, 𝑦)𝑑𝑦

∞

−∞
  → (1) 

We have E[Y/X=x] = ∅(x) 



∴ 
1

𝑓1(𝑥)
  ∫ 𝑦. 𝑓(𝑥, 𝑦)𝑑𝑦

∞

−∞
= ∅(x)  → (2)   

           ∫ 𝑦. 𝑓(𝑥, 𝑦)𝑑𝑦
∞

−∞
= ∅(x). 𝑓1(x) 

From (1), we observe that the conditional distribution of Y given X=x does not depends 

on the parameter 𝜇. 

Hence X is sufficient statistic for 𝜇. Also  

∴ E{ ∅(x)} = E {E(y/x)} = E(y) = 𝜇 

     E[∅(x)] = 𝜇    → (3) 

This establishes part (i) of the theorem. 

Now V(Y) = E(𝑌2) – [ E(𝑌)]2 

                   = E{ [Y -  E(𝑌)]2} = E {(Y- 𝜇)2}            ⸪ E(y) = 𝜇  

                   = E{ (Y - ∅(x)  + ∅(x)−𝜇)]2}  

                   = E {(Y- ∅(x) )2 + [∅(x)−𝜇)]2 + 2 [(Y- ∅(x). (∅(x) – 𝜇]} 

       V(Y)   = E {(Y- ∅(x) )2 +E [∅(x)−𝜇)]2 + 2E [(Y- ∅(x). (∅(x) – 𝜇]} 

                  = E {(Y- ∅(x) )2 }+E [∅(x)−𝜇)]2} + 0              E(y- ∅(x) =0 

       = E {(Y- ∅(x) )2 } + E { [∅(x)−𝐸(∅(x))]2}                       E(∅(x) = 𝜇 

       V (Y) ≥ V [∅(x)] 

     V [∅(x)]  ≤ V (Y) hence proved. 
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UNIT – II 

METHODS OF ESTIMATION: 

 So far we have been discussing the requesting of a good estimator. Now we shall briefly 

outline some of the important methods for obtaining such estimators. Commonly used methods 

are. 

i) Method of maximum likelihood estimation (MLE) 

ii) Method of moments 

iii) Method of minimum variance 

iv) Method of least squares 

v) Method of minimum chi-squares 

vi) Method of inverse probability 

Method of maximum likelihood estimation: 

Likelihood function: let x1, x2,...xn be a random sample of size n from a population with density 

function f(x,θ). Then the likelihood function of the sample values x1, x2,...xn usually denoted by 

L = L(θ) is their joint density function, 

Given by, 1 2

1

( , ) ( , )... ( , ) ( , )
n

n i

i

L f x f x f x f x   


   

L gives the relative likelihood that the r.v’s assume a particulars set of values  

x1, x2,...xn. For a given sample x1, x2,...xn, L becomes a function of the variable θ, the parameter. 

 The principle of maximum likelihood consists in finding an estimator for the unknown 

parameter θ = (θ1, θ2,... θk), say, which maximises the likelihood function L(θ) for variations in 

parameter, i.e., we wish to find 1 2( , ,... )k    so that  

( ) ( ) , . , ( ) sup ( )L L i e L L            

Thus if there exists a function 1 2( , ,... )nx x x  of the sample values which maximises L for 

variations in θ, then  is to be taken as an estimator of θ.   is usually called maximum likelihood 

estimator (M.L.E). Thus  is the solution, if any, of 

2

2
0 0

L L
and

 

 
 

 
. 

Since L > 0, and log L is a non – decreasing function of L; L and log L attain their extreme 

values (maxima or minima) at the same value of  . The first of the two equations can be 

rewritten as: 



2

2

1
. 0 0

L L

L  

 
  

 
a from which is much more convenient from practical point of view. 

PROPERTIES OF MLE: 

1. MLE is not unbiased 

2. MLE is not unique. 

3. MLE’s are consistent. 

4. MLE’s are always consistent estimators but need not be unbiased. 

5. If MLE exists, it is the most efficient in the class such estimators. 

6. If a sufficient estimator exists, it is a function of the maximum likelihood estimator. 

7. MLE’s have the invariance property of MLE. If T is the MLE of θ and ( )  is one to one 

function of θ, then ( )T is the MLE of ( )  . 

8. MLE’s are asymptotic normality. 

PROBLEM: 

 In random sampling from Normal population N(µ, σ2), find the MLE for  

(i) µ when σ2 is known 

(ii) σ2 when µ is known 

(iii) The simultaneous estimation of µ and σ2. 

Solution:  

 Given  
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1
2

2

( , ),

1
( , ) ; ,

2

0
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X N then

f x e x


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 



 
 
         



 

Then the likelihood function of the random sample is given by 
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2
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1
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1
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1
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log log ( )
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
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
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 
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  






 
 
 



 









 
  
 

 
   

 

     









 

i) When σ2 is known, the likelihood equation for estimating µ is 

2
1

2
1

1

1

1 1

1

log 1
0 0 0 2 ( )( 1)

2

1
( ) 0

( ) 0

0

ˆ

n

i

i

n

i

i
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i

i

n

i
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i

i

L
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x n

n x n x

x

x
n

x


 








 













 




      



   

  

  

     
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 
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Hence M.L.E for µ is the sample mean x . 

ii) When µ is known, the likelihood equation for estimating σ2 is 



   

 
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iii) The likelihood equations for simultaneous estimation of µ and σ2 are: 

2

log log
0 0

L L
and

 

 
 

 
 

 

 
2

12ˆ

n

i

i

x

Thus giving x and
n



  



 


 

             22 ,s  Sample variance. 

Hence, the MLE of (µ, σ2) is 2( , )x s  

PROBLEM: 

 Prove that the maximum likelihood estimate of the parameter α of a population 

having density function: 
2

2
( ),0 ,x x 


   for a sample of unit size is 2x, x being the sample 

value. Show also that the estimate is biased. 

Solution: 

 For a random sample of unit size (n = 1), the likelihood functions is: 



2

2

2

0

2
( ) ( , ) ( );0

log log 2 log log( )

log log 2 log log( )

log 2 1
0

log 2 1
0 0

2 1

2( )

2 2

2 2 0

2 0

2

2
ˆConsider,E( ) = E(2x) = 2 ( ) 2 . ( )

L f x x x

L x

L x

L

x

L

x

x

x

x

x

x

x

x f x dx x x d


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 

 

  

  

 

 

 

 





 


    

   

   


  

 


    

 

  
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 
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2

2 2 2
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2
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x

x x
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E

x


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PROBLEM: 

i) Find the MLE for the parameter 𝜆 of a Poisson distribution on the basis of a 

sample of size n. Also find its variance. 

ii) Show that the sample mean x , is sufficient for estimating the parameter 𝜆 of 

the Poisson distribution. 

Solution: The probability function of the poisson distribution with parameter ‘𝜆’. 



i.e., 
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Thus the M.L.E for  is the sample mean x . The variance of estimate is given by: 
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2

2 2

1
(log )

ˆ( )

( )
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ˆ( )
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E E x
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V
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  

  






     
         

      

   
      

   

  
 

  

For the poisson distribution with parameter  , we have 

log
1 ( , ),

L nx x
n n P x 

  

 
      

  
a function of x  and  only. 



Hence x is sufficient for estimating  . 

PROBLEM: 

 Let 
1 2, ,... nx x x be a random sample from the uniform distribution with p.d.f 

1 ;0 , 0
( , )

0 ;

x
f x

otherwise



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 


 

i) Obtain the MLE for   . 

Solution:  

1

1 2
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L = ( , )

( , ), ( , ),..... ( , )

1 1 1 1
, ,....

,
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
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i) ̂   it is impossible, so that we consider the order statistics. 

ii) Let (1) (2) ( ), ,..., nx x x  be an order. Random samples of size ‘n’ from the given 

population. So that, (1) (2) ( )0 ... .nx x x       nx  . 

The maximum value of  is consistent with nx  . Thus the largest sample observation 

( )nx is the MLE of . 

METHODS OF MOMENTS: 

 Let 1 2( ; , ,..., )kf x    be the density function of the parent population with k 

parameters 1 2, ,..., k   . If '

r denotes the rth moment about origin, then 

'

1 2( ; , ,..., ) , ( 1,2,... )r

r kx f x dx r k   




    



In general 
' ' '

1 2, ,..., k   will be function of the parameters 
1 2, ,..., k   . 

Let xi, i = 1,2,...n be a random sample of size n from the given population. The method of 

moments consists in solving the k – equations(*) for 
1 2, ,..., k   in terms of 

' ' '

1 2, ,..., k   and 

then replacing these moments 
' ; 1, 2,....,r r k  by the sample moments, 

' ' ' ' ' '

1 2 1 2
ˆ ˆ ˆ. ., ( , ,..., ) ( , ,..., )i i k i ke g m m m       ; i = 1,2,...k where 

'

im is the ith moment about 

origin in the sample. 

 Then by the method of moments 1 2
ˆ ˆ ˆ, ,..., k   are the required estimators of 

1 2, ,..., k   respectively 

PROPERTIES OF METHOD OF MOMENTS: 

i) The estimates obtained by the method of moments will have asymptotically normal 

distribution for large n. 

ii) The estimator obtained by this method are less efficient that those obtained from the 

principle of MLE. 

iii) The estimator obtained by this method is consistent. 

iv) The estimator obtained by this method is identical estimator if MLE’s are obtained as 

linear functions of the moments. 

PROBLEM:1 

 For the double Poisson distribution: 

1 2

1 2. .1 1
( ) ( ) . . ; 0,1,2,...

2 ! 2 !

m mx xe m e m
p x p X x x

x x

 

      

Show that the estimates for m1 and m2 by the method of moments are:
2' ' ' '

1 2 1 1       

Solution: 
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(Since the first and second summations are the means of Poisson distributions with 

parameters m1 and m2 respectively.) 
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Similarly on substituting for m1 in terms of m2 we get  

  2
2 ' ' ' '

2 2 1 1 1 22 2 0m m          

Solving for m2, we get 

 
2

' ' ' '

2 1 2 1 1m̂         

PROBLEM:2 

 A random variable X takes the values,0,1,2, with respective probabilities 

1 1
1 , 1 and 1 ,

4 2 2 2 4 2N N N N N N

            
          

     
where N is a known number and α, θ 

are unknown parameters. If 75 independent observations on x yielded the values 0,1,2 with 

frequencies 27, 38, 10 respectively, estimate θ and α by the method of moments. 

Solution: 
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The sample frequency distribution is: 



x: 0 1 2 

f: 27 38 10 

      N = 75 
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Equation the sample moments to theoretical 

moments, we get 
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PROBLEM:3 

 Estimate α and β in the case of pearson’s type III distribution by the method of moments. 

         
1( ; , ) ,0xf x x e x
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Here m and m are sample moments
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INTERVAL ESTIMATION: 

 Interval estimate means the population parameter given by two numbers between which  

the parameter is considered. Generally, point estimation does not confidently lie down our 

information. Therefore, two values are computed in such a way that the interval lies between the 

two values containing the parameter. An interval so obtained is called interval estimate or 

confidence interval. 

 For instance, studying a sample, we estimate that the average salary of a factory worker is 

Rs. 600; it is a point estimate. At the same time we may estimate through a sample study that an 

average salary of factory workers can lie between Rs. 600 and Rs. 700; this is an interval 

estimate.        
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UNIT-III 

Test of Hypothesis: 

 A statistical test is a rule or method which leads to make a decision whether to accept to 

accept or reject the hypothesis on the basis of a sample from a population. 

Statistical Hypothesis: 

 Any statement or assumption about a population from which give a random sample may 

have been drawn is called statistical hypothesis. 

Simple Hypothesis: 

 If the statistical hypothesis specifies the population completely then it is termed as a 

simple statistical hypothesis. 

Composite Hypothesis: 

 If the statistical hypothesis does not specifies the population completely then it is termed 

as a Composite statistical hypothesis. 

Example:  If    𝑥1, 𝑥2, … … . 𝑥𝑛 is a random sample of size n from a normal population with 

mean µ and variance𝜎2, then the hypothesis     𝐻1:  𝜇 =  𝜇0, 𝜎2= 𝜎0
2  is a simple hypothesis, 

where as each of the following hypothesis is a composite hypothesis. 

i)  𝜇 =  𝜇0,        ii)     𝜎2= 𝜎0
2     iii) 𝜇 <  𝜇0, 𝜎2= 𝜎0

2       iv) 𝜇 >  𝜇0, 𝜎2= 𝜎0
2 

v)  𝜇 =  𝜇0, 𝜎2 < 𝜎0
2  ,  vi) 𝜇 =  𝜇0, 𝜎2 > 𝜎0

2         𝑣𝑖) 𝜇 <  𝜇0, 𝜎2 > 𝜎0
2 

Null Hypothesis: 

 A definite statement about the population parameter is called the null hypothesis and it sis 

denoted by  𝐻0.            𝐻0:  𝜇 =  𝜇0 

Alternative Hypothesis: 

 Any hypothesis which is complementary to the null hypothesis is called an alternative and is 

usually denoted by  𝐻1.      𝑖)     𝐻1  :  𝜇 ≠  𝜇0       ii) 𝐻1  :  𝜇 >  𝜇0         iii)     𝐻1  :  𝜇 <  𝜇0 

Critical Region: (Rejection region) 

 The region of rejection of the null hypothesis (𝐻0) when 𝐻0is true is called critical region. 

Acceptance region: 

 The region of acceptance of the null hypothesis (𝐻0) when 𝐻0 is false is called a acceptance 

region. 



Meaning of Critical Region: 

 Let    𝑥1, 𝑥2, … . . . 𝑥𝑛 be the sample observation denoted by O. All the values of O  will be 

aggregate of a sample and they constitute a space, called the sample space, which is denoted by 

S. 

Since the sample values  𝑥1, 𝑥2, … . . . 𝑥𝑛 can be taken as a point in ‘n’ dimensional space, we 

specify some region of the ‘n’ dimensional space and see whether this points  𝑥1, 𝑥2, … . . . 𝑥𝑛 

falls within this region (or) outside of this region. We divide the sample space ‘S’ into two 

disjoint parts say �̅� and �̅� = 𝑠 − 𝜔 (or) �̅� or 𝜔. 

If the sample point falls in 𝜔, we reject the null hypothesis 𝐻0 and sample points fall in  �̅�, We 

reject the hypothesis 𝐻1  and accept the null hypothesis  𝐻0 . This is shown in the following 

diagram. 

 

 

 

Critical region 

        (or) 

Rejection region                                               Acceptance  

 

 

 

  The size of critical region is called the level of significance and it is denoted by ‘𝛼′. 

Whether 𝛼 is the probability of rejecting 𝐻0. When  𝐻0 is true symbolically.𝛼 = P(x∈ 𝜔/ 𝐻0) 

Type –I error: 

 The error of rejecting  𝐻0 (𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔  𝐻1 ) when  𝐻0 is true is called Type- I error. 

Type –II error: 

 The error of accepting  𝐻0 when  𝐻0 is false (  𝐻1 is true) is called Type- II error. 

 The four possible situations that arise in a test of hypothesis are expressed in the following 

table: 

                                                                   S 

              

                 𝜔                    �̅�                     
 

 

 

 

 

                

                   

                 𝐻0                       
 

𝐻1
 

                 

 



Actual  Decision  

        Accept  𝐻0  𝑅𝑒𝑗𝑒𝑐𝑡  𝐻0  

 𝐻0  is true Correct decision(no error) 

Probability =1-𝛼 

Wrong(Type I error) 

Probability = 𝛼 

 𝐻0  is false Wrong(Type II error)  

Probability =𝛽 

Correct decision (no error) 

Probability = 1- 𝛽 

 

The probability of Type I and Type II errors are denoted by 𝛼 𝑎𝑛𝑑 𝛽 respectively.  

 Thus 𝛼 = P (type I error) 

                   = P( Rejecting  𝐻0 when  𝐻0 is true) 

               𝛽 = P (type II error) 

                   = P( Accepting  𝐻0 when  𝐻0 is false) 

Symbolically, 𝛼 = P (x 𝜖𝜔/𝐻0) =  𝐿0𝜔

⨜
 dx 

                       𝛽 = P (x 𝜖�̅�/𝐻1) =  𝐿1�̅�

⨜
 dx 

Where  𝐿1 is the likelihood function of the sample observation under 𝐻1. 

 Since  𝐿1𝜔

⨜
 dx  +   𝐿1�̅�

⨜
 dx =1 

 𝐿1𝜔

⨜
 dx = 1-   𝐿1�̅�

⨜
 dx = 1- 𝛽 ⇒= 1- 𝛽 =  𝐿1𝜔

⨜
 dx ⇒ 1- 𝛽 = P (x 𝜖𝜔/𝐻1) 

This  1- 𝛽 is called the power of a test. 

Level of Significance: (𝜶) 

 The probability of type I error, is known as the level of significance of the test. It is also  

Called the size of the critical region. 

Power of the test: 

1 − 𝛽 is called the power of the test. Thus the power of a test is defined as P (sample points 

falls in the critical region 𝜔) when 𝐻1 is true and 𝐻0 is false. 

Neyman Pearson Lemma [NPL] Theorem: 

 This Lemma provides the most powerful test of simple hypothesis against a simple 

alternative hypothesis. 

Statement:  Let K > 0, be a constant and 𝜔 be a critical region of size 𝛼 such that 



                   𝜔 = {x ∈ s : 
𝑓(𝑥,𝜃1 )

𝑓(𝑥,𝜃0)
 > k} 

              𝜔 = {x ∈ s : 
 𝐿1

 𝐿0
 > k} → A   

          and   �̅� = {x ∈ s : 
 𝐿1

 𝐿0
 < k} → B   

Where  𝐿0 and  𝐿1  are the likelihood function of the sample observation x= ( 𝑥1, 𝑥2, … … . 𝑥𝑛 ) 

under 𝐻0𝑎𝑛𝑑  𝐻1 respectively. 

Then 𝜔  is the most powerful critical region of the test hypothesis  𝐻0 : 𝜃 = 𝜃0  against the 

alternative   𝐻1 : 𝜃 = 𝜃1.  

Proof:    We are given that
 𝐿1

 𝐿0
 > k  

        P (x 𝜖𝜔/𝐻0) =  𝐿0𝜔

⨜
 dx =  𝛼 →  (1) 

The power of the region is  

       P (x 𝜖𝜔/𝐻1) =  𝐿1𝜔

⨜
 dx =  1 −  𝛽  →  (2) 

In order to establish the lemma, we have to prove that there exists no other critical region of the 

less than or equal to 𝛼, Which is more powerful than 𝜔. Let 𝜔1be another critical region of size 

𝛼1 ≤ 𝛼 and power 1- 𝛽1 so that we have 

      P (x 𝜖𝜔1/𝐻0) =  𝐿0𝜔1

⨜
 dx =  𝛼1 →  (3) 

  And P(x 𝜖𝜔1/𝐻1) =  𝐿1𝜔1

⨜
 dx =  1 −  𝛽1  →  (4) 

Now we have to prove that 1 −  𝛽 ≥ 1 −  𝛽1  Consider the sample space. 
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From the figure, we have ( C may be empty, (i.e)  𝜔 & 𝜔1 may be disjoint) 

 If 𝛼1 ≤ 𝛼 , we have       P (x 𝜖𝜔1/𝐻0) ≤ P (x 𝜖𝜔/𝐻0) 

                                         𝐿0𝜔1

⨜
 dx  ≤    𝐿0𝜔

⨜
 dx   

                                         𝐿0𝐵∪𝐶

⨜
 dx  ≤    𝐿0𝐴∪𝐶

⨜
 dx  

                                         𝐿0𝐵

⨜
 dx +   𝐿0𝐶

⨜
 dx  ≤    𝐿0𝐴

⨜
 dx +   𝐿0𝐶

⨜
 dx 

                                         𝐿0𝐵

⨜
 dx  ≤    𝐿0𝐴

⨜
 dx  [⸪ C is empty] 

                                     ⇒     𝐿0𝐴

⨜
 dx +   𝐿0𝐵

⨜
 dx  →  (5) 

 Since A ∁ 𝜔,   (A)⇒ 
 𝐿1

 𝐿0
 > k    ⇒𝐿1 > 𝐿0 k 

                          𝐿1𝐴

⨜
 dx   > 𝐾  𝐿0𝐴

⨜
 dx 

Multiply K in equation (5)      

(5) x K    ⇒   K   𝐿1𝐴

⨜
 dx   ≥ 𝐾  𝐿0𝐵

⨜
 dx →   (*) 

         𝐿1𝐴

⨜
 dx   ≥ 𝐾  𝐿0𝐵

⨜
 dx   →    (6)    [using (*)] 

Also (B) ⇒
 𝐿1

 𝐿0
 ≤ k 

     𝐿1  ≤   K   𝐿0    ∀   x 𝜖 �̅� 

      𝐿1�̅�

⨜
 dx    ≤   K   𝐿0�̅�

⨜
 dx   →   (7) 

 This result also holds for any subset of �̅� , since B ∁ �̅�, we get  

      𝐿1𝐵

⨜
 dx  ≤    𝐾  𝐿0𝐵

⨜
 dx     →   (8) 

Equation (6) & (8) ⇒    𝐿1𝐵

⨜
 dx  ≤      𝐿1𝐴

⨜
 dx    

Adding  𝐿1𝐶

⨜
 dx on both sides  we get.      𝐿1𝐵

⨜
 dx +   𝐿1𝐶

⨜
 dx  ≤    𝐿1𝐴

⨜
 dx +   𝐿1𝐶

⨜
 dx 

                    ⇒        𝐿1𝐵∪𝐶

⨜
 dx  ≤    𝐿1𝐴∪𝐶

⨜
 dx  



                               𝐿1𝜔1

⨜
 dx  ≤    𝐿1𝜔

⨜
 dx      

                     P(x∈
𝜔1

𝐻1
  )   ≤       P(x∈

𝜔

𝐻1
  )    

                         1 −  𝛽1   ≤    1 −  𝛽 

                              1 −  𝛽  ≥    1 −  𝛽1  Hence the lemma. 

 Problem: 1 

 Given the frequency function: f(x, 𝜃) = {
1

𝜃

  0    ;       𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
; 0≤ 𝑥 ≤  𝜃 

And that you are testing the null hypothesis 𝐻0 : 𝜃=1 against 𝐻1 : 𝜃=2, by means of a single 

observed value of x. What would be the sizes of the type I and type II errors, if you choose the 

interval (i) 0.5 ≤ x,    (ii) 1≤ 𝑥 ≤ 1.5 as the critical regions? Also obtain the power function of 

the test. 

Solution:      Here we want to test 𝐻0 : 𝜃=1, against 𝐻1 : 𝜃=2 

(i) Here 𝜔 = { x: 0.5 ≤ x} = { x: x ≥ 0.5} and �̅� = { x: x ≤0.5 } 

                      𝛼 =    P (x 𝜖𝜔/𝐻0) =  𝐿0𝜔

⨜
 dx /𝐻0 =  ∫ 𝑓(𝑥, 𝜃)𝑑𝑥

𝜃

0.5
 /𝐻0: 𝜃=1 

                           =  ∫
1

1
𝑑𝑥

1

0.5
 = ∫ 𝑑𝑥

1

0.5
 =  [𝑥]0.5

1  = 1-0.5 = 0.5 

                       𝛼   =  0.5 

Similarly,    𝛽 = P (x 𝜖�̅�/𝐻1) =  𝐿1�̅�

⨜
 dx/𝐻1 = ∫ 𝑓(𝑥, 𝜃)𝑑𝑥

𝜃

0.5
 /𝐻1: 𝜃=2 

                         =   ∫
1

𝜃
𝑑𝑥

0.5

0
 /𝐻1: 𝜃=2 ⇒  ∫

1

2
𝑑𝑥

0.5

0
 = 1/2  [𝑥]0

0.5 = 0.5/2 = 0.25 

                     𝛽   =   0.25 

Thus the size of type I and type II errors are respectively 𝛼  = 0.5 and  

 𝛽   =   0.25  and power function of the test = 1-  𝛽  =  1 – 0.25 = 0.75 

ii)      𝜔 = { x:   1 ≤ x≤ 1.5}   

             𝛼 =    P (x 𝜖𝜔/𝐻0) =  𝐿0𝜔

⨜
 dx /𝐻0 =  ∫ 𝑓(𝑥, 𝜃)𝑑𝑥

1.5

1
 /𝐻0: 𝜃=1 

                           =  ∫
1

𝜃
𝑑𝑥

1.5

1
/𝐻0: 𝜃=1 = ∫

1

1
𝑑𝑥

1.5

1
 =  [𝑥]1

1.5 = 1.5- 1 = 0.5 

                       𝛼   =  0.5 



Since under 𝐻0 : 𝜃=1, f(x, 𝜃) = 0 , for 1 ≤ 𝑥 ≤ 1.5 

                  𝛽 = P (x 𝜖�̅�/𝐻1) 

We have P (x 𝜖𝜔/𝐻1) + P (x 𝜖�̅�/𝐻1) = 1 

      P (x 𝜖�̅�/𝐻1) = 1 - P (x 𝜖𝜔/𝐻1) 

    Consider,  P (x 𝜖𝜔/𝐻1) =   𝐿1�̅�

⨜
 dx/𝐻1 = ∫ 𝑓(𝑥, 𝜃)𝑑𝑥

1.5

1
 /𝐻1: 𝜃=2 

   ⇒ ∫ (
1

𝜃
) 𝑑𝑥

1.5

1
 /𝐻1: 𝜃=2   ⇒ ∫

1

2
𝑑𝑥

1.5

1
 = 

1

2
 [𝑥]1

1.5  = 1/2 [1.5-1] = 
0.5

2
   =  0.25 

    ⇒ P (x 𝜖𝜔/𝐻1)  = 0.25 

     ∴     𝛽  =  P (x 𝜖�̅�/𝐻1) = 1 - P (x 𝜖𝜔/𝐻1) 

                                   =  1 – 0.25 =0.7     ⇒   𝛽   =  0.75 

∴ The power function of the test = 1 – 𝛽 

                                                     = 1 – 0.75  =  0.25 

Problem: 2  

 If x ≥ 1 is the critical region for testing 𝐻0: 𝜃=2  against the alternative 

 𝐻1: 𝜃=1   On the basis of the single observation from the population,  

    f(x, 𝜃) = 𝜃 𝑒−𝜃𝑥; 0≤ 𝑥 ≤ ∞, 

Obtain the value of type I and type II errors. 

Solution:     𝐻0: 𝜃=2  Vs   𝐻1: 𝜃=1 

        Here  Given that 𝜔 = { x: x ≥ 1} 

                                   �̅� = { x: x ≤ 1} 

    𝛼 =    P (x 𝜖𝜔/𝐻0) =  𝐿0𝜔

⨜
 dx =  ∫ 𝑓(𝑥, 𝜃)𝑑𝑥

∞

1
 /𝐻0: 𝜃=2 

                           =  ∫  𝜃 𝑒−𝜃𝑥𝑑𝑥
∞

1
/𝐻0: 𝜃=2 = ∫ 2𝑒−2𝑥  𝑑𝑥

∞

1
 = 2[

𝑒−2𝑥 

−2
]1

∞  

                           = - [ 𝑒−∞ −  𝑒−2] = - [ 0 - 𝑒−2] = 𝑒−2 = 
1

𝑒2  

                       𝛼   =  
1

𝑒2  



    𝛽 = P (x 𝜖�̅�/𝐻1) =  𝐿1�̅�

⨜
 dx = ∫ 𝑓(𝑥, 𝜃)𝑑𝑥

1

0
 /𝐻1: 𝜃=1 

                         =   ∫ 𝜃 𝑒−𝜃𝑥𝑑𝑥
1

0
 /𝐻1: 𝜃=1 ⇒  ∫ 1. 𝑒−𝑥𝑑𝑥

1

0
  

                         = [
𝑒−𝑥 

−1
]0

1   =  - [ 𝑒−1 −  𝑒0] = - [ 1/e  -1] = - 1/e + 1  

                         = 1 – 1/e = 
𝑒−1

𝑒
    

   Problem: 3 

 Let P be the probability that a coin will fall head in a single toss in order to test 𝐻0 = P = 1/2 

and  𝐻1  = P = 3/4. The coin is tossed 5 times and 𝐻0  is rejected if more than 3 heads are 

obtained. Find the probability of type I error and power of the test. 

Solution: 𝐻0 = P = 1/2 and  𝐻1 = P = 3/4. 

 If the random variable X denotes the no. of. Heads in n tosses of a coin then  

  X ~B(n, p) so that  

                    P( X= x) = 𝑛𝑐𝑥 𝑝𝑥𝑞𝑛−𝑥  

                                    = 𝑛𝑐𝑥 𝑝𝑥(1 − 𝑝)𝑛−𝑥  

                   P(x) =  5𝑐𝑥 𝑝𝑥(1 − 𝑝)5−𝑥 

The critical region is given by : 𝜔 = { x: x ≥ 4} 

                                                   �̅� = { x: x ≤ 3} 

       𝛼 =    P (x 𝜖𝜔/𝐻0) =  𝐿0𝜔

⨜
 dx/𝐻0 : p = 1/2  

                                     = ∑ 𝑝(𝑥)/ 𝐻0
5
𝑋=4  : p = 1/2 

                                     = p(x=4) + p(x=5)/ 𝐻0 : p = 1/2 

                                     = 5𝐶4 (1/2)4 (1 − 1/2)5−4 + 5𝐶5 (1/2)5 (1 − 1/2)5−5 

                                     = 5 (1/2)4 (1/2)1 + 1 (1/2)5 (1/2)0 

                                     = 5(1/2)5 + 1/2)5 = 6 (1/2)5 = 3/16 

                               𝛼   = 0.1875 

   𝛽 = P (x 𝜖�̅�/𝐻1) = 1 – P (x 𝜖𝜔/𝐻1)   

                               = 1 –[ ∑ 𝑝(𝑥)/ 𝐻1
5
𝑋=4  : p =  3/4 ] 



                       = 1 – [{5𝐶4 (3/4)4 (1 − 3/4)5−4  + 5𝐶5 (3/4)5  (1 − 3/4)5−5 ] 

                      = 1 -  [{5𝐶4 (3/4)4 (
1

4
)  + 5𝐶5 (3/4)5 } ] 

                      = 1 – (3/4)4 {
5

4
+

3

4
} 

                   = 1 - (3/4)4 [
8

4
] 

                       = 1 -  
81

128
   =   

47

128
   = 0.3672 

                   𝛽 =   0.3672 

Power of the test =   1 -  𝛽 

                             =   1   - 0.3672 

                             = 0.6328 

Problem: 4     

  Let X has a p. d. f of the form: 

     f(x, 𝜃) ={
1

𝜃
0 ,𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

  𝑒−𝜃𝑥; 0< 𝑥 < ∞, 𝜃 > 0 

 𝐻0 : 𝜃  =2, against  𝐻1 : 𝜃  =1, use the random sample 𝑥1,𝑥2  of the size 2 and define a critical 

region:  𝜔 = {(𝑥1,  𝑥2) : 9.5 ≤ 𝑥1,+ 𝑥2}. 

Find:       (i)    Power of the test 

(ii) Significance level of the test. 

Solution: We are given the critical region: 

𝜔 = {(𝑥1,  𝑥2): 9.5 ≤ 𝑥1,+ 𝑥2} = {(𝑥1,  𝑥2):  𝑥1,+ 𝑥2 ≥ 9.5} 

Size of the critical region (i.e) the significance level of the test is given by: 

   𝛼 =    P (x 𝜖𝜔/𝐻0) = 𝑃 [  𝑥1,+ 𝑥2 ≥ 9.5/ 𝐻0] → (*) 

In sampling from the given exponential distribution, 

2

𝜃
∑ 𝑥𝑖 ~

𝑛
𝑖=1  𝜒(2𝑛)

2      ⇒    U = 
2

𝜃
(𝑥1, + 𝑥2 )~𝜒(4)

2  , (n=2) 

∴  𝛼    = P[
2

𝜃
(𝑥1, +  𝑥2 ) ≥

2

𝜃
𝑋9.5/𝐻0]      → [From (*) 



            = P [ 𝜒(4)
2 ≥ 9.5] 

    𝛼    = 0.05 

Power of the test is given by  

1 – 𝛽   = P(x 𝜖𝜔/𝐻1)   = 𝑃 [  𝑥1,+ 𝑥2 ≥ 9.5/ 𝐻1]  

            = P[
2

𝜃
(𝑥1, +  𝑥2 ) ≥

2

𝜃
𝑋9.5/𝐻1]   

            =    P [ 𝜒(4)
2 ≥ 19] 
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UNIT-IV 

Test of Significance:  

A very important aspect of the sampling theory is the study of tests of significance which 

enable us to decide on the basis of the sample results if, 

 The deviation between the observed sample statistics and the hypothetical parameter 

value is significant. 

 The deviation between the two sample statistics is significant. 

Since for large n, almost all the distribution, Example: Binomial, Poisson, t, F, chi-square  

 

can be approximated very closely by a normal probability curve, we use the Normal test 

of significance for large samples. Some of the well-known test of significance for 

studying such differences for small samples is t-test, F-test. 

Sampling Distribution 

 The distribution of all possible values which can be assumed by some statistic measured 

from samples of same size ‘n’ randomly drawn from the same population of size N is called as 

sampling distribution of the statistic (DANIEL and FERREL). 

 Consider a population with N values. Let us take a random sample of size n from this 

population, and then there are 

𝑁𝐶𝑛 =
𝑁!

𝑛!(𝑁−𝑛)!
= 𝑘 (Say), possible samples. From each of these k samples if we compute a 

statistic (e.g. mean, variance, correlation coefficient, skewness etc) and then we form a frequency 

distribution for these k values of a statistic. Such a distribution is called sampling distribution of 

that statistic. 

 For example, we can compute some statistic t = t(x1,x2,…,xn) for each of these k samples. 

Then t1,t2,…tk determine the sampling distribution of the statistic t. In other words statistic t may 

be regarded as a random variable which can take the values t1,t2,…tk and we can compute various 

statistical constants like mean, variance, skewness, kurtosis etc., for this sampling distribution.  

Standard Error: 

 The standard deviation of the sampling distribution of a statistic is known as its standard 

error. 

 

 

 



 

S. No Statistics Standard Error (S.E) 

1. Sample Mean (�̅�) 𝜎

√𝑛
 

 

2. 

                    Sample Proportion (P) √𝑃𝑄/𝑛 

 

3. 

 

Sample standard deviation (S) 
√𝜎2/2𝑛 

4. Sample variance (𝑆2) 𝜎2√2/𝑛 

 

5. 

 

Difference of two sample mean=(�̅�1-�̅�2) √
𝜎2

1

𝑛1
+

𝜎2
2

𝑛2
 

 

Utility of Standard Error:  

1. To determine the precision of the sample estimate of some population parameter, which 

is given y the reciprocal of the S.E of the sampling distribution of the estimate . 

Thus, if t is a statistic used to estimate the parameter 𝜃 then Precision of t= 1/S.E (t). 

2. To test the significance of the difference between two independent sample estimates of 

the same population parameter.  

3. To Obtain point estimates of the population parameter. 

4. To obtain interval estimates of the population parameter. 

(i.e) to obtain probable limits between which the true value of the parameter may be 

expected to lie. 

Standard error: 

 The Standard deviation of the sampling distribution of a statistic is known as its standard 

error. It is abbreviated as S.E. For example, the standard deviation of the sampling distribution of 

the mean �̅� known as the standard error of the mean, 

Where v(�̅�) = v(
𝑥1+𝑥2+⋯+𝑥𝑛

𝑛
) 

         = 
𝑣(𝑥1)

𝑛2 +
𝑣(𝑥2)

𝑛2 + ⋯ +
𝑣(𝑥𝑛)

𝑛2  

         = 
𝜎2

𝑛2 +
𝜎2

𝑛2 + ⋯ +
𝜎2

𝑛2 =
𝑛𝜎2

𝑛2  

∴ The S.E of the mean is 
𝜎

√𝑛
 

 



Uses of standard error: 

i) Standard error plays a very important role in the large sample theory and forms the basis 

of the testing of hypothesis. 

ii) The magnitude of the S.E gives an index of the precision of the estimate of the parameter. 

 

iii) The reciprocal of the S.E is taken as the measure of reliability or precision of the sample. 

iv) S.E enables us to determine the probable limits within which the population parameter 

may be expected to lie. 

One tail and two tailed test: 

 Two tail test is one where the hypothesis about the population parameter is rejected for 

the value of sample statistic falling into the either tails of the sampling distribution. 

One tailed test:  

 When the hypothesis about the population parameter is rejected only for the value of 

sample statistic falling into one of the tails of the sampling distribution. Then it is known as one 

– tailed test. 

 

 

 

 

 

Two tailed test: 

 A test of statistical hypothesis where the alternative hypothesis is two tailed such as, H0: 

µ = µ0 against the alternative hypothesis H1: µ ≠ µ0 (µ > µ0 and µ < µ0 ) is known as two tailed 

test and in such a case the critical region is given by the proportion of the area lying in both the 

tails of the probability curve of test of statistic. 

 

 

 

 

 



Example for one – tailed and two tail test: 

 Let us suppose that there are two popular brands of bulbs one manufactured by standard 

process ( with mean life 𝜇1) and the other manufactured by new process (with mean life 𝜇2). 

 If our test is whether the bulbs differ significantly then our hypothesis is 𝐻0: 𝜇1 = 𝜇2 and 

𝐻1: 𝜇1 ≠ 𝜇2. This gives two tail. 

           If the bulb produced by the new process have a higher average life than those produced by 

standard process. 𝐻0: 𝜇1 = 𝜇2 and 𝐻1: 𝜇1 < 𝜇2. This gives left tail. 

          If the new process is inferior to that of standard process we have 𝐻0: 𝜇1 = 𝜇2 𝐻1: 𝜇1 > 𝜇2. 

This gives right – tail test. 

Errors - type I and type II error: 

 When the hypothesis is tested, there are four possible results. 

 The hypothesis is true but our test reject it 

 The hypothesis is false but our test accepts it 

 The hypothesis is true our test accepts it 

 The hypothesis is false but our rejects it 

Condition 

Decision 𝐻0 ∶ True 𝐻0: false 

Accept 𝐻0 Correct decision Type II error 

Reject 𝐻0 Type I error Correct decision 

Type I Error:  

 Reject H0 when it is true 

P{Type I error} = ∝ i.e. P{Reject a lot when it is good} = ∝. Producer’s risk 

Type II Error: 

 Accept H0 when H1 is true. 

 

P{Type II error} = 𝛽  P{Accept a lot when it is bad} = 𝛽. Consumer’s risk 

Level of significance: 

 The statistical test fix the probability of committing type I error at a certain called the 

level of significance and minimize the chances of committing the type II error. 

 



Critical region and level of significance: 

 Critical region is a region of rejection of H0. 

 Level of significance is the probability ∝ that a random value of the test statistic belongs 

to the critical region is known as level of significance. 

 The level of significance usually employed in testing of hypothesis is 5% (or) 1%. The 

level of significance is always fixed in advance before collecting the sample information. 

Critical values (or) significant values: 

 The value of statistics which divides the critical region (or) rejection region and the 

acceptance region is called the critical value (or) significant value. It depends on. 

1. Level of significance 

2. Alternative hypothesis        

 Critical value 

Type of test 
Level of significance 

1% 2% 5% 10% 

Two – tailed test |𝑧∝| = 2.58 2.33 1.96 1.645 

Right – tailed test 2.33 2.055 1.645 1.28 

Left – tailed test −2.33 −2.055 −1.645 −1.28 

For large samples the standardized variable corresponding to the statistic 

𝑧 =  
𝑡 − 𝐸(𝑡)

𝑆. 𝐸(𝑡)
~𝑁(0,1)𝑎𝑠 𝑛 → ∞. 

Procedure for testing the hypothesis: 

Step 1: Null hypothesis: Set up the Null hypothesis H0. 

Step 2: Alternative hypothesis: Set up the alternative hypothesis. H1.  

Step 3: Level of significance: Set up a suitable level of significance  5% or 1% 

Choose the appropriate level of significance (∝) depending on the reliability of the estimates and 

permissible risk. This is to be decided before sample is drawn. (i.e) ∝ is fixed in advance. 

Step 4: Test statistic (or test criterion) Determine a suitable test statistic 

z =  
t−E(t)

S.E (t)
 , under H0 

Step 5: Conclusion (or) Inference. We compare the computed value of Z with the significant 

value (tabulated value) 𝑍𝛼 at the given level of significance, ‘𝛼’. 



 If |𝑧∝| < 𝑍𝛼, accepted H0.    

            If |𝑧∝| > 𝑍𝛼, rejected H0. 

LARGE SAMPLE TEST: 

 When the sample size is equal to or greater than 30, (n ≥ 30) then the sample is called 

large sample test. 

We consider the following tests under large sample test. 

 Z-test for single mean. 

 Z-test for difference of two means. 

 Z-test for single proportion. 

 Z-test for difference of two proportion. 

Z-test for single mean: 

 Let xi(i = 1, 2,…n) be a random sample of size n from a population with variance 𝜎2, then 

the sample mean �̅� is given by 

                 �̅� =
1

𝑛
(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛)  

             𝐸(�̅�) = µ  

           

     𝑉(�̅�) = 𝑉 [
1

𝑛
(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛)] 

                   = 
1

𝑛2
[𝑉(𝑥1) + 𝑉(𝑥2) + ⋯ + 𝑉(𝑥𝑛)] 

                   = 
1

𝑛2 𝑛𝜎2        =
𝜎2

𝑛
 

               ∴     S.E(�̅�)          = 
𝜎

√𝑛
 

Test of Significance for single mean: 

 If  𝑥𝑖 , i = 1, 2, 3 ….n is a random sample of size ‘n’ from a normal population with mean µ 

and variance 𝜎2 . Suppose we want to test whether the samples have been drawn from the 

population with mean µ and variance𝜎2. 

The null hypothesis (H0): The sample has been drawn from a population with mean 𝜇 and 

variance𝜎2. 

               i.e)  H0 :  µ = µ0  



Alternative hypothesis (H1): The sample has not been drawn from a population with mean 𝜇 

and variance𝜎2. 

               i.e) H1 :µ ≠ µ0    (𝜇 > 𝜇00𝑟𝜇 < 𝜇0) 

Test statistics: under H0, the test statistic  is  

Z =
�̅� − 𝜇
𝜎

√𝑛⁄
 ~𝑁(0,1) 

Where �̅� - sample mean, 𝜇 - population mean, 𝜎 - population S.D  , n- sample size. 

Level of significance: The L.o.s (α) which indicates whether the probability of difference is 

small or large is generally fixed. (5% or 1%) 

Conclusion:  

 If the computed value of |𝑧| is less than the critical value of Z, i.e)  |𝑧| < 𝑧𝛼 , we accept 

our H0. 

If the computed value of |𝑧| is greater than the critical value of Z, i.e)  |𝑧| > 𝑧𝛼 , we reject 

our H0. 

Problem: 1  

A random sample of 400 male students is found to have a mean height of 171.38cms. Can 

it be reasonable regarded as a sample from large population with mean height 171.17cms and 

S.D 3.30cms? 

Solution: 

 Sample size n = 400 

 Sample mean �̅� = 171.38 cm 

 Population mean µ = 171.17cm 

 Population S.D 𝜎 = 3.30 cm 

Step 1: 

Null hypothesis (H0): The sample has been drawn from the normal population with mean  

µ = 10.2 cm. and S.D 𝜎 = 3.30 cm 

i.e, H0 : µ = 10.2 

Step 2: 



Alternative hypothesis H1: µ ≠ 10.2  (two-tailed test) 

Step 3: 

Under H0, The test statistic is 

𝑧 =
�̅� − 𝜇
𝜎

√𝑛⁄
=

171.38 − 171.17

3.30
√400

⁄
= 1.27 

Step 4:  

Table value: The table value of Z at 5% L.O.S = 1.96 

Step 5: 

Conclusion: Since |𝑧| = 1.7777 < 𝑧𝛼 = 1.96 .Since calculated value is less than the table value 

H0 is accepted. Otherwise reject it. 

∴ We can conclude that the sample has been drawn from the normal population with mean  

µ = 10.2 cm and S.D 𝜎 = 3.30 cm. 

Problem: 2 

The mean breaking strength of the cables supplied by a manufacturer is 1800 with an SD 

of 100. By a new technique in the manufacturing process, it is claimed that the breaking strength 

of the cable has increased. To test this claim a sample of 50 cables is tested and is found that the 

mean breaking strength is 1850. Can we support the claim at 1% level of significance? 

Solution: 

Given n = 50, �̅� = 1850 , 𝜇 = 1800, 𝜎 = 100 

Step 1: 

Null hypothesis (𝐻0):  the mean breaking strength of the cables is 1800. The sample mean do not 

differ significantly. 

      i.e)   𝐻0  : 𝜇 = 1800 

Step 2:  

Alternative hypothesis (𝐻1):   The sample mean differ significantly. 

         i.e) 𝐻1:  𝜇 > 1800 (Right – tailed test)  

Step 3: 

Test statistic: Under H0, the test statistic  is  



𝑧 =
�̅�−𝜇

𝜎

√𝑛

=  
1850−1800

100

√50

 =   
50

14.1421
   =  3.54 

Step 4: 

 Level of significance: The table (critical) value of Z at  𝛼 = 1% level of significance is 

     𝑧𝛼 = 2.33. 

Step 5: 

Conclusion:  

 Since |𝑧| > 𝑧𝛼, we reject the 𝐻0 and accept  𝐻1, i.e. the mean breaking strength of the 

cable has increased. 

Problem: 3 

 A sample of 100 items, drawn from a universe with mean value 64 and S.D. 3, has a 

mean value 63.5. Is the difference in the means sidnificant? 

Solution: 

Given n = 100, �̅� = 63.5, , 𝜇 = 64, 𝜎 = 100 

Step 1: 

Null hypothesis (𝐻0):  The sample mean do not differ significant. 

      i.e)   𝐻0  : 𝜇 =64 

Step 2:  

Alternative hypothesis (𝐻1):   The sample mean is differ significant. 

         i.e) 𝐻1:  𝜇 ≠ 64 

Step 3: 

Test statistic: Under H0, the test statistic  is  

𝑧 =
�̅�−𝜇

𝜎

√𝑛

=  
63.5−64

3/√100
 =   

−0.5

0.3
   = - 1.6667   

|𝑧| = 1.6667 

Step 4:  Level of significance:  

                  The table (critical) value of Z at  𝛼 = 5% level of significance is     𝑧𝛼 = 1.96 



Step 5: 

Conclusion:  

  |𝑧| = 1.6667 < 𝑧𝛼= 1.96 

Since the calculated value is less than table value, we accept our H0. Otherwise reject it, 

∴ We can conclude that the sample mean do not differ significant. 

 Test of Significance for difference between two means: 

Test procedure: Let �̅�1 be the mean of a sample of size 𝑛1 from a population with mean 𝜇1 and 

variance 𝜎1
2 and let �̅�2be the mean of an independent random sample of size 𝑛2 from another 

population with mean 𝜇2 and variance𝜎2
2. 

Suppose we want to test whether the two samples have been drawn from the same population we 

should use the test of significance. 

Step 1: 

The null hypothesis (H0): There is no significant difference between the sample means.                                 

i.e) H0 : µ1 = µ2 

Step 2: 

Alternative hypothesis (H1): There is significant difference between the sample means. 

                      i.e)  H1: µ1 ≠ µ2 (𝜇1 > 𝜇20𝑟𝜇1 < 𝜇2) 

Step 3: 

 The test statistic  

𝑍 =
�̅�1 − �̅�2

√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

~𝑁(0,1) 

Step 4: 

 The Level of significance (α) which indicates whether the probability of difference is 

small or large is generally fixed. (𝛼 = 5% or 1%) 

Step 5: 

Conclusion: 

If the computed value of |𝑧|is less than the critical value of z,  



i.e) If |𝑧| < 𝑧𝛼 ,  accepted H0 . 

If the computed value of |𝑧|is greater than the critical value of z,  

i.e) If |𝑧| > 𝑧𝛼 ,  rejected H0 . 

Problem: 1 

A buyer of electric bulbs bought 100 bulbs each of two famous brands. Upon testing 

these he found that brand A had a mean life of 1500 hours with a standard deviation of 50 hours 

whereas brand B had a mean life of 1530 hours with a standard deviation of 60 hours. Can it be 

concluded at 5% level of significance, that the two brands differ significantly in quality? 

Solution:  

 We are given �̅�1 = 1500, �̅�2 = 1530, s1 = 50, s2 = 60, n1 = 100 and n2 = 100 

Step 1: 

Null hypothesis(H0): The two brands of bulbs do not differ significantly in quality. 

                             i.e) H0 : 𝜇1 = 𝜇2 

Step 2: 

Alternative hypothesis(H1 ) :   the two brands of bulbs differ significantly.  

i.e., H1: 𝜇1 ≠ 𝜇2 (two – sided alternative) 

Step 3: 

Under 𝐻0, the Test statistic is,  

𝑧 =
�̅�1 − �̅�2

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

~𝑁(0,1) 

     =  
1500−1530

√502

100
+

602

100

 = −
30

7.81
= −3.84 

Step 4: 

The table value (critical value) of z at 5% LOS is zα = 1.96. 

Step 5: 

Conclusion: Since |𝑧| > zα, the null hypothesis is rejected and hence we may conclude that the 

two brands of bulbs differ significantly in quality. 



Problem: 2 

The average hourly wage of a sample of 150 workers in plant ‘A’ was Rs. 2.56 with a 

standard deviation of Rs. 1.08. The average hourly wage of a sample of 200 workers in plant ‘B’ 

was Rs. 2.87 with a standard deviation of Rs.1.28.  Can an applicant safely assume that the 

hourly wages paid by plant ‘B’ are higher than those paid by plant ‘A’? 

Solution: 

In usual notations we are given 

n1 = 150, n2 = 150, �̅�1 = 2.56,        �̅�1 = 2.87, s1 = 1.08 s2 = 1.28 

Step 1: 

Null hypothesis (H0): there is no significant difference between the mean level of wages of 

workers in plant A and plant B. 

                     𝑖. 𝑒)𝐻0 ∶  𝜇1 = 𝜇2  

Step 2: 

Alternative hypothesis (𝐻1): 𝜇1 < 𝜇2 (left – tailed test) 

Step 3: 

Test statistic: under H0 the test statistic is 

𝑧 =
�̅�1 − �̅�2

√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

=
�̅�1 − �̅�2

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

~𝑁(0,1) 

∴ 𝑧 =
2.56 − 2.87

√(1.08)2

150
+

(1.28)2

200

= −2.453 

 

Step 4: Table value 

The critical value of z for a one – tailed (left) test at 5% LOS is 𝑧𝛼 = 1.645 

Conclusion: 

 Since |𝑧|  = 2.453 is greater than the critical value 𝑧𝛼 (1.645), the null hypothesis is 

rejected. Hence, we conclude that the average hourly wages paid by plant ‘B’ are certainly 

higher than those paid by Plant ‘A’. 



Problem: 3 

The mean of two large samples of sizes 1000 and 2000 are 67.5 and 68.0 respectively. 

Test the equality of means of the two populations each with S.D 2.5. Assumptions should be 

stated clearly. 

Solution: 

Here n1 = 1000, n2 = 2000, �̅�1 = 67.5,        �̅�2 = 68, and 𝜎1=𝜎2 = 𝜎 = 2.5.  

Step 1: 

Null hypothesis (H0): The samples have been drawn from the same population of s.d 2.5. 

                 i.e) H0  :  𝜇1 = 𝜇2 

Step 2: 

Alternative hypothesis (𝐻1): 𝜇1 ≠ 𝜇2 (Two – tailed test) 

Step 3: 

Test statistic: under H0 the test statistic is 

𝑍 =
�̅�1 − �̅�2

√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

~𝑁(0,1) 

∴ 𝑍 =
67.5 − 68

2.5√ 1
1000 +

1
2000

 

                                                            = 
−0.5

2.5√
3

2000

    = 
−0.5

2.5 𝑋 0.039
 = -5.13 

                                                |𝑧| = 5.13 

Step 4: 

Table value: The critical value of z at 𝛼 = 0.05 LOS is 𝑧𝛼 = 1.96 

Conclusion:  

  Z= 5.13 > 𝑍𝛼 = 1.96 

 Since Calculated value is greater than the table value, we reject our 𝐻0.Otherwise accept 

it. 



∴ We can conclude that Samples are certainly not from the same population with s.d. 2.5. 

Test of Significance for single proportion: 

If X is the number of Success in n independent trials with Constant probability P of 

success for each trial. Let p be the proportion of the success and is given by p = 
𝑋

𝑛
. 

Suppose we want to test whether the sample proportion is significant or not, we have to 

set up, 

Null hypothesis H0: There is no significant difference between the sample proportion and the 

population proportion. i.e) 𝐻0 : p = P0 

Alternative hypothesis H1: There is significant difference between the sample proportion and 

the population proportion. i.e) p ≠ P0 (P > P0 or P < P0) 

Level of significance α = 5% or 1% 

Test statistic: 

Under H0 , the test statistic is,  

𝑍 =  
𝑝 − 𝑃

√𝑃𝑄
𝑛

 

~𝑁(0,1) 

Where p – sample proportion, P- population proportion, Q = 1-P, n- sample size. 

Level of significance: The LOS( α) which indicates whether the probability of difference is 

small or large is generally fixed.(α = 5% or 1%) 

Conclusion:  

If the computed value of |𝑧|is less than the critical value of z,  

 

i.e) If |𝑧| < 𝑧𝛼 ,  accepted H0 . 

If the computed value of |𝑧|is greater than the critical value of z,  

i.e) If |𝑧| > 𝑧𝛼 ,  rejected H0 . 

Problem:1 

A manufacturer of light bulbs claims that an average 2% of the bulbs manufactured by 

his firm are defective. A random sample of 400 bulbs contained 13 defective bulbs. On the basis 

of this sample, can you support the manufacturer’s claim at 5% level of significance? 



Solution: 

 n = 400 

 X = 13 

 P = Sample proportion of defectives = 
13

400
= 0.0325 

Step 1: 

Null hypothesis 

H0: = P = 0.02, i.e. 2% of bulbs are defective. 

Step 2: 

Alternative hypothesis 

H1: P > 0.02(Right – tailed test ) 

Step 3: 

Level of significance 𝛼 = 5% 

Step 3: 

Test statistic 

𝑧 =  
𝑝 − 𝑃

√𝑃𝑄
𝑛

 

                                                                    =
0.0325−0.02

√
0.02×0.98

400

 

z = 1.786 

Step 4:   Level of significance 𝛼 = 5% 

Critical value of z at 5% LOS for one tailed test = 𝑧𝛼= 1.645 

Conclusion: 

Since |𝑧| > 𝑧𝛼 , we reject the null hypothesis H0 and accept the alternative hypothesis H1, 

i.e. there is a significant difference between the sample proportion and the claimed proportion i.e. 

the manufacturer’s claim cannot be supported. 

 



Problem: 2 

In a sample of 1000 people in Mumbai, 540 are rice eaters and the rest are wheat eaters. 

Can we assume that both rice and wheat are equally popular in this state at 1% level of 

significance? 

Solution: 

 We are given n = 1000 

 Let X = number of rice eaters = 540 

 ∴ The sample proportion P = 54.0
1000

540


n

x
 

Step 1: 

Null hypothesis 

 H0: P = 0.5, i.e. both rice and wheat are equally popular in the state. 

Step 2: 

Alternative hypothesis 

 H1: P ≠ 0.5(two – tailed alternative), i.e. Rice and wheat are not equally popular in the 

state. 

Step 3: 

The test statistic is                            𝑧 =  
𝑝−𝑃

√
𝑃𝑄

𝑛

~𝑁(0,1) 

𝑧 =  
0.54 − 0.50

√0.5 × 0.5
1000

= 2.529 

Step 4: 

The significant or critical value of z at 1% level of significance for two tailed test is 𝑧𝛼= 2.58 

Step 5: 

Conclusion: 

 Since |𝑧| < 𝑧𝛼 , We accept our null hypothesis and we may conclude that both rice and 

wheat are equally popular in this state. 

 



Problem: 3 

 Twenty people were attacked by a disease and only 18 survived. Will you reject the 

hypothesis that the survival rate, if attacked by this disease, is 85% in favour of the hypothesis 

that it is more, at 5% level? 

Solution: 

 Here n = 20, X= No. of. Persons who survived after attack by a disease = 18 

            p= Proportion of persons survived in the sample =  90.0
20

18


n

x
 

Step 1: 

Null hypothesis (H0) the proportion of persons survived after attack by a disease in the lot is 85%         

i.e)  H0 : P = 0.85 

Step 2: 

Alternative hypothesis (H1): H1:  P > 0.85(Right – tailed alternative) 

 Step 3: 

The test statistic is  

𝑧 =  
𝑝 − 𝑃

√𝑃𝑄
𝑛

~𝑁(0,1) 

Q= 1 – P = 1- 0.85 = 0.15 

𝑧 =  
0.90 − 0.85

√0.85 × 0.15
20

 

                                                               = 
0.05

0.079
  = 0.633 

Step 4: 

The significant or critical value of z at 5% level of significance for right tailed test is 

 𝑧𝛼= 0.05 LOS  is 1.645. 

Step 5: 

Conclusion: Z= 0.633 < Zα = 1.645 



Since calculated value is less than table value we accept our 𝐻0.  

∴We can conclude that the proportion of persons survived after attack by a disease in the lot is 

85%. 

Test of Significance for difference of two proportion: 

 Let 𝑋1,𝑋2 be the number of persons possessing the given attribute A in random samples 

of sizes 𝑛1  𝑎𝑛𝑑 𝑛2 from the two populations respectively. Then sample proportions are given by 

𝑝1 = 
𝑋1

𝑛1
  , 𝑝2 = 

𝑋2

𝑛2
 . 

 Suppose we want to test the significance of the difference between the two proportions. 

We have to set up 

Null hypothesis (H0 ): There is no significant difference between the sample proportions.  

i.e) H0    :  𝑝1 = 𝑝2 

Alternative hypothesis (H1) : There is significant difference between the sample proportions.    

i.e) H1     : p1 ≠ p2 (p1 > p2 or p1 < p2) 

Test statistics: 

Under the test statistic,  

𝑧 =
𝑝1 − 𝑝2

√𝑃𝑄 (
1

𝑛1
+

1
𝑛2

)

~𝑁(0,1) 

         𝑃 =
𝑛1𝑝1+𝑛2𝑝2

𝑛1+𝑛2
 ; Q = 1 – p  

Level of Significance : The l.o.s (𝛼) which indicates whether the probability of difference is 

small or large is generally fixed. 

Conclusion: 

 If the Computed value of |𝑍| is less than the critical value of Z , 

i.e)  If z < 𝑧𝛼. H0 is accepted, otherwise H0 is rejected. 

Problem: 1 

A machine puts out 16 imperfect articles in a sample of 500. After the machine is 

overhauled, it puts out 3 imperfect articles in a batch of 100. Has the machine improved? 

Solution: 



We are given n1 = 500, n2 = 100 

 p1= Proportion imperfect articles before service = 
16

500
= 0.032 

 p2 = Proportion imperfect articles after service = 
3

100
= 0.03 

Step 1: 

Null hypothesis 

H0: P1 = P2, i.e., the machine has not improved. 

Step 2: 

Alternative hypothesis 

H1: P1 > P2(Right – tailed test) i.e., there is significant improvement in the machine after 

overhauling. 

Step 3: 

Level of significance: 𝛼 = 5%(say) 

Step 4: 

Test statistic 

𝑧 =
𝑝1 − 𝑝2

√𝑃𝑄 (
1

𝑛1
+

1
𝑛2

)

~𝑁(0,1) 

Since P is not given, we estimate it as 

�̂� =
𝑛1𝑝1 + 𝑛2𝑝2

𝑛1 + 𝑛2
=  

(500)(0.032) + (100)(0.03)

600
 

= 0.032 and Q = 1 – 0.032 = 0.968 

𝑧 =
0.032 − 0.03

√(0.032)(0.968) (
1

500 +
1

100)

= 0.1037 

The critical value of z at 5% level of significance is 𝑧𝛼 = 1.645 

Conclusion: 

 Since, |𝑧| ≤ 𝑧𝛼  We accept our null hypothesis and hence we may conclude that the 

machine has not improved after overhauling. 



Problem:2 

 In two large populations, there are 30 and 25 percent respectively of blue-eyed people. Is 

this difference likely to be hidden in samples of 1200 and 900 respectively from the two 

populations? 

Solution: 

Here, we are given n1 = 1200, n2 = 900 and P1 = 30% = 0.30 and P2 = 25% = 0.25 Q1 = 0.70 and 

Q2 = 0.75 

Step 1: 

Null hypothesis  H0: P1 = P2, i.e., the difference in population proportions is likely to be hidden 

in sampling. 

Step 2: 

Alternative hypothesis  H1: P1 ≠ P2 (two tailed alternative) 

Step 3: 

Level of significance: α = 5% (say) 

Step 4: 

 Test statistic 

 Under H0: P1 = P2, 

𝑧 =
|𝑃1 − 𝑃2|

√
𝑃1𝑄1

𝑛1
+

𝑃2𝑄2

𝑛2

 ~ 𝑁(0,1) 

𝑍 =
0.30 − 0.25

√0.3 × 0.7
1200 +

0.25 × 0.75
900

= 2.5538 

The critical value or significant value at 5% LOS is 𝑧𝛼 = 1.96 

Conclusion: 

 Since |𝑧| > 1.96, i.e., 2.5538 > 1.96, we reject our null hypothesis at 5% LOS and we 

conclude that the difference in population proportions is unlikely to be hidden in sampling. 

Problem:3 

 In a random sample of 100 men taken from village. A, 60 were found to be consuming 

alcohol. In another sample of 200 men taken from village B, 100 were found to be consuming 



alcohol. Do the two villages differ significantly in respect of the proportion of men who consume 

alcohol? 

Solution: 

Given n1 = 100, n2 = 200 

p1= Sample proportion of men consuming alcohol in village A = 
60

100
= 0.6 

p2 = Sample proportion of men consuming alcohol in village B = 
100

200
= 0.5 

Step 1: 

Null hypothesis H0: P1 = P2 

Step 2: 

The alternative hypothesis H1: p1 ≠ p2 (two – tailed test) 

Step 3: 

Level of significance: α = 5% (say) 

Step 4: 

The test statistic is 

𝑧 =
𝑝1 − 𝑝2

√𝑃𝑄 (
1

𝑛1
+

1
𝑛2

)

~𝑁(0,1) 

Where the estimate of P is 

�̂� =
𝑛1𝑝1 + 𝑛2𝑝2

𝑛1 + 𝑛2
=

(100)(0.60) + (200)(0.5)

100 + 200
 

                                                                     =
160

300
= 0.533 

     �̂� = 1 − �̂�= 0.467 

∴ 𝑧 =
0.6 − 0.5

√(0.533)(0.467) (
1

100 +
1

200)

 

z = 1.6366 

Step 5: 



Conclusion:  

 Since |𝑧| < 1.96, we accept the null hypothesis and conclude that the two villagers do 

not differ significantly in respect of the proportion of men who consume alcohol. 

Problem: 4 

A machine produced 20 defective articles in a batch of 400. After overhauling, it 

produced 10 defectives in a batch of 300. Has the machine improved?(Take 𝛼 = 0.01) 

Solution: 

Here n1 = 400, n2 = 300, 𝑥1 = 20, 𝑥2 = 10. 

Step 1: 

Null hypothesis: There is no significant difference in the improvement of the machine before and 

after overhaul. 

   i.e) H0: p1 = p2,  

Step 2: 

Alternative hypothesis: There is  a significant difference in the improvement of the machine 

before and after overhaul. 

    i.e) H1: 𝑝1  > 𝑝2 (Right – tailed test)  

Step 3: 

Test statistic 

𝑍 =
𝑝1 − 𝑝2

√𝑃𝑄 (
1

𝑛1
+

1
𝑛2

)

~𝑁(0,1) 

p1= Sample proportion of defective articles before overhaul = 
20

400
= 0.05 

p2 = Sample proportion of defective articles after overhaul = 
10

300
= 0.033 

Since P is not given, we estimate it as 

�̂� =
𝑛1𝑝1 + 𝑛2𝑝2

𝑛1 + 𝑛2
=  

(400)(0.05) + (300)(0.033)

700
 

= 0.0429 and Q = 1 – 0.0429 = 0.9571 



𝑍 =
0.05 − 0.033

√(0.0429)(0.9571) (
1

400 +
1

300)

= 1.0968 

Table value:  The critical value of Z at 1% level of significance is 𝑧𝛼 = 2.33 

Conclusion: 

          Z= 1.0968 < 𝑍𝛼 = 2.33 

  

Since Calculated value is less than table value. We accept our H0. Otherwise reject it 

∴ We can conclude that there is no significant difference in the improvement of the machine 

before and after overhaul. 

        

 

 

 

 

 

 

 

 

                                                                   

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

UNIT-V 

 

 

 

 

 

 

 

 

 

 

 

 



 UNIT-V           

SMALL SAMPLE TEST: 

 When the sample size n is less than 30, i.e., n < 30, then the sample is called small 

sample test. 

Exact sample test: 

 The exact sample tests can, however be applied to large samples also through the 

converse is not true. In all the exact sample tests, the basic assumption is that “the population 

from which sample is drawn is normal, i.e., the parent populations are normally distributed”. 

We consider the following tests under small sample test, 

(i) t – test  (ii) F – test  (iii) 𝜒2 − test 

Assumptions for student t – test: 

 The parent population from which the sample is drawn is normal. 

 The sample observations are independent. 

 The population S.D of 𝜎 is unknown. 

t- test for single mean: 

 Let 𝑥1, 𝑥2, … 𝑥𝑛 be a random sample of size n from a normal population with mean 𝜇 and 

variance 𝜎2 . If the sample mean differs significantly from the hypothetical value 𝜇0  of the 

population mean. 

Null hypothesis (𝑯𝟎): 

There is no significant difference between the sample mean �̅� and the population mean𝜇0. 

Alternative hypothesis (𝑯𝟏):  

There is a significant difference between the sample mean  �̅� and population mean  𝜇0. 

Test statistic: 

Under H0 , the test statistic is, 

𝑡 =  
�̅� − 𝜇0

𝑆
√𝑛 − 1

⁄
~𝑡(𝑛−1)𝑑.𝑓. 

Where �̅� = 
∑𝑥𝑖

𝑛
 and 𝑠2 =  

1

𝑛−1
 ∑ (𝑥𝑖 − 𝑥 )̅̅ ̅̅ 2𝑛

𝑖=1  

 



Table value:  

Find the t table value at the desired level of significance with (n-1)d.f 

Conclusion: 

Comparing the table value with the calculated value. i.e., (|𝑡|𝑐𝑎𝑙 < t). If the calculated 

value > table value we reject H0  otherwise we accept it. 

Problem:1 

A random sample of 10 boys had the following I.Q’s: 70, 120, 110, 101, 88, 83, 95, 98, 

107, and 100. Do these data support the assumption of a population mean I.Q of 100? Find a 

reasonable in which most of the mean I.Q. values of samples of 10 boys lie. 

Given: n = 10, 𝜇 = 100 

Step 1:  

Null hypothesis: (𝐻0): The data are Consistent with the assumption of a mean I.Q of 

100in the population,  

i.e., 𝐻0: 𝜇 = 100  

Step 2:  

Alternative hypothesis: (𝐻1): 𝐻1: 𝜇 ≠ 100(two – tailed test) 

Step 3:  

Test statistic: Under 𝐻0, the test statistic is, 

             𝑡 =  
�̅�−𝜇

𝑠
√𝑛⁄

~(𝑡𝑛−1) 

𝑡 =  
�̅� − 𝜇
𝑠

√𝑛⁄
~(𝑡10−1=9) 

Where �̅� =  
∑ 𝑥

𝑛
=  

70+120+110+101+88+83+95+98+107+100

10
 

                                      �̅� =  
972

10
= 9.72 

            𝑠2 =  
1

𝑛−1
∑(𝑥𝑖 − �̅�)2 

                                                             �̅� = 97.2 



X 70 120 110 101 88 83 95 98 107 100 
972 

(𝒙𝒊 -�̅�) -27.2 22.8 12.8 3.8 -9.2 -14.2 -2.2 0.8 9.8 2.8 
- 

(𝒙𝒊 − �̅�)𝟐 739.84 519.84 163.84 14.44 84.64 201.64 4.84 0.64 96.04 7.84 
1833.6 

 

𝑠2 =  
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)2 

                                                              =  
1

9
 × 1833.60 

                                                           s2 = 203.73 

s = 14.2734  

                                                       ∴  𝑡 =  
�̅�−𝜇

𝑠
√𝑛⁄

~𝑡9𝑑. 𝑓 

                                                          = 
97.2−100

14.2734
√10

⁄
 = 

−2.8

14.2734/3.1623
 = 

−2.8

4.5136
 = -0.6203 

|𝑡| = 0.6203 

Step 4:  

 Table value: Tabulated 𝑡0.05 for (10-1), i.e., 9 d.f  for two tailed test is 2.262. 

Step 5: 

Conclusion: 

 Calculated value = 0.6203 

 Table value = 2.262 

   |𝑡| = 0.6203 < 𝑡𝛼 =2.262 

Since Calculated value is < table value. 𝐻0 is accepted at 5% level of significance and we 

may conclude that 𝜇 = 100. 

∴ We can conclude that the data are consistent with the assumption of mean I.Q of 100 in 

the population. 

 

 



Problem: 2  

 The average breaking strength of steel rods is specified to be 18.5 thousand pounds. To 

test this sample of 14 rods was tested. The mean and s.d obtained were 17.85 and 1.955 

respectively. Test the 5% level of significance. 

Solution:  Given: n = 14; µ = 18.5; �̅� = 17.85; S = 1.955 

Step 1: 

 Null hypothesis 𝐻0: 𝜇 = 18.5 

Step 2: 

 Alternative hypothesis 𝐻1: 𝜇 ≠ 18.5 

Step 3: 

 Test statistic 

𝑡 =  
�̅� − 𝜇

𝑠
√𝑛 − 1⁄

~𝑡𝑛−1 𝑑. 𝑓 

=  
17.85 − 18.5

1.955
√14 − 1

⁄
~𝑡14−1 𝑑. 𝑓 = −1.20 

                                                          |𝑡| = 1.20     

[∴ Table t at d.f = 13 and α = 5% is equal to 2.16]                             

Step 4: 

 Level of significance: 5% or 0.05 

Step 5: 

Conclusion: 

 Since,|𝑡| < 2.16 so we accept H0 at 5% level of significance. 

Problem: 3 

 The mean weekly sale of soap bars in departmental stores was 146.3 bars per store. After 

an advertising campaign the mean weekly sales in 22 stores for a typical week increased to 153.7 

and should a SD of 17.2 was the advertising campaign successful.  

Solution: We are given: n = 22, Population mean 𝜇 = 146.3 



 Sample mean  �̅� = 153.7, Standard deviation S = 17.2,  n – 1 = 22 – 1 = 21 

Step 1: 

 Null hypothesis 𝐻0: 𝜇 = 146.3 (or) the advertising campaign is not successful 

Step 2: 

 Alternative hypothesis 𝐻1: 𝜇 > 146.3(Right – tailed) 

Step 3: 

 Under 𝐻0 , the test statistic is 

𝑡 =  
�̅� − 𝜇
𝑠

√𝑛⁄
~𝑡𝑛−1 𝑑. 𝑓 

=  
153.7 − 146.3

17.2
√22

⁄
 

                                                               =  
7.4

17.2
4.6904⁄

 

  =
7.4

3.6671
= 2.0179 

                                                             t = 2.0179 

Step 4: 

 Tabulated 𝑡0.05 for (22-1), i.e., 21 d .f for right tailed test is 1.721. 

Step 5: 

Conclusion: 

  t = 2.0179 > 𝑡𝛼 = 1.721 

 Since calculated value is greater than the table value, we reject our null hypothesis (𝐻0).  

∴ We can conclude that the advertising Campaign is Successful. 

Problem: 4 

A sample of 26 bulbs gives a mean life of 990 hours with a S.D of 20 hours. The 

manufacturer claims that the mean life of bulbs is 1000 hours. Is the sample not the standard? 

Solution: Standard given   n = 26, �̅� = 990,  𝜇 = 1000, S = 20 

 



Step 1: 

Null hypothesis 𝐻0:  𝜇 = 1000 the sample is up to the standard. 

Step 2: 

Alternative hypothesis 𝐻1: 𝜇 < 1000 (left – tailed test) 

Step 3:  

Test statistic                       𝑡 =  
�̅�−𝜇

𝑆

√𝑛−1

 ~𝑡𝑛−1𝑑. 𝑓 

|𝑡| =  
990 − 1000

20

√26 − 1

=  +2.5 

Step 4: Level of significance: 5% or 0.05 

Step 5:  

Conclusion:  

Calculated value = +2.5; Table value = 1.708(left tail test) at 5% level of significance. 

We reject 𝐻0 if calculated value > table value. The sample is not up to the standard.  

Assumptions for student t – test: 

 The following assumptions are made while applying student t- test: 

1. The parent population from while the samples are drawn is normal. 

2. The given sample is random. That is, the given sample is drawn by random sampling 

method. 

3. The population standard deviation is not known. 

t- test for difference of two means: 

 Suppose we want to test if two independent samples 𝑥𝑖 (i=1, 2, 3, …..𝑛1) and 𝑥𝑗 (j=1, 2, 

3, …..𝑛2) of size 𝑛1  and 𝑛2 have been drawn from two normal populations with mean µ1 and µ2 

respectively. 

Step 1: 

Null hypothesis H0: The samples have been drawn from the normal population with means µ1 

and µ2. 

i.e) µ1 = µ2  



Step 2: 

Alternative hypothesis H1: µ1 ≠ µ2 ( µ1 > µ2 or  µ1 < µ2) 

Step 3: 

 The test statistic 

𝑡 =
�̅�1 − �̅�2

𝑆√
1
𝑛1

+
1

𝑛2

~𝑡(𝑛1+𝑛2−2)𝑑. 𝑓 

Where �̅�1 = 
∑ 𝑥1

𝑛1
 ; �̅�2 = 

∑ 𝑥2

𝑛2
 ;  𝑆2 = 

1

𝑛1+𝑛2−2
 [∑ (𝑥𝑖 − �̅�1)2 +𝑖 ∑ (𝑥𝑖 − �̅�2)2]𝑗  

    Where  𝑠 = √
𝑛1𝑠1

2+𝑛2𝑠2
2

𝑛1+𝑛2−2
 

Step 3: 

Level of significance α = 5% or 1% 

 Find the t table value at the desired l. o. s with (𝑛1 + 𝑛2 − 2) d.f. 

Step 5: 

Conclusion: 

Since, If |tc| < tα. H0 is accepted otherwise H0 is rejected. 

Problem:1 

 Sample of two types of electric light bulbs were tested for length of life and following 

data were obtained : 

 Type – I Type – II 

Sample No: 𝑛1 = 8 𝑛2 = 7 

Sample means: �̅�1 = 1234 ℎ𝑟𝑠 �̅�2 = 1036 ℎ𝑟𝑠 

Sample S.D: 𝑆1 = 36 ℎ𝑟𝑠 𝑆2 = 40 ℎ𝑟𝑠 

Is the difference in the means sufficient to warrant that type I is superior to type II 

regarding length of life? 

Step 1: 

Null hypothesis: 𝐻0: 𝜇1 = 𝜇2 i.e. two types I and II of electrical bulbs are identical. 

Step 2: 

Alternative hypothesis: 𝐻1: 𝜇1 > 𝜇2(Right – tailed test) i.e. type I is superior to type II 



Step 3: 

Test statistic 

𝑡 =
�̅�1 − �̅�2

𝑆√
1
𝑛1

+
1
𝑛2

~𝑡𝑛1+𝑛2−2𝑑. 𝑓 

                                       𝑆2 =  
1

𝑛1+𝑛2−2
[∑(𝑥1 − �̅�1)2 + ∑(𝑥2 − �̅�2)2] 

                                            =  
1

𝑛1+𝑛2−2
(𝑛1𝑠1

2 + 𝑛2𝑠2
2) 

                                            =  
1

13
[8 × (36)2 + 7 × (40)2] = 1.65908 

                                         S = 40.731 

                                         𝑡 =
1234−1036

40.731√
1

8
+

1

7

= 
198

40.7318√0.125+0.143
 = 

198

40.7318√0.268
 

                                                        =
198

21.0869
 =  9.3897 

                                                     t = 9.3897 

Step 4:  

          Table value: 

Tabulated 𝑡0.05 for (8+7-2), i.e., 13 d.f. for Right tailed test is 1.771 

Step 5:  

Conclusion: 

   t = 9.3897 > 𝑡𝛼= 1.771 

Since calculated value is greater than the table value, we reject our null hypothesis (𝐻0). 

∴ We can conclude that type I is superior to type II. 

Problem: 2 

  In a certain experiment to compare two types of animal foods A and B. The following results 

of increase in weights were observed in animals. 

Food A 49 53 51 52 47 50 52 53 

Food B 52 55 52 53 50 54 53  



Assuming that the two samples of animals are independent. Can we conclude that food B 

is better than food A? 

Solution: 

Step 1: 

 Null hypothesis 𝐻0: 𝜇1 = 𝜇2. There is no significant difference between population mean 

and sample mean. 

Step 2: 

 Alternative hypothesis 𝐻1: 𝜇1 < 𝜇2. 

Step 3:  

 Level of significance: 𝛼 = 0.05 or 5% 

Step 4: 

Test statistic                     𝑡 =
�̅�−�̅� 

𝑆√
1

𝑛1
+

1

𝑛2

~𝑡𝑛1+𝑛2−2𝑑. 𝑓 

        �̅� =
∑ 𝑥

𝑛
 = 50.875 

                                         �̅� =
∑ 𝑦

𝑛
 = 52.875 

  ∑(𝑥𝑖 − �̅�)2 = 30.875 , ∑(𝑦𝑖 − �̅�)2 = 16.875 

         𝑆2 =  
1

𝑛1+𝑛2−2
[∑(𝑥𝑖 − �̅�)2 + ∑(𝑦𝑖 − �̅�)2] 

         = 
1

14
[30.875 + 16.875] = 3.41 

          𝑡 =
�̅�−�̅� 

𝑆√
1

𝑛1
+

1

𝑛2

~𝑡𝑛1+𝑛2−2𝑑. 𝑓 

                                         𝑡 =
50.875−52.875

3.41√
1

8
+

1

8

 

                                          t = −2.17 

Step 5:  

Conclusion: 

 Calculated value = +2.17; Table value = 1.76 at 5% level of significance calculated value > 

Table value. We reject 𝐻0. then we conclude that food B is better than food A. 



Problem: 3  

 Below are given the gain in weights (in kgs) of pigs fed on two diets A and B 

     Gain in weight 

Diet A 25 32 30 34 24 14 32 24 30 31 35 25 - - - 

Diet B 44 34 22 10 47 31 40 30 32 35 18 21 35 29 22 

Test, if the two diets differ significantly as regards their effect on increase in weight. 

Solution: 

Step 1: Null hypothesis 𝐻0:  there is no significant difference between the mean increase in 

weight due to diet A and B. 

(i.e.,)  𝐻0: 𝜇1 = 𝜇2 

Step 2:   Alternative hypothesis 𝐻1:  𝜇1 ≠ 𝜇2 (two tailed) 

Step 3: 

Test statistic                     𝑡 =
�̅�−�̅� 

𝑆√
1

𝑛1
+

1

𝑛2

~𝑡𝑛1+𝑛2−2𝑑. 𝑓 

        �̅� =
∑ 𝑥

𝑛
 = 

336

12
 = 28 

                                         �̅� =
∑ 𝑦

𝑛
 = 

450

15
 = 30 

                  Diet A                                                                 Diet B 

X (𝑥𝑖 − �̅�) (𝑥𝑖 − �̅�)2 Y (𝑦𝑖 − �̅�) (𝑦𝑖 − �̅�)2 

25 

32 

30 

34 

24 

14 

32 

24 

30 

31 

35 

25 

-3 

4 

2 

6 

-4 

-14 

4 

-4 

2 

3 

7 

-3 

9 

16 

4 

36 

16 

196 

16 

16 

4 

9 

49 

9 

44 

34 

22 

10 

47 

31 

40 

30 

32 

35 

18 

21 

35 

29 

22 

14 

4 

-8 

-20 

17 

1 

10 

0 

2 

5 

-12 

-9 

5 

-1 

-8 

196 

16 

64 

400 

289 

1 

100 

0 

4 

25 

144 

81 

25 

1 

64 

336 - 380 450 - 1410 

 



  ∑(𝑥𝑖 − �̅�)2 = 308 ,         ∑(𝑦𝑖 − �̅�)2 =1410 

         𝑆2 =  
1

𝑛1+𝑛2−2
[∑(𝑥𝑖 − �̅�)2 + ∑(𝑦𝑖 − �̅�)2] 

         = 
1

12+15−2
[380 + 1410] = 71.6 

                                                    S = 8.4617 

𝑡 =
�̅� − �̅� 

𝑆√
1
𝑛1

+
1
𝑛2

~𝑡𝑛1+𝑛2−2𝑑. 𝑓 

                                         𝑡 =
28−30

8.4617√
1

12
+

1

15

  = 
−2

8.4617 √0.083+0.067
  = 

−2

8.4617√0.15
 

                                            = 
−2

8.4617𝑋0.3873
 = -0.6103 

                                      |𝑡|  = 0.6103 

Step 4: Test statistic: Tabulated 𝑡0.05 for (12+15-2) (i.e.,) 25 d.f for two tailed is 2.060 

Step 5:              

Conclusion: 

                                   |𝑡|  = 0.6103 < 𝑡𝛼= 2.060 

 Since Calculated value is less than the table value, we accept our 𝐻0. 

∴ We can conclude that there is no significant difference between the mean increase in weight 

due to Diet A and B. 

Assumptions of student t – test for difference of means: 

1) Parent population, from which the samples have been drawn are normally distributed. 

2) The population variances are equal and unknown, i.e., 𝜎1
2 = 𝜎2

2  =𝜎2(𝑆𝑎𝑦) , where    𝜎2 

is unknown. 

3) The two samples are random and independent of each other. 

Paired t-test for difference of means: 

 Let us now consider the case when (i) the sample sizes are equal, (i.e.) 𝑛1 = 𝑛2 = n 

(say) , and (ii)  the two samples are not independent but the sample observations are paired 

together, (i.e) the pair of observations (𝑥𝑖,𝑦𝑖), (i=1,2,3,……n) corresponds to the same (ith) 

sample unit. 



Step 1: 

Null hypothesis H0: The sample means differ significantly. 

                            (i.e.,) H0   : 𝜇1 =  𝜇2 

Step 2: 

Alternative hypothesis H1: The sample means are not differ significantly.          

   (i.e.,) H1   : 𝜇1 ≠  𝜇2 

Step 3: 

The test statistic,          𝑡 =
𝑑

𝑠
√𝑛⁄

~𝑡𝑛−1d.f 

Where    𝑑̅ =
∑ 𝑑𝑖

𝑛
; di = xi – yi and 𝑆2 = 

1

𝑛−1
 ∑ (di − 𝑑̅)2𝑛

𝑖=1  

𝑠 = √∑(𝑑𝑖 − 𝑑̅)
2

𝑛 − 1
 

Step 4: 

Table value: Find the t table value at the desired l.o.s with (n-1) d.f. 

Step 5: 

Conclusion: 

Since, If |𝑡𝑐| < 𝑡𝛼 , H0 is accepted for n – 1 d.f at α% L.O.S otherwise H0 is rejected. 

Problem:1 

 A certain stimulus administered to each of 12 patients resulted in the following change in 

blood pressure (bp) 5, 2, 8, -1, 3, 0, -2, 1, 5, 0, 4, and 6. Can it be concluded that the stimulus 

will in genera be accompanied by increase in blood pressure. 

Solution: 

  This is a sample of correlated pairs we apply t-test for testing the increase in blood 

pressure. 

Step 1: 

 Null hypothesis H0: There is no significant difference in the blood pressure readings of the 

patients before and after the drug.  



  (i.e) H0   : 𝜇1 =  𝜇2 

Step 2: 

Alternative hypothesis H1: The stimulus results in an increase in blood pressure . 

                          (i.e) 𝐻1    : 𝜇1 <  𝜇2 (left- tailed test) 

Step 3: The test statistic,  

𝑡 =
𝑑̅

𝑠
√𝑛⁄

~𝑡𝑛−1 

Patient no Increase in Bp (d) d2 

1 5 25 

2 2 4 

3 8 64 

4 -1 1 

5 3 9 

6 0 0 

7 -12 144 

8 1 1 

9 5 25 

10 0 0 

11 4 16 

12 6 36 

Total ∑ 𝒅 = 𝟑𝟏 ∑ 𝒅𝟐 = 𝟏𝟖𝟓 

𝑑̅ =
∑ 𝑑

𝑛
=

31

12
= 2.58 

𝑠 = √
∑ 𝑑

2

12
− (

∑ 𝑑̅

𝑛
)

2

 

           = √
185

12
− (2.58)2 = 2.96 

                                  𝑡 =
𝑑

𝑠
√𝑛−1⁄

~𝑡𝑛−1  = 
2.58

2.96
√11

⁄
= 2.89  d . f = n – 1=11 

Step 4:  

 Table value: Tabulated 𝑡0.05 for (12-1) (i.e.,) 11 d.f for one tailed (left) test is -1.796. 

 

 



Conclusion: 

 t = 2.894 > 𝑡𝛼 = -1.796. Since calculated value is greater than the table value, we reject 

our null hypothesis (𝐻0). 

∴ We can conclude that the stimulus will, in general, be accompanied by an increase in blood 

pressure. 

Problem: 2 

 The weight gains in pounds less than two system of feeding of calves of 10 pairs of identical 

twins is given below. 

Twin pair weight 1 2 3 4 5 6 7 8 9 10 

System A 43 39 39 42 46 43 38 44 51 43 

System B 37 35 34 41 39 37 37 40 48 56 

Discuss whether the difference between two systems of feeding is significant? 

Step 1: 

 Null hypothesis 𝐻0: 𝜇1 = 𝜇2. There is no significant difference between the two systems. 

Step 2: 

 Alternative hypothesis  𝐻1: 𝜇1 ≠ 𝜇2 . There is a significant difference between the two 

systems. 

Step 3: Level of significance: 𝛼 = 5% (or) 0.05 

Step 4: 

Test statistics: Under   𝐻0, the test statistic is, 

Twin pair System A System B 𝒅𝒊 (𝒅𝒊 − �̅�)
𝟐
 

1 43 37 6 2.56 

2 39 35 4 0.16 

3 39 34 5 0.36 

4 42 41 1 11.56 

5 46 39 7 6.76 

6 43 37 6 2.56 

7 38 37 1 11.56 

8 44 40 4 0.16 

9 51 48 3 1.96 

10 43 36 7 6.76 

   ∑ 𝒅𝒊 = 𝟒𝟒 ∑(𝒅𝒊 − �̅�)
𝟐

= 𝟒𝟒. 𝟒 

 



𝑑̅ =  
∑ 𝑑𝑖

𝑛
=  

44

10
= 4.4 

            ∑(𝑑𝑖 − 𝑑̅)
2

= 44.4 

                𝑆2 =
1

𝑛−1
∑ (𝑑𝑖 − 𝑑̅)

2 
  

          =
1

9
× 44.4 = 4.933 

      S = 2.0817 

                          𝑡 =  
𝑑

𝑠
√𝑛⁄

=  
4.4

2.0817
√10

⁄
= 6.684 

              Calculated value = 6.684 

Step 5:  

Conclusion: 

 Calculated value = 6.684 > Table value = 2.62 we reject null hypothesis and we conclude 

that the difference between the two systems is significant. 

t- test for correlation coefficient: 

 If ‘r’is the observed correlation in a sample of n pairs of observation from a bivariate 

normal population. 

Step 1: 

The null hypothesis H0: ρ = 0 (i.e.,) population correlation coefficient is zero 

Step 2: 

The alternative hypothesis H1: ρ ≠ 0 

Step 3: 

Level of significance α = 5% or 1% , Find the t table value at the desired l.o.s with (n-1) d.f. 

Step 4: 

 The test statistic is  𝑡𝑐 =
𝑟√𝑛−2

√1−𝑟2
~𝑡𝑛−2 𝑑. 𝑓 

Step 5: 

Conclusion:     Since, If tc  < tα. H0 is accepted otherwise H0 is rejected at α% L.O.S 



Problem:1 

 A coefficient of correlation is 0.2 is derived from random samples are 25 pairs of 

observation. Is this value of r is significant. 

Solution: 

 n = 25, r = 0.2 

Step 1: 

The null hypothesis H0: ρ = 0.2 

Step 2: 

The alternative hypothesis H1: ρ ≠ 0.2 (two – tailed test) 

Step 3: 

Level of significance α = 5% 

Step 4: 

 The test statistic is  

𝑡𝑐 =
𝑟√𝑛 − 2

√1 − 𝑟2
~𝑡𝑛−2 

 

𝑡 =
0.2√25 − 2

√1 − (0.2)2
= 0.97 

tc = 0.97,  tα = 1.69 

Step 5: 

Conclusion: If tc  < tα. H0 is accepted otherwise H0 is rejected at α = 5% L.O.S 

Problem: 2 

 A random sample of 27 pairs of Observations from a normal population gave a 

correlation coefficient of 0.6 Is this significant of correlation in the population? 

Solution: 

Here n = 27, r = 0.6 

 



Step 1: 

The null hypothesis H0: ρ = 0; i.e.,) the observed sample correlation coefficient is not significant 

of any correlation in the population. 

Step 2: 

The alternative hypothesis H1: ρ ≠ 0 (two – tailed test) 

Step 3: The test statistic is  

𝑡𝑐 =
𝑟√𝑛 − 2

√1 − 𝑟2
~𝑡𝑛−2 

𝑡 =
0.6√27 − 2

√1 − (0.6)2
 

      =
0.6 𝑋 5

√0.64
  = 

3

0.8
 = 3.75 

Step 4: 

Table value: Tabulated 𝑡0.05 for (27-2) (i.e.,) 25 d.f for two tailed test is 2.060. 

Conclusion:  

   t = 3.75 > 𝑡𝛼 = 2.060 

Since calculated value is greater than table value, we reject our H0 . 

∴  We can conclude that the observed sample correlation coefficient is significant of any 

correlation in the population. 

F – Test for Equality of Two population variances: 

 Suppose we want to test (i) whether two independent samples 𝑥𝑖 (i= 1,2,…..𝑛1) and  

𝑥𝑗 (j= 1,2,…..𝑛2) have been drawn from the normal populations with the same variance  𝜎2 

(or) (ii) Whether the two independent estimates of the population variance are homogeneous or 

not. 

Step 1: 

The null hypothesis H0: the population variances are equal 

                               (i.e.,)  H0: 𝜎𝑋
2 = 𝜎𝑌

2 = 𝜎2 

Step 2: 



The alternative hypothesis H1:the population variances are not equal. 

                              (i.e.,)   H1:  𝜎𝑋
2 ≠ 𝜎𝑌

2 

Step 3:   The test statistic is, 

𝐹 =
𝑆𝑋

2

𝑆𝑌
2 ~𝐹(𝑛1−1,𝑛2−1)𝑑.𝑓 

Where 𝑆𝑋
2 =

1

𝑛1−1
  ∑ (𝑥𝑖 − 𝑥)̅̅̅2𝑛1

𝑖=1  and                         

                       𝑆𝑦
2 =

1

𝑛2−1
  ∑ (𝑦𝑖 − 𝑦)̅̅ ̅2𝑛2

𝑖=1  . Where n1 & n2 are the sizes of the samples drawn from 

the populations and 𝑠𝑥
2 and 𝑠𝑦

2 are the sample variance. 

Step 4: 

Table value: Find the F table value at the desired l.o.s with (𝑛1- 1, 𝑛2- 1) d.f 

Conclusion: 

Since, If Fc < Fα, H0 is accepted, otherwise H0 is rejected at α% level of significance. 

Problem: 1 

 Values of a variate in two samples are given below 

Sample I 5 6 8 1 12 4 3 9 6 10 

Sample II 2 3 6 8 1 10 2 8 - - 

Test the significance of the difference between the two sample means and the two sample 

variances. 

Solution:  

Step 1: 

The null hypothesis H0: there is no significant difference between the two population variances 

are equal 

                               (i.e.,)  H0: 𝜎𝑋
2 = 𝜎𝑌

2  

Step 2: 

The alternative hypothesis H1: there is significant differences between the two population 

variances are not equal. 

                              (i.e.,)   H1:  𝜎𝑋
2 ≠ 𝜎𝑌

2(two- tailed) 

 



Step 3: 

Test statistic: Under H0, The test statistic is, 

𝐹 =
𝑆𝑋

2

𝑆𝑌
2 ~𝐹(𝑛1−1,𝑛2−1)𝑑.𝑓 

n1 = 10,  n2 = 8, �̅� =
64

10
= 6.4; , �̅� =

40

8
= 5 

𝑆𝑋
2 =

1

𝑛1−1
  ∑ (𝑥𝑖 − 𝑥)̅̅̅2𝑛1

𝑖=1             ;      𝑆𝑦
2 =

1

𝑛2−1
  ∑ (𝑦𝑖 − 𝑦)̅̅ ̅2𝑛2

𝑖=1  . 

Sample I Sample II 

X x2 Y y2 

5 25 2 4 

6 36 3 9 

8 64 6 36 

1 1 8 64 

12 144 1 1 

4 16 10 100 

3 9 2 4 

9 81 8 64 

6 36 - - 

10 100 - - 

∑ 𝒙 = 𝟔𝟒 ∑ 𝒙𝟐 = 𝟓𝟏𝟐 ∑ 𝒚 = 𝟒𝟎 ∑ 𝒚𝟐= 282 

 

𝑆𝑋
2 =

1

𝑛1 − 1
  ∑(𝑥𝑖 − 𝑥)̅̅̅2

𝑛1

𝑖=1

= √
∑ 𝑥2

𝑛1
− (

∑ 𝑥

𝑛1
)

2

=  √
512

10
− (

64

12
)

2

= 10.24 

    𝑆𝑦
2 =

1

𝑛2−1
  ∑ (𝑦𝑖 − 𝑦)̅̅ ̅2𝑛2

𝑖=1 = √
∑ 𝑦2

𝑛2
− (

∑ 𝑦

𝑛2
)

2

=  √282

8
− (

40

8
)

2

= 10.25 

𝑆𝑋
2 =

𝑛1

𝑛1 − 1
𝑠𝑥

2 =
10

9
× 10.24 = 11.37 

𝑆𝑌
2 =

𝑛2

𝑛2 − 1
𝑠𝑦

2 =
8

7
× 10.25 = 11.75 

The test statistic is given by 

𝐹 =
𝑆1

2

𝑆2
2 =

11.37

11.75
= 1.09 

The table value 7, 9 at 5% 3.29 



Conclusion: 

Since Fc < Fα. H0 is accepted at 5% level of significance. 

Problem: 2 

 Pumpkins were grown under two experimental conditions. Two random sample of 11 and 

9 pumpkins show the sample standard deviations of their weights distributions are normal, test 

the hypothesis that the true variances are  equal, against the alternative they are not, at the 5 % 

level. 

Solution:  

Here 𝑛1 = 11, 𝑛2 = 9, 𝑆𝑋  = 0.8, 𝑆𝑌 = 0.5 

Step 1: 

The null hypothesis H0: there is no significant difference between the two population variances 

are equal 

                               (i.e.,)  H0: 𝜎𝑋
2 = 𝜎𝑌

2  

Step 2: 

The alternative hypothesis H1: there is significant differences between the two population 

variances are not equal. 

                              (i.e.,)   H1:  𝜎𝑋
2 ≠ 𝜎𝑌

2(two- tailed) 

Step 3: Test statistic: Under H0, The test statistic is, 

𝐹 =
𝑆𝑋

2

𝑆𝑌
2 ~𝐹(𝑛1−1,𝑛2−1)𝑑.𝑓 

𝑆𝑋
2 =

1

𝑛1 − 1
  ∑(𝑥𝑖 − 𝑥)̅̅̅2

𝑛1

𝑖=1

 

                                                     𝑆𝑦
2 =

1

𝑛2−1
  ∑ (𝑦𝑖 − 𝑦)̅̅ ̅2𝑛2

𝑖=1  . 

 𝑆𝑋
2 =

1

𝑛1−1
  ∑ (𝑥𝑖 − 𝑥)̅̅̅2𝑛1

𝑖=1                                                          𝑆𝑦
2 =

1

𝑛2−1
  ∑ (𝑦𝑖 − 𝑦)̅̅ ̅2𝑛2

𝑖=1  

        (𝑛1 − 1) 𝑆𝑋
2 = ∑ (𝑥𝑖 − 𝑥)̅̅ ̅2𝑛1

𝑖=1                                          (𝑛2 − 1) 𝑆𝑦
2 = ∑ (𝑦𝑖 − �̅�)2𝑛1

𝑖=1  

        (𝑛1 − 1) 𝑆𝑋
2 = 𝑛1𝑆𝑥

2                                                         (𝑛2 − 1) 𝑆𝑦
2 = 𝑛2𝑆𝑦

2 

            𝑆𝑋
2 = (

𝑛1

𝑛1−1
) 𝑆𝑥

2                                                                      𝑆𝑌
2 = (

𝑛2

𝑛2−1
) 𝑆𝑌

2 



                  = (
11

11−1
) (0.8)2                                                                   = (

9

9−1
) (0.5)2 

                 = (
11

10
)(0.64)                                                                         = (

9

8
)(0.25)       

= 1.1 x 0.64                                                                         = 1.125x 0.25 

= 0.704                                                                                = 0.2813 

   𝐹 =
𝑆𝑋

2

𝑆𝑌
2 =  

0.704

0.2813
   = 2.5027 

 Step 4: 

Table value:  

  Tabulated 𝐹0.05 𝑓𝑜𝑟(11- 1, 9- 1) (i.e.,) (10, 8) d.f. for two tailed test is 3.34 

Conclusion: 

  F = 2.5027  < 𝐹𝛼 = 3.34 

Since Calculated value is less than the table value, we accept our𝐻0. 

∴ We can conclude that there is no significant difference between two population variances. 

Chi-Square test for single variance: 

Let X1, X2,...Xn be independent sample taken from normal population with mean µ and 

variance 2 . 

Null Hypothesis: 

Ho: There is no significance difference between the sample variance and population 

variance     (ie) Ho : 
2 = σo

2. 

Alternative Hypothesis: 

H1: There is a significance difference between the sample variance and population 

variance      (ie) H1: 
2 ≠ σo

2. 

 

Test statistics: 

 Under Ho,    The test statistic is,
  

               
𝜒2= ∑ [

(𝑥𝑖−𝑥)̅̅ ̅2

σ0
2

]𝑛
𝑖=1   = 

1

σ0
2 [∑ 𝑥𝑖

2 −  
(∑ 𝑥𝑖)2)

𝑛

𝑛
𝑖=1 ] 

              
 1

2

2

2
2 ~




n

ns



  

L. o. s : 

         Find the  2  table value at the desired l.o.s with (n-1) d.f. 

 



Inference: 

         If the calculated value is less than the tabulated value. If   22  . We accept our Ho. 

otherwise reject our Ho. 

Problem:1 

 A manufactures of car batteries claims that the life of this batteries are approximately 

normally distributed S.D of 0.9. if a r.s of 10 batteries have S.D is 1.2 Do you think   greater 

than 0.9 use 5%. 

Solution: 

 Given that, 

 N=10, =0.9,s=1.2 

Null Hypothesis: 

Ho: There is no significance difference between the single variance and population. 

Variance 

 (ie) Ho : 
2 = σo

2. 

 

Alternative Hypothesis: 

H1: There is a significance difference between the sample variance and population. 

Variance  

(ie) H1: 
2 ≠ σo

2. 

 Test Statistic: 

2

2
2




ns
  

       =10(1.2)2/(0.9)2 

       =17.78 

l.o.s: 

    11 %5
22  nn    

n=10, 

n-1 = 10-1= 9 d.f 
2 0.05(9) = 16.919 

Inference: 

          If the calculated value is greater than the tabulated value. If  22  . Since we conclude 

that we reject our Ho. 

 

Problem:2 

      The items of sample at the following value 45, 54, 47, 52, 48, 52, 53, 49, 50. Can this 

sample we regarded as taken from the population.  have been 10 as S.D. 

 

Solution  

Given that, 



  σ = 10, n = 9, σ2 = 100 

Null Hypothesis: 

Ho: there is no significance difference between the sample variance and popl. variance (ie) Ho : σ 

= σo
2. 

Alternative Hypothesis: 

H1: ther is a significance difference between the sample variance and popl. variance (ie) H1: σ ≠ 

σo
2. 

Test Statistic: 

  

 

 

 

 

 

 

 

 

 

 

 

               

2
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











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n

x

n

x
s    =

2

9

450

9

22572








  s = 2.828 

2

2
2




ns
      = 

 
100

8208.29
2

     = 0.7197 

l.o.s: 
2 α (n-1) = 2 0.05 (9-1) = 2 0.05 (8) = 15.507 

Inference : 

 22  . Since we conclude that the calculated value is less than tabulated value we accept our 

Ho. 

Chi-Square test for goodness of fit: 

     In chi-square test in observed frequencies are denoted by Oi and the expected 

frequencies are denoted by Ei, then the 2  test is  

Null Hypothesis: 

 Ho: the fit is good 

Alternative Hypothesis: 

H1: the fit is not good. 

Test Statistic: 

 
 







 


i

ii

E

EO
2

2 ~  1
2

n  

X X2 

45 2025 

54 2916 

47 2209 

52 2704 

48 2304 

52 2704 

53 2809 

49 2401 

50 2500 

∑ = ∑ X2= 

450 22572 



l.o.s: 

if 2 α is the table value for (n-1) d.f 

Inferance: 

 22  . Since we conclude that the calculated value is less than the tabulated value. We 

accept our Ho. 

 

Problem:1 

 The number of auto mobile accident per week in certain community is as follows. 12, 8, 

20, 2, 14, 10, 15, 6, 9, 4 are these frequencies in agreement with the belief with that accident 

condition on the same during this 10 week times. 

Solution 

Null Hypothesis: 

 Ho: the fit is good 

Alternative Hypothesis: 

H1: the fit is not good. 

Test Statistic: 

 

Oi Ei (Oi - Ei)
2 (Oi - Ei)

2 / Ei  

12 10 4 0.4 

8 10 4 0.4 

20 10 100 10 

2 10 64 6.4 

14 10 16 1.6 

10 10 0 0 

15 10 25 2.5 

6 10 16 1.6 

9 10 1 0.1 

4 10 36 3.6 

                                          ∑ ((Oi - Ei)
2 / Ei) = 26.6 

l.o.s: 

 2 α (n-1) = 2 0.05 (10-1) = 2 0.05 (9) = 16.919 

Inference: 

 22  . Since we conclude that the calculated value is greater than the tabulated value. We 

reject our Ho. 

Theorem 

Prove that for a 2 x 2 contingency table: 
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Proof: 

We know that,2×2 contingency table, 



 

a b a+b 

c d c+d 

a+c b+d N=a+b+c+d 

 

  
N

baca
aE


)( ; 

  
N

dbba
bE


)( ;  

  
N

cadc
cE


)( ;

  
N

dbdc
dE


)(  

 










 


n

i i

ii

E

EO

1

2

2  

  
 

  
 

  
 

  
 dE

dEd

cE

cEc

bE

bEb

aE

aEa
2222

2 









  

 
  

N

caba
aaEa


  

               
 

N

bcabacaaN 


2

 

               
 

N

bcabacadcbaa 


2

 

               
N

bcabacaadacaba 


22

 

    
2

2
2

N

bcad
aEa


  

Similarly.., 

  
 

2

2
2

N

bcad
bEb


  

  
 

2

2
2

N

bcad
cEc


  

  
 

2

2
2

N

bcad
dEd


  

 
       












dEcEbEaEN

bcad 1111
2

2

2  

   
 

           






























N

dcab

N

dcca

N

dbba

N

bacaN

bcad 1111
2

2

 

    =
 

           





















dcabdccadbbabaca
N

N

bcad 1111
2

2

 



    =
     

  
   

   
















dcdbca

cadb

dbcaba

cadb

N

bcad

)(

2

 

    =
 

       















dcdbcadbcabaN

bcad 11
2

 

   =  
   

    












dcdbcaba

badc
bcad

2
 

   =
 

    dcdbcaba

Nbcad




2

 

 
    dcdbcaba

bcadN






2

2
 

𝝌𝟐- test 

Step 1: 

The null hypothesis H0: There is no significant difference between the observed and the expected 

frequencies. 

Step 2: 

The alternative hypothesis H1: There is significant difference between the observed and the 

expected frequencies. 

Step 3: 

Level of significance α = 5% or 1% 

Step 4: 

 The test statistic is, 

𝜒2 = ∑ [
(𝑂𝑖 − 𝐸𝑖 )2

𝐸𝑖

]

𝑛

𝑖=1

~ 𝜒2

(n−1)
d. f 

Step 5: 

Conclusion: 

Since, If 𝜒2

c
< 𝜒2

α
, H0 is accepted at α% L.O.S. otherwise H0 is rejected. 

 

 

 

 



Chi-Square test for Independence of Attributes: 

  An attributes means a quality or characteristics. Let us consider two attributes A & B. A 

is divided into two classes. The various cell frequencies can be express in the following table as 

2 x 2 contingency table. 

 

 A B Total 

A A B a+b 

B C D c+d 

Total a+c b+d N 

  

 The expected frequency are given by, 
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Null Hypothesis: 

  Ho: the attributes are independent 

Alternative Hypothesis: 

H1: the attributes are not independent 

Test Statistic: 

 
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Where, 

             r = No.of rows, c= No.of columns. 

Inference : 

  22  . Since we conclude that the calculated value is less than the tabulated value. 

We accept our Ho. otherwise reject it. 

 

Problem:1 

On the basis of information given below. State whether the  new treatment is 

comparatively superior to the conventional frequency. 

 Favourable 
Not 

Favourable 
Total 

New 60 30 90 

Conventional 40 70 110 

Solution 

 

Null Hypothesis: 

 Ho: the attributes are independent 

Alternative Hypothesis: 

H1: the attributes are not independent 

 

 



Test Statistic: 

 
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Oi Ei (Oi - Ei)
2 (Oi - Ei)

2 / Ei 

60 45 225 5 

30 45 225 5 

40 55 225 4.09 

70 55 225 4.09 

                                    ∑ ((Oi - Ei)
2 / Ei) = 18.18 

l.o.s: 
2  (2-1)(2-1)

(α) = 2  (1) = 3.841 

Inference: 

If  22   , since we conclude that the calculated value is greater than the tabulated value. So, 

we reject our Ho. therefore the attributes are not independent. 

  

Problem:2 

 The following data is collected on two characteristics. 

 Smokers Non - Smokers 

Literate 83 57 

Illiterate 45 68 

 

Test whether there is no relation between the habit of smoking and literacy. 

Solution: 

Step 1: 

The null hypothesis H0: There is no evidence of association between smoking habit and literacy. 

Step 2: 

The alternative hypothesis H1: There is evidence of association between smoking habit and 

literacy. 

Step 3:Level of significance α = 5%  

Step 4: 



The test statistic is, 

𝜒2 = ∑ [
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

]

𝑛

𝑖=1

~ 𝜒2

(n−1)
 

Observed frequency table 

 Smokers Non - Smokers Total 

Literate 83 57 140 

Illiterate 45 68 113 

Total 128 125 253 

 

Expected frequency table 

 Smokers Non - Smokers Total 

Literate 71 69 140 

Illiterate 57 56 113 

Total 128 125 253 

 

𝑶𝒊 𝑬𝒊 (𝑶𝒊 − 𝑬𝒊)
𝟐 

(𝑶𝒊 − 𝑬𝒊)
𝟐

𝑬𝒊
 

83 71 144 2.03 

57 69 144 2.09 

45 57 144 2.53 

68 56 144 2.57 

   ∑ [
(𝑂𝑖 − 𝐸𝑖 )2

𝐸𝑖

]

𝑛

𝑖=1

= 9.31 

 

𝜒2 = 9.31 

𝜒𝛼
2 = 3.84 

Step 5: 

Conclusion: 

 Since𝜒𝑐
2 > 𝜒𝛼

2, H0 is rejected at 5% level of significance. 

 

 

 

 



Application of 2  test: 

2 Distribution has a large no. of application in statistics.  

1. To test the hypothetical value of the popl. Variance σ = σo
2. 

2. To test the goodness of fit. 

3. To test the independent attributes. 

4. To test the homogeneity of independent test makes of popl. Variance. 

5. To combine various probabilities obtain from independent experiment to given a 

single test of significance. 

6. To test the homogeneity of independent estimates of the popl. Correlation co-

efficient.   

Properties of t-distribution: 

1. The value of t- ranges from minus infinity to plus infinity. 

2. The mean of the t- distribution is zero. This is so in case of normal curve also. 

3. The variance of t- distribution is greater than one and as the sample size increases it tends 

to move towards unity. 

4. The t-distribution like the standard normal distribution is bell-shaped and symmetrical 

around mean. 

5. The t- distribution is more platy kurtic than the normal distribution. 

Application of t-distribution: 

The following are some important applications of the t-distribution: 

1. Test of hypothesis about the population mean. 

2. Test of hypothesis about the difference between two means. 

3. Test of hypothesis about the difference between two means with dependent samples. 

4. Test of hypothesis about coefficient of correlation. 

Applications of F- distribution: 

1. F-test for equality of two population variances. 

2. F- test for testing the significance of an observed multiple correlation coefficient. 

3. F- test for testing the significance of an observed sample correlation ratio. 

4. F-test for testing the linearity of regression. 

5. F- test for equality of several means. 

 

 



Characteristics of 𝛘𝟐-test: 

1. Test is based on events or frequencies, where as in theoretical distribution, the test is 

based on mean and standard deviation. 

2. To draw inferences, this test is applied, specially testing the hypothesis but not useful for 

estimation. 

3. The test can be used between the entire set of observed and expected frequencies. 

4. For every increase in the number of degree of freedom, a new χ2distribution is formed. 

5. It is a general purpose test and such in highly useful in research. 

Assumptions for 𝛘𝟐 distribution: 

1. All the Observations must be independent. 

2. All the events must be mutually exclusive. 

3. There must be large observations. 

4. For comparison purposes, the data must be in original units. 

5. The sample data must be drawn at random basis. 

Uses of 𝛘𝟐 distribution: 

1. χ2 - test of goodness of fit. 

2. χ2- as a test of independence 

3. χ2 as a test of homogeneity. 
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UNIT - I 

1. Parameter are those constants which occur in: 

a) Samples      b) probability density function     c)  a formula     d) none of the above 

2. Estimation of parameters in all scientific investigation is of: 

a) Prime importance        b)  secondary importance      c) no use     d) deceptive nature 

3. Estimate and estimator are: 

a) Synonyms     b) different   c) related to population    d)  none of the above 

4. An estimator is considered to be the best if its distribution is: 

a) Continuous      b) discrete     c) concentrated about the true parameter value 

d) normal.  

5.  An estimator 𝑇𝑛  based on a sample of size n is considered to be the best estimator of 𝜃 if: 

     a) P{|𝑇𝑛 − 𝜃| < 𝜀} ≥ P{|𝑇𝑛
∗ − 𝜃| < 𝜀}                         b) P{|𝑇𝑛 − 𝜃| > 𝜀} ≥ P{|𝑇𝑛

∗ − 𝜃| > 𝜀}     

     c) P{|𝑇𝑛 − 𝜃| < 𝜀} = P{|𝑇𝑛
∗ − 𝜃| < 𝜀}    for all   𝜃      d) none of the above 

      6. An estimator of a parameter function 𝜏(𝜃) is said to be the best if it possesses: 

          a) Any two properties of a good estimator      b) at least properties of a good estimator 

          c) all the properties of a good estimator          d) all the above 

      7. The type of estimates is: 

          a) point estimate    b)  interval estimates     c) estimation of confidence region   d) all the above 

8. If an estimator 𝑇𝑛 of population parameter 𝜃 converges in probability to 𝜃 as n tends to            

infinity is said to be: 

    a) Sufficient    b) efficient      c) consistent        d) unbiased 

9. The estimator ∑X/ n of population mean are: 

    a) an unbiased  estimator                      b) a consistent estimator      

    c) both (a) and (b)                                 d) neither (a) nor (b) 

10. If  𝑋1, 𝑋2,𝑋3,𝑋4 ………𝑋𝑛 is a random sample from a population N (0, 𝜎2), the sufficient 

statistic for 𝜎2 is: 

     a) ∑ 𝑋𝑖            b)  ∑ 𝑋𝑖  2            c) (∑ 𝑋𝑖  )2          d) none of the above  

11. If 𝑥1, 𝑥2,𝑥3 ………𝑥𝑛 be a random sample from a N (𝜇, 𝜎2)population, the sufficient statistic 

for 𝜇 is: 

      a)  ∑(𝑥𝑖 − 𝑥)̅̅̅       b) �̅�/n        c) ∑ 𝑥𝑖         d)  ∑(𝑥𝑖 − 𝑥)̅̅̅2 



12. Factorisation theorem for sufficiency is known as: 

      a) Rao- Blackwell theorem                           b) Cramer- Rao theorem 

      c) Chapman-Robins theorem                        d) Fisher- Neyman theorem 

13. Consistency can specially be named as: 

       a) Simple consistency             b) mean- squared consistency 

       c) Simple consistency and mean squared consistency both      d) all the above 

14. Bias of an estimator can be: 

       a) positive       b) negative     c) either positive or negative     d) always zero 

15. If   𝑋1, 𝑋2,𝑋3,𝑋4 ………𝑋𝑛be a random sample from an infinite population where 

      𝑆2= 
1

𝑛
 ∑ (𝑋𝑖 − 𝑋)̅̅ ̅  2𝑖 , the unbiased estimator for the population variance 𝜎2 is: 

a) 
1

𝑛−1
 𝑆2          b) 

1

𝑛
 𝑆2         c)  

𝑛−1

𝑛
 𝑆2      d) 

𝑛

𝑛−1
 𝑆2 

16. If  𝑋1, 𝑋2,𝑋3,𝑋4 ………𝑋𝑛 is a random sample from an infinite population, an estimator for 

the population variance 𝜎2 such as: 

   a) 
1

𝑛
 ∑ (𝑋𝑖 − 𝑋)̅̅ ̅  2𝑖  is an unbiased estimator of 𝜎2 b)  

1

𝑛
 ∑ (𝑋𝑖 − 𝑋)̅̅ ̅  2𝑖  is a biased estimator of 𝜎2 

   𝑐)  ∑ (𝑋𝑖 − 𝑋)̅̅ ̅  2𝑖  is an unbiased estimator of 𝜎2     d) none of the above 

17. Crammer – Rao inequality is based on: 

       a) Stringent conditions         b) mild conditions      c)  no conditions     d) none of the above 

18. Regularity conditions of Cramer- Rao inequality are related to: 

       a) integrability of functions         b) differentiability of functions            c) both (a) and (b) 

       d) neither (a) nor (b) 

19. Crammer – Rao inequality is valid in case of: 

       a) continuous variables      b) discrete variables    c) both (a) and (b)      d) neither (a) nor (b) 

20. Crammer – Rao inequality was given by them: 

       a) jointly       b) in different years     c) in the same year     d) none of the above 

21. The denominator in the Crammer – Rao inequality is known as: 

      a) Information limit      b) lower bound of the variance      



               c) upper bound of the variance      d) all the above 

22. The lower bound for the variance of an estimator 𝑇𝑛 under amended regularity conditions of 

Cramer – Rao was given by: 

      a) R. A. Fisher            b) A. Bhattacharya          c) Silverstone         d) all the above 

23. Another name of best asymptotically normal estimator is: 

      a) minimum variance unbiased estimator      b) best linear unbiased estimator 

      c) consistent asymptotically normal efficient estimator       d) all the above 

24. The concepts of consistency, efficiency and sufficiency are due to: 

       a) J.Neyman            b) C.R.Rao              c) R.A. Fisher                d) J. Berkson 

25. The credit of inventing the method of moments for estimating the parameters goes to: 

      a) R. A. Fisher       b) J.Neyman              c) laplace         d) Karl –Pearson 

26.  Rao- Blackwell theorem enables us to obtain minimum variance unbiased estimator through: 

      a) unbiased estimators    b) complete statistics     c) efficient statistics     d) sufficient statistics 

27. Minimum Chi-square estimators are: 

       a) consistent     b) asymptotically normal     c) efficient      d) all the above 

28. Minimum Chi-square estimators are not necessarily: 

       a) efficient     b) consistent       c) unbiased       d) all the above 

29. Least square estimators of the parameters of linear model are: 

       a) unbiased      b) BLUE        c) UMVU         d) all the above 

30. A sufficient statistic S= s(𝑥1,𝑥2,𝑥3, … … … . . 𝑥𝑛) is said to be complete for a parameter 𝜃 if: 

      a) 𝐸𝜃  (S) = 0 →  S= 0     b) 𝐸𝜃  (S) = 1 →  S= 1    c)either (a) or (b)     d) neither (a) nor (b) 

31. Efficiency of sample mean as compared to median as an estimate of the mean of a normal 

population is: 

      a) 64 per cent       b) 157 per cent     c) 317 per cent     d) 31.5 per cent 

32. If 𝑇𝑛 is a consistent estimator of 𝜃 , then 𝑒𝑇𝑛 is a:         a) unbiased estimator of 𝑒𝜃    

      b) consistent estimator of 𝑒𝜃  c) MVU estimator of 𝑒𝜃           d)  none of the above. 



UNIT-II 

1. The  maximum likelihood estimators are necessarily: 

a) Unbiased      b) sufficient     c) most efficient     d) unique 

2. Least square estimators under linear set up are: 

a) Unbiased     b) UMVUE’s      c) BLUE’s     d) all the above 

3. For a random sample from a poisson population P(λ), the maximum likelihood estimate 

of  λ is: 

a) Median     b) mode      c) geometric mean       d) mean 

4. For a random sample (𝑥1,𝑥2,𝑥3,………..𝑥𝑛) from a population N(𝜇, 𝜎2), the maximum 

likelihood estimator of  𝜎2 is: 

a) 
1

𝑛
 ∑ (𝑋𝑖 − 𝑋)̅̅ ̅  2𝑖       b) 

1

𝑛−1
 ∑ (𝑋𝑖 − 𝑋)̅̅ ̅  2𝑖      c) 

1

𝑛
 ∑ (𝑋𝑖 − 𝜇 ) 2𝑖     d) 

1

𝑛−1
 ∑ (𝑋𝑖 − 𝜇)  2𝑖  

5. If the variance of an estimator attains the Crammer- Rao lower bound, the estimator is: 

a) Most efficient    b) sufficient   c) consistent     d) admissible 

6. By the method of moments one can estimate: 

a) All constants of a population      b) only mean and variance of a distribution 

b) All moments of a population distribution        d) all the above 

7. If 𝑋1,𝑋2,………..𝑋𝑛 is a random sample from the population having the density function, 

                                             f( x; 𝜃) = 
1

√2𝜋𝜃
  𝑒−

1

2

𝑥2

𝜃 ,  

            then the maximum likelihood estimators for 𝜃 is: 

a) √∑ 𝑋𝑖
2/𝑛      b) ∑ 𝑋𝑖

2/𝑛     c) ∑ 𝑋𝑖
2/√𝑛 

8. If 𝑋1,𝑋2,………..𝑋𝑛 is a random sample of a population  

                                              
1

𝜃√2𝜋
  𝑒−

𝑥2

2 𝜃2,  

            the maximum likelihood estimators for 𝜃 is: 

b) √∑ 𝑋𝑖
2/𝑛      b) ∑ 𝑋𝑖

2/𝑛     c) ∑
𝑋𝑖

2

𝑛
        d) ∑

𝑋𝑖

𝑛
 

9. If T = t(𝑋1,𝑋2,𝑋3,………𝑋𝑛) is a sufficient statistics for a parameter 𝜃 and the unique MLE 𝜃 

For 𝜃 exists, then 

a) 𝜃 = t (𝑋1,𝑋2,𝑋3,………𝑋𝑛)                             b) 𝜃 is a function of t    

 c) 𝜃 is independent of t                                 d) none of the above 

 

 

 



UNIT-III 

1. The idea of testing of hypothesis was first set forth by: 

a) R. A. Fisher      b) J. Neyman        c) E. L. Lehman        d) A. Wald 

2. In 1933, the theory of testing of hypothesis was propounded by: 

a) R. A. Fisher      b) J. Neyman        c) E. L. Lehman        d) Karl Pearson 

3. A hypothesis may be classified as: 

a) Simple    b) composite    c) null     d) all the above 

4. The hypothesis under test is: 

a) Simple hypothesis     b) alternative   c) null     d) none of the above 

5. Whether a test is one-sided or two-sided depends on: 

a) Alternative    b) composite     c) null      d) simple hypothesis 

6. A wrong decision about 𝐻0 leads to : 

a) One kind of error      b) two kinds of error  

b)  three kinds of error                       d) four kinds of error 

7. Power of a test is related to: 

a) Type I error   b) Type II error     c) types I and II errors both    d) none of the above 

8. If 𝜃 is the true parameter and 𝛽(𝜃) is known as: 

a) Power function                                    b) power of the test   

b)  operating characteristic function       d) none of the above 

      9.  Level of significance is the probability of: 

            a)  type I error    b) type II error    c) nor committing error   d) any of the above 

    10.  In terms of type II error 𝛽 and 𝜃, the true parameter, the function 1- 𝛽 (𝜃) is called: 

            a) power of the test    b) power function   c) OC function    d) none of the above 

     11.  Out of the two types of error in testing, the more severe error is: 

            a) type I error                                       b) type II error   

           c) both (a) and (b) are equally severe   d) no error is severe. 

     12. Area of the critical region depends on: 

           a) size of type I error                             b) size of type II error    

           c) value of the statistic                          d) number of observation. 

    13. Critical region of size  𝛼  which minimised 𝛽 amongst all critical regions of size 𝛼 is 

called: 

          a) power critical region                             b) minimum critical region     

          c) best critical region                                d) worst critical region. 

 



14. A test based on a test statistic is classified as: 

       a) randomised test    b) non-randomised test   c) sequential test     d) Bayes test 

15. Size of critical region is known as: 

       a) power of the test                                   b) size of type II error 

       c) Critical value of the test statistics        d) size of the test 

16. Degrees of freedom are related to: 

       a) no. of. Observations in a set                     b) hypothesis under test 

       c) no. of. Independent Observations in a set                d) none of the above 

17.  A critical function provides the basis for: 

       a) accepting 𝐻0           b) rejecting 𝐻0     c) no decision about 𝐻0    d) all the above  

      18.  A test which minimises the power of the test for fixed 𝛼 is known as: 

             a) optimum test         b) randomised test        c) Bayes test           d) likelihood ratio test 

       19. A test T which is a least as powerful as any other test of the same size, is called: 

             a) best test    b) most powerful test      c) uniformly most powerful test    d) none of the above 

       20. Neyman- Pearson lemma provides: 

             a) an unbiased test     b) a most powerful test      c) an admissible test      d) minimax test 

        21. Type I error is committed when the hypothesis is true but our test ------------- it. 

                 Ans: Rejects 

        22. Type II errors are made when we accept a null hypothesis which is ------------ 

               Ans: Not true       

 

 

 

 

 

 



UNIT-IV 

1. Large sample theory is applicable when: 

a) N > 30                  b) N  < 30     c) N= 30  

2. Standard error of number of success is given by: 

a) 
𝑝𝑞

𝑛
                 b) √npq      c) npq 

3. For a two tail test when n is large , the value of  Z  at 0.05 level of significant is: 

a) 1.645       b) 2.58     c) 1.96 

4. For testing  𝑃1 = 𝑃2 in a large sample, the proper test is: 

a) t – test      b)    Z test      c) F- test 

5. The distribution formed of all possible values of a statistics is called the ------------------- 

Ans: Sampling distribution. 

6. Standard error provides an idea about the ----------- of sample. 

Ans: Unreliability 

7. The standard deviation of sampling distribution is called ------------------------ 

Ans: Standard error 

8. The mean of  sampling  distribution of means is equal to the -------------------- 

Ans: Population mean. 

9. Standard error of the difference of proportions (𝑝1 = 𝑝2) in two classes under the hypothesis  

          𝐻0: 𝑃1 = 𝑃2 with usual notations is: 

a) √�̂��̂� (
1

𝑛1
+

1

𝑛2
)           b) √�̂� (

1

𝑛1
+

1

𝑛2
)      c) �̂��̂� √

1

𝑛1
+

1

𝑛2
        d) √

𝑝1𝑞1

𝑛1
+

𝑝2𝑞2

𝑛2
 

10. Formula for the Standard error of the difference between proportions (𝑝1 = 𝑝2) under the e 

hypothesis 𝐻: 𝑃1 ≠ 𝑃2) with usual notations is: 

𝑎)√�̂��̂� (
1

𝑛1
+

1

𝑛2
)           b)  �̂��̂� √

1

𝑛1
+

1

𝑛2
         c) �̂��̂� √

1

𝑛1
+

1

𝑛2
        d) √

𝑝1𝑞1

𝑛1
+

𝑝2𝑞2

𝑛2
 

11. The formula in general for testing the hypothesis for proportions 𝐻0: 𝑃1 = 𝑃2vs. 𝐻1: 𝑃1 ≠ 𝑃2 

Is: 

a) Z = 
𝑝1−𝑝2

𝑠(𝑝1
− 𝑝2)

           b)   Z = 
𝑝1−𝑝2

𝑠2
(𝑝1

− 𝑝2)
            c)  Z = 

𝑝1−𝑝2

𝑠𝑝1−𝑠 𝑝2)
        d) none of the above 

                 

 

 

 



      UNIT-V 

1. Student’s  t – test is applicable in case of : 

a) Small samples                    b) for samples of size between 5 and 30  

b) Large samples                    d) none of the above 

2. Student’s t-test was invented by: 

a) R. A. Fisher      b) G. W. Snedecor    c) W. S. Gosset      d) W. G. Cochran 

3. Student’s t-test is applicable only when: 

a) The variate values are independent     b) the variate is distributed normally 

b) The sample is not large                        d) all the above 

4. To test 𝐻0: 𝜇 = 𝜇0 vs. 𝐻1: 𝜇 > 𝜇0 when the population S.D is known, the appropriate test is: 

a) t-test       b) Z-test       c) chi-square test       d) none of the above 

5. To test an hypothesis about proportions of items in a class, the usual test is: 

a) t-test     b) F-test      c) Z-test    d) none of the above 

6. The degrees of freedom for statistics –t for paired t-test based on n pairs of observations is: 

a) 2(n-1)      b) n-1       c) 2n-1       d) none of the above 

7. To test 𝐻0: P = 0.4 vs. 𝐻1: P ≠ 0.4 in binomial population, there are eight persons out of fifteen 

who favoured a proposal. The value of statistic – Z is: 

a) 5.813                 b) 1.08          c) 7.32             d) none of the above 

8. The hypothesis that  the population variance has a specified value can be tested by: 

a) F-test                 b) Z-test        c) 𝜒2-test        d) None of the above 

9. Degrees of freedom for statistics -𝜒2in case of contingency table of order (2x2) is  

a) 3                        b) 4                c) 2                 d) 1 

10. The hypothesis  𝐻0: 𝜎1 = 𝜎2 vs. 𝐻1: 𝜎1 > 𝜎2 can be tested by the statistic: 

a) Z= 
|𝑠1−𝑠2|

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

       b) Z= 
|𝑠1−𝑠2|

√
𝑠1

2𝑛1+
𝑠2

2𝑛2

        c) 𝑍 =
|𝑠1−𝑠2|

√
𝑠1

2

2𝑛1
+

𝑠2
2

2𝑛2

       d) none of the above 

11. Formula for 𝜒2 for testing a null hypothesis in a multinomial distribution with usual notations is: 

a) 𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑘
𝑖=1        b) 𝜒2 = ∑

𝑂𝑖
2

𝐸𝑖

𝑘
𝑖=1  - n       c) 𝜒2 = ∑

𝑂𝑖
2

𝑛𝑝𝑖

𝑘
𝑖=1  – n        d) all the above 

 

12. Degrees of freedom for Chi-square in case of contingency table of order (4 x3)are: 

a) 12                b) 9               c) 8             d) 6 

13. The degrees of freedom for Chi-square in case of dichotomised frequencies are: 

a) 4                  b) 2               c) 1             d) 0 

14. An exact test for testing the independent of attributes in a contingency table of order (2 x2) was 

given by: 

a) Karl Pearson          b) Pascal    c) Demoivre          d) R. A. fisher  

15. An exact test for testing the independent of attributes in a contingency table of order (2 x2) is 

based on the calculation of: 

a) The value of statistics -𝜒2              b) probabilities of configurations 

b) The value of statistic – Z                d) none of the above 

16. Coefficient of contingency is calculated when: 

a) The attributes are independent            b) the attributes are associated 



C) Both (a) and (b)                                   d) neither (a) and (b) 

17. The value of coefficient of contingency lies between: 

a) 0 and ∞           b)   0 and 1              c) 0 to 100              d) -1   and +1 

18. The ratio of  between sample variance and within sample variance follows: 

a) F-distribution     b) 𝜒2-test        c) Z-  distribution     d) t- distribution 

19. Analysis of variance utilises: 

a)  F-test          b) 𝜒2-test       c) Z-test         d) t-test 

20. Customarily the large variance in the variance ratio for F- statistic is taken: 

a) In the denominator      b) in the numerator    c) either way    d) none of the above 

21. The value of statistic 𝜒2 is zero if and only if: 

a) ∑ 𝑂𝑖𝑖 = ∑ 𝐸𝑖𝑖        b) 𝑂𝑖 = 𝐸𝑖  for all i     c) 𝐸𝑖 is large       d) all the above 

22. If all frequencies of classes are same, the value of  𝜒2 is: 

a) 1              b) ∞                 c) zero                      d) none of the above 

23. The range of statistics- 𝜒2 is:       

a) -1 to +1        b) -∞ to ∞      c) 0 to ∞     d) 0 to 1 

24. The range of statistics- t is:       

b) -1 to +1        b) -∞ to ∞      c) 0 to ∞     d) 0 to 1 

25. Range  of  the variance ratio  F is:       

c) -1 to +1        b) -∞ to ∞      c) 0 to ∞     d) 0 to 1 

26. The best critical region consists of: 

a) Extreme positive values                b) extreme negative values 

b) Both (a) and (b)                             d) neither (a) nor (b) 

27.  In a contingency table, the expected frequencies are computed under: 

a) Null hypothesis 𝐻0                  b) alternative hypothesis 𝐻1 

c) 𝐻0 and 𝐻1 both                        d) no consideration of hypothesis 

28. For testing that  a bivariate random sample has come from an uncorrelated population the 

appropriate test is: 

a) Normal deviate test      b) 𝜒2 − 𝑡𝑒𝑠𝑡    c) F-test           d) t-test 

29. A variable which is used in a contingency table to explain the response variable is known as: 

a) Random variable     b) discrete variable    c) explanatory variable      d) dummy variable 

30.   Calculated value of chi-square less than its degree of freedom leads of: 

a) Acceptance of  𝐻0 directly                           b) rejecting of 𝐻0 straightway 

b) No decision about 𝐻0                                   d) none of the above 

31.  A zero count in a cell of a contingency table having its expected frequency zero is called: 

a) Structural zero      b) random zero     c) false zero     d) all the above 

32. A zero in a cell of a contingency table having a finite expected value is termed as: 

b) Structural zero      b) random zero     c) false zero     d) none of the above 
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UNIT-I 

1. Define:  (i) population    (ii)   sample    (iii) parameter 

              (iv) unbiased estimator    (v) sufficient estimator 

2. Write a short notes on interval estimation. 

3. State any two properties of estimator. 

4. Define: Finite and Infinite population with example. 

5. Define:  (i) Estimator      (ii) statistic     (iii) parameter space 

6. State and prove invariance properties of consistent estimator. 

7. Show that sample variance is a consistent estimator for the population variance of the 

normal distribution. 

8. If T is an unbiased estimator of 𝜃 , then show that 𝑇2 is a biased estimator of 𝜃 2, also √𝑇    

is not an unbiased estimator of  √ 𝜃. 

9. If N(𝜇, 𝜎2) show that �̅� is an unbiased estimator of population mean 𝜇. 

10. State Rao-Blackwell theorem. Also mention its importance. 

11. State the regularity conditions for Cramer-Rao inequality. 

12. Show that 
∑ 𝑥𝑖(∑ 𝑥𝑖−1)

𝑛(𝑛−1)
 is an unbiased estimator of 𝜃 2  for the sample 𝑥1,𝑥2,𝑥3,…………𝑥𝑛 

drawn on x. Which takes the value 1 or 0 with respect to probabilities 𝜃 and (1- 𝜃). 

13. 𝑥1,𝑥2,𝑥3,…………𝑥𝑛 is a random sample from a normal population N(𝜇, 1) show that  

 t= 
1

𝑛
∑ 𝑥𝑖

2, is an unbiased estimator of 𝜇2+ 1. 

14. State the properties of consistent estimator. 

15. Examine whether the following distribution admits sufficient estimator of the parameter 

‘𝜃’. F(x, 𝜃) = 𝜃 𝑥𝜃−1; 0 ≤ 𝑥 ≤ 1. 

16. State and prove Cramer-Rao inequality. 

17. State and prove Rao-Blackwell theorem. 

18. State and prove sufficient conditions for consistency. 

19. If N(𝜇, 𝜎2) show that �̅� is an unbiased estimator of population mean 𝜇. 

20. A random sample (𝑋1,𝑋2,𝑋3,𝑋4,𝑋5) of size ‘5’ is drawn from a normal population with 

unknown mean ‘𝜇′. Consider the following estimators to estimate𝜇.  

    𝑖)    𝑡1 = 
𝑋1 +𝑋2 +𝑋3+𝑋4 +𝑋5

5
         ii) 𝑡1 = 

𝑋1+𝑋2 

2
 + 𝑋3     

    𝑖𝑖𝑖) 𝑡3 = 
2𝑋1 +𝑋2 +𝜆𝑋3

3
  , where λ is such that  𝑡3 is unbiased estimator of ‘𝜇′  

          iv) Find λ,    𝑡1 and    𝑡2 unbiased. 

          v) State giving reasons, the estimator which is best among  𝑡1 ,𝑡2 and 𝑡3. 

  

 



                                                                     UNIT-II 

1. What do you meant by estimation and MLE. 

2. State the conditions for 𝜃 to be a MLE. 

3. Write any two properties of MLE? 

4. Obtain the estimator ‘p’ in binomial distribution using method of moments. 

5. Write down the properties of method of moments? 

6. Find the MLE for the parameter 𝜆 of a Poisson distribution. 

7. Explain Method of moments. 

8. Estimate 𝛼 and 𝛽 in the case of pearson’s Type III distribution by the method of 

moments. 

                   F(x; 𝛼, 𝛽) = 
𝛽𝛼

√𝛼
 𝑥𝛼−1 𝑒−𝛽𝑥 , 0 ≤ 𝑥 ≤ ∞. 

9. Find the MLE of 𝜃 for the density function f(x, 𝜃) = 𝜃 𝑒−𝜃𝑥. 

10. Prove that the MLE of the parameter 𝛼 of a population having density function:
2

𝛼2(𝛼 − 𝑥) 

0<x< 𝛼, for a sample of unit size is 2x, x being the sample value also that the estimate is 

biased. 

11. In random sampling from Normal population N(µ, σ2), find the MLE for  

              (i)µ when σ2 is known (ii)σ2 when µ is known (iii) The simultaneous estimation of µ         

and σ2. 

12. Obtain the MLE’S of 𝛼 and 𝛽 for a random sample from the following density f(x)= 𝑦0 

𝑒−𝛽(𝑥−𝛼), 𝛼 ≤ 𝑥 ≤ ∞, 𝛽 > 0. 

13. A random variable X takes the values,0,1,2, with respective probabilities 

1 1
1 , 1 and 1 ,

4 2 2 2 4 2N N N N N N

            
          

     
where N is a known number 

and α, θ are unknown parameters. If 75 independent observations on x yielded the values 

0,1,2 with frequencies 27, 38, 10 respectively, estimate θ and α by the method of 

moments. 

14. For the double poisson distribution. 

P(x) = ½ 
𝑒−𝑚1𝑚1

𝑥

𝑥!
 + ½ 

𝑒−𝑚2𝑚2
𝑥

𝑥!
; x=0,1,2,….. 

Show that the estimators for 𝑚1 𝑎𝑛𝑑 𝑚2 by the method of moments are 

 µ1
′ ±√µ2

′ − µ1
′ − µ1

2. 

 

 

 

 



 

UNIT-III 

1. What is meant by test of hypothesis and statistical hypothesis 

2. Define: (i) Simple hypothesis  (ii) composite hypothesis 

3. Define: (i) Alternative hypothesis and Null hypothesis. 

4. Write short notes on Type I and Type II error. 

5.  Explain Critical Region. 

6. Let P be the probability that a coin will fall head in a single toss in order to test 𝐻0 = P = 

1/2 and  𝐻1 = P = 3/4. The coin is tossed 5 times and 𝐻0 is rejected if more than 3 heads 

are obtained. Find the probability of type I error and power of the test. 

7. Use the Neyman-Pearson lemma to obtain the best critical region for testing 𝜃 = 𝜃0 

against 𝜃 = 𝜃1 > 𝜃0 in the case of normal population N(𝜃, 𝜎2) where 𝜎2 is known. 

8. Show that for the normal distribution with zero mean and variance  𝜎2, the best critical 

region for testing 𝐻0 : 𝜎 = 𝜎0 VS 𝐻1 : 𝜎0 = 𝜎1 is ∑ 𝑥2 ≤ 𝑎𝛼 𝑓𝑜𝑟 𝜎0 > 𝜎1 𝑎𝑛𝑑 ∑ 𝑥2 ≥

𝑏𝛼𝑓𝑜𝑟 𝜎0 < 𝜎1. 

9. State and prove Neyman-Pearson Lemma. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

UNIT-IV 

1. Explain sampling distribution and standard error 

2. What is meant by test of significance? 

3. Define: One –tailed and Two-tailed test. 

4. State the formula for testing the difference between sample and population proportions. 

5. State large sample test statistic testing population mean. 

6. Explain the steps in solving the test of significance. 

7. Explain the procedure for testing the equality of two proportions. 

8. A sample of 900 members has a mean 3.4 cms and S.D 2.61cms Is this sample came from 

a large population of mean 3.25cms. 

9. Derive the test of significance of difference of two means. 

10. In a sample of 1000 people, 540 are rice eaters and 460 are wheat eaters. Can we assume 

that both rice and wheat eaters are equal. Test at 1% level. 

11. Derive the test of significance of single mean. 

12. A coin is tossed 10,000 times and it turns up head 5195 times. Discuss whether the coin 

may be regarded as unbiased one. 

13. What are the uses of standard error. 

14. In two large populations, there are 30 and 25 percent respectively of blue eyed people. Is 

this difference likely to be ridden in samples of 1200 and 900 respectively from the two 

populations. 

15. Derive the test for significance of a population. 

16. From the following table, test is there any significant difference between the mean. 

                      Mean             S.D            Size of sample 

Sample A        55                 10                     400 

Sample B        57                  15                     100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

UNIT-V 

1. What is meant by test of significance for all small samples? 

2. State the formula for testing the significance of observed sample correlation coefficient. 

3. Write the test statistic for testing two means using small sample test. 

4. State any two uses of Chi-square test. 

5. State the conditions for chi-square test for goodness of fit. 

6. Give the formula for F- test for equality of two population variances. 

7. Explain 𝜒2 test for goodness of fit. 

8. Test the hypothesis that 𝜎= 10 given that S =15 for a random sample of size 50 from a 

normal population. 

9. Explain 𝜒2 test for independence of attributes. 

10. Explain the test procedure for testing equality of two population’s variances. 

11. Explain t test for testing the significance difference between two populations mean. 

12.  Explain 𝜒2 test of testing the significant difference between sample variance and 

population variance. 

13. Two independent samples of 8 and 7 items respectively had the following values. Is the 

difference between the means of samples significant? 

Sample I:        9       11         13         11         15         9          12         14 

Sample II:      10       12       10          14          9          8          10 

14. State and prove 2x2 contingency table. 

15. Verify whether the following two samples came from the same population with same 

variance (𝜎1
2 = 𝜎2

2) 

Sample i:    20      16      26       27       23       22       18       24       25        19 

Sample ii:   27       33     42       35       32       34       38       28       41        43       30      37. 

 

 

 

 

 

 

 

 

 

 

 



 

 


