
DON BOSCO COLLEGE

DEPARTMENT OF PHYSICS

STUDY MATERIAL

SUBJECT NAME : MICROPROCESSOR AND ITS

 APPLICATIONS

 PAPER CODE : 19UPHS06

 CLASS : III -B.Sc., PHYSICS

 SEMESTER : II

UNIT – I

1-1.Evolution of Microprocessor 8085

(i) 4-bit Microprocessors: The first microprocessor was introduced in 1971 by Intel Corp.

It was named Intel 4004 as it was a 4 bit processor. It was a processor on a single chip. It could

perform simple arithmetic and logic operations such as addition, subtraction, boolean AND and

boolean OR. It had a control unit capable of performing control functions like fetching an

instruction from memory, decoding it, and generating control pulses to execute it. It was able to

operate on 4 bits of data at a time.This first microprocessor was quite a success in industry. Soon

other microprocessors were also introduced. Intel introduced the enhanced version of 4004, the

4040. Some other 4 bit processors are International‟s PPS4 and Thoshiba‟s T3472.

(ii) 8-bit Microprocessors: The first 8 bit microprocessor which could perform arithmetic and

logic operations on 8 bit words was introduced in 1973 again by Intel. This was Intel 8008 and

was later followed by an improved version, Intel 8088. Some other 8 bit processors are Zilog-80

and Motorola M6800.

(iii) 16-bit Microprocessors: The 8-bit processors were followed by 16 bit processors. They

are Intel 8086 and 80286.

(iv) 32-bit Microprocessors: The 32 bit microprocessors were introduced by several companies

but the most popular one is Intel 80386.

(v) Pentium Series: Instead of 80586, Intel came out with a new processor namely Pentium

processor. Its performance is closer to RISC performance. Pentium was followed by Pentium Pro

CPU. Pentium Pro allows allow multiple CPUs in a single system in order to achive

multiprocessing. The MMX extension was added to Pentium Pro and the result was Pentiuum II.

The low cost version of Pentium II is Celeron. The Pentium III provided high performance

floating point operations for certain types of computations by using the SIMD extensions to the

instruction set. These new instructions makes the Pentium III faster than high-end RISC CPUs.

Interestingly Pentium IV could not execute code faster than the Pentium III when running at the

http://www.worldofcomputing.net/processor/microprocessor.html
http://www.worldofcomputing.net/processor/microprocessor.html
http://www.worldofcomputing.net/processor/microprocessor.html

same clock frequency. So Pentium IV had to speed up by executing at a much higher clock

frequency.

1.2. Computer & Classification of Computers:

Computer is an electronic device which has many units like Input unit, Control unit and

Output unit. Input unit consists of input devices like keyboard, mouse, scanner, light pen, etc.,

Output unit consists of output devices like printer, monitor, etc., Control unit controls all the

actions of computer which consists of memory unit, Arithmetic and logic unit. A computer is

one of the most brilliant inventions of mankind. Depending on the processing power and size of

computers, they have been classified under various types.

(a) Classification of Computers on the basis of operational principle

Based on the operational principle of computers, they are categorized as analog, digital and

hybrid computers.

(i). Analog Computers: These are almost extinct today. These are different from a digital

computer because an analog computer can perform several mathematical operations

simultaneously. It uses continuous variables for mathematical operations and utilizes mechanical

or electrical energy.

(ii). Digital Computers: They use digital circuits and are designed to operate on two states,

namely bits 0 and 1. They are analogous to states ON and OFF. Data on these computers is

represented as a series of 0s and 1s. Digital computers are suitable for complex computation

and have higher processing speeds. They are programmable. Digital computers are either general

purpose computers or special purpose ones. General purpose computers, as their name suggests,

are designed for specific types of data processing while general purpose computers are meant for

general use.

(iii). Hybrid Computers: These computers are a combination of both digital and analog

computers. In this type of computers, the digital segments perform process control by conversion

of analog signals to digital ones.

(b) Classification on the basis of types:

(i). Mainframe Computers: Large organizations use mainframes for highly critical applications

such as bulk data processing and ERP. Most of the mainframe computers have capacities to

host multiple operating systems and operate as a number of virtual machines. They can

substitute for several small servers.

(ii). Microcomputers: A computer with a microprocessor and its central processing unit is

known as a microcomputer. They do not occupy space as much as mainframes do. When

supplemented with a keyboard and a mouse, microcomputers can be called personal

computers. A monitor, a keyboard and other similar input-output devices, computer memory

in the form of RAM and a power supply unit come packaged in a microcomputer. These

computers can fit on desks or tables and prove to be the best choice for single-user tasks.

(iii). Personal Computers: Personal computers come in different forms such as desktops,

laptops and personal digital assistants. Let us look at each of these types of computers.

(iv) Desktops: A desktop is intended to be used on a single location. The spare parts of a desktop

computer are readily available at relatively lower costs. Power consumption is not as critical as

that in laptops. Desktops are widely popular for daily use in the workplace and households.

(v) Laptops: Similar in operation to desktops, laptop computers are miniaturized and optimized

for mobile use. Laptops run on a single battery or an external adapter that charges the computer

batteries. They are enabled with an inbuilt keyboard, touch pad acting as a mouse and a liquid

crystal display. Their portability and capacity to operate on battery power have proven to be of

great help to mobile users.

(vi) Notebooks: They fall in the category of laptops, but are inexpensive and relatively smaller

in size. They had a smaller feature set and lesser capacities in comparison to regular laptops,

(v) Personal Digital Assistants (PDAs): It is a handheld computer and popularly known as a

palmtop. It has a touch screen and a memory card for storage of data. PDAs can also be used as

portable audio players, web browsers and smart phones. Most of them can access the Internet by

means of Bluetooth or Wi-Fi communication.

(vi) Minicomputers: In terms of size and processing capacity, minicomputers lie in between

mainframes and microcomputers. Minicomputers are also called mid-range systems or

workstations. The term began to be popularly used in the 1960s to refer to relatively smaller third

generation computers. They took up the space that would be needed for a refrigerator or two and

used transistor and core memory technologies. The 12-bit PDP-8 minicomputer of the Digital

Equipment Corporation was the first successful minicomputer.

(vii) Servers: They are computers designed to provide services to client machines in a computer

network. They have larger storage capacities and powerful processors. Running on them are

programs that serve client requests and allocate resources like memory and time to client

machines. Usually they are very large in size, as they have large processors and many hard

drives. They are designed to be fail-safe and resistant to crash.

(viii) Supercomputers: The highly calculation-intensive tasks can be effectively performed by

means of supercomputers. Quantum physics, mechanics, weather forecasting, molecular theory

are best studied by means of supercomputers. Their ability of parallel processing and their well-

designed memory hierarchy give the supercomputers, large transaction processing powers.

(ix) Wearable Computers: A record-setting step in the evolution of computers was the creation

of wearable computers. These computers can be worn on the body and are often used in the study

of behavior modeling and human health. Military and health professionals have incorporated

wearable computers into their daily routine, as a part of such studies. When the users' hands and

sensory organs are engaged in other activities, wearable computers are of great help in tracking

human actions. Wearable computers do not have to be turned on and off and remain in operation

without user intervention.

(x) Tablet Computers: Tablets are mobile computers that are very handy to use. They use the

touch screen technology. Tablets come with an onscreen keyboard or use a stylus or a digital

pen. Apple's iPad redefined the class of tablet computers.

1.3. Pin diagram and Pin description of 8085

8085 is a 40 pin IC, DIP package. The signals from the pins can be grouped as follows

(i) Power supply and clock signals

(ii) Address bus

(iii)Data bus

(iv) Control and status signals

(v) Interrupts and externally initiated signals

(vi) Serial I/O ports

(i) Power supply and Clock frequency signals:

 Vcc + 5 volt power supply

 Vss Ground

 X1, X2 : Crystal or R/C network or LC network connections to set the frequency of

internal clock generator.

 The frequency is internally divided by two. Since the basic operating timing frequency is

3 MHz, a 6 MHz crystal is connected externally.

 CLK (output)-Clock Output is used as the system clock for peripheral and devices

interfaced with the microprocessor.

(ii) Address Bus:

 A8 - A15 (output; 3-state). It carries the most significant 8 bits of the memory address

or the 8 bits of the I/O address;

(iii). Multiplexed Address / Data Bus:

 AD0 - AD7 (input/output; 3-state). These multiplexed set of lines used to carry the lower

order 8 bit address as well as data bus. During the opcode fetch operation, in the first

clock cycle, the lines deliver the lower order address A0 - A7.

 In the subsequent IO / memory, read / write clock cycle the lines are used as data bus.

 The CPU may read or write out data through these lines.

(iv). Control and Status signals:

 ALE (output) - Address Latch Enable. This signal helps to capture the lower order

address presented on the multiplexed address / data bus.

 RD (output 3-state, active low) - Read memory or IO device. This indicates that the

selected memory location or I/O device is to be read and that the data bus is ready for

accepting data from the memory or I/O device.

 WR (output 3-state, active low) - Write memory or IO device. This indicates that the data

on the data bus is to be written into the selected memory location or I/O device.

 IO/M (output) - Select memory or an IO device. This status signal indicates that the read /

write operation relates to whether the memory or I/O device. It goes high to indicate an

I/O operation.It goes low for memory operations.

(v). Status Signals:

 It is used to know the type of current operation of the microprocessor.

Fig 1.1(a) - Pin Diagram of 8085 & Fig.1.1(b) - logical schematic of Pin diagram.

(vi). Interrupts and Externally initiated operations:

 They are the signals initiated by an external device to request the microprocessor to do a

particular task or work.

 There are five hardware interrupts called,

Fig. 1,2

On receipt of an interrupt, the microprocessor acknowledges the interrupt by the active low

INTA (Interrupt Acknowledge) signal.

READY (input)

 Memory and I/O devices will have slower response compared to microprocessors.

 Before completing the present job such a slow peripheral may not be able to handle

further data or control signal from CPU.

 The processor sets the READY signal after completing the present job to access the data.

 The microprocessor enters into WAIT state while the READY pin is disabled.

Direct Memory Access (DMA):

Tri state devices:

Fig. 1.3

 3 output states are high & low states and additionally a high impedance state. When

enable E is high the gate is enabled and the output Q can be 1 or 0 (ifA is 0, Q is 1,

otherwise Q is 0). However, when E is low the gate is disabled and the output Q

entersinto a high impedance state

.

Fig. 1.4

 For both high and low states, the output Q draws a current from the input of the OR gate.

 When E is low, Q enters a high impedance state; high impedance means it is electrically

isolated from the OR gate's input, though it is physically connected. Therefore, it does not

draw any current from the OR gate's input.

 When 2 or more devices are connected to a common bus, to prevent the devices from

interfering with each other, the tristate gates are used to disconnect all devices except the

one that is communicating at a given instant.

 The CPU controls the data transfer operation between memory and I/O device. Direct

Memory Access operation is used for large volume data transfer between memory and an

I/O device directly.

 The CPU is disabled by tri-stating its buses and the transfer is effected directly by

external control circuits.

 HOLD signal is generated by the DMA controller circuit. On receipt of this signal, the

microprocessor acknowledges the request by sending out HLDA signal and leaves out the

control of the buses. After the HLDA signal the DMA controller starts the direct transfer

of data.

(vi). Single Bit Serial I/O ports:

 SID (input) - Serial input data line

 SOD (output) - Serial output data line

 These signals are used for serial communication.

1.4. Bus Structure of 8085 Microprocessor : There are three buses in Microprocessor:

1. Address Bus 2. Data Bus . 3. Control Bus

Fig. 1.5: Bus Structure

1. Address Bus:- Genearlly, Microprocessor has 16 bit address bus. The bus over which the

CPU sends out the address of the memory location is known as Address bus. The address bus

carries the address of memory location to be written or to be read from. The address bus is

unidirectional. It means bits flowing occurs only in one direction, only from microprocessor to

peripheral devices.

2. Data Bus:- 8085 Microprocessor has 8 bit data bus. So it can be used to carry the 8 bit data

starting from 00000000H(00H) to 11111111H(FFH). Here 'H' tells the Hexadecimal Number. It

is bidirectional. These lines are used for data flowing in both direction means data can be

transferred or can be received through these lines. The data bus also connects the I/O ports and

CPU. The largest number that can appear on the data bus is 11111111.

3. Control Bus:-The control bus is used for sending control signals to the memory and I/O

devices. The CPU sends control signal on the control bus to enable the outputs of addressed

memory devices or I/O port devices. Some of the control bus signals are as follows:

(i).Memory read (ii) . Memory write (iii). I/O read (iv). I/O write.

1.5. Architecture of 8085 Microprocessor :

The Functional Block Diagram of 8085 Microprocessor is given below:

Fig. 1.6 Architecture of 8085

Fig.1.7

Accumulator:- It is a 8-bit register which is used to perform airthmetical and logical operation.

It stores the output of any operation. It also works as registers for i/o accesses.

Temporary Register:- It is a 8-bit register which is used to hold the data on which the

acumulator is computing operation. It is also called as operand register because it provides

operands to ALU.

Registers:- These are general purposes registers. Microprocessor consists 6 general purpose

registers of 8-bit each named as B, C, D, E,H and L. Generally theses registers are not used for

storing the data permanently. It carries the 8-bits data. These are used only during the execution

of the instructions. These registers can also be used to carry the 16 bits data by making the pair

of 2 registers. The valid register pairs available are BC, DE HL. We can not use the pairs except

BC, DE and HL. These registers are programmed by user.

ALU:-ALU performs the airthmetic operations and logical operation.

Flag Registers:-It consists of 5 flip flop which changes its status according to the result stored in

an accumulator. It is also known as status registers. It is connected to the ALU. There are five

flip-flops in the flag register are as follows:

1.Sign(S) 2.Zero (Z) 3.Auxiliary carry (AC) 4.Parity (P) 5.Carry (C)

The bit position of the flip flop in flag register is:

All of the three flip flop set and reset according to the stored result in the accumulator.

1. Sign- If D7 of the result is 1 then sign flag is set otherwise reset. As we know that a number

on the D7 always desides the sign of the number.

if D7 is 1: the number is negative.

if D7 is 0: the number is positive.

2. Zeros (Z)-If the result stored in an accumulator is zero then this flip flop is set otherwise it is

reset.

3. Auxiliary carry(AC)-If any carry goes from D3 to D4 in the output then it is set otherwise it is

reset.

4. Parity(P)-If the no of 1's is even in the output stored in the accumulator then it is set otherwise

it is reset for the odd.

5. Carry(C)-If the result stored in an accumulator generates a carry in its final output then it is set

otherwise it is reset.

Instruction registers(IR):-It is a 8-bit register. When an instruction is fetched from memory

then it is stored in this register.

Instruction Decoder:- Instruction decoder identifies the instructions. It takes the informations

from instruction register and decodes the instruction to be performed.

Program Counter:-It is a 16 bit register used as memory pointer. It stores the memory address

of the next instruction to be executed. So we can say that this register is used to sequencing the

program. Generally the memory have 16 bit addresses so that it has 16 bit memory.

The program counter is set to 0000H.

Stack Pointer:-It is also a 16 bit register used as memory pointer. It points to the memory

location called stack. Generally stack is a reserved portion of memory where information can be

stores or taken back together.

Timing and Control Unit:-It provides timing and control signal to the microprocessor to

perform the various operation.It has three control signal. It controls all external and internal

circuits. It operates with reference to clock signal.It synchronizes all the data transfers.

There are three control signal:

1. ALE-Airthmetic Latch Enable, It provides control signal to synchronize the components of

microprocessor.

2. RD- This is active low used for reading operation.

3. WR-This is active low used for writing operation. There are three status signal used in

microprocessor S0, S1 and IO/M. It changes its status according the provided input to these pins.

Serial Input Output Control-There are two pins in this unit. This unit is used for serial data

communication.

Interrupt Unit-There are 6 interrupt pins in this unit. Generally an external hardware is

connected to these pins. These pins provide interrupt signal sent by external hardware to

microprocessor and microprocessor sends acknowledgement for receiving the interrupt signal.

Generally INTA is used for acknowledgement.

8085- Registers

The 8085 has six general purpose registers to store 8 bit data. These are identified as B, C, D, E,

H, L. they can be combined as register pairs BC, DE, and HL, to perform 16 bit operations.

Accumulator

The acc is an 8 bit register that is part of the arithmetic logic unit [ALU]. This register is used to

store 8 bit data and to perform arithmetic and logical operations. The result of the operation is

stored in the accumulator and identified as A.

Flags

The arithmetic logic unit [ALU] includes 5 flip flops which are set or reset after an operation

according to data conditions of the result in the accumulator and other registers. They are called

zero (Z), carry (CY), sign(S), parity (P), and auxiliary carry (AC). The microprocessor used

these flags to test data conditions.

Program counter

The microprocessor uses the PC register to sequence the execution of the instructions. The

function of the PC is to point to the memory address from which the next byte is to be fetched.

When a byte is being fetched, the pc is increased by one to point to the next memory location.

Stack pointer

The SP is also a 16 bit register used as a memory pointer. It points to a memory location in R/W

memory, called the stack

Interrupts In 8085

What is Interrupt?

Interrupt is a mechanism by which an I/O or an instruction can suspend the normal execution of

processor and get itself serviced. Generally, a particular task is assigned to that interrupt signal.

In the microprocessor based system the interrupts are used for data transfer between the

peripheral devices and the microprocessor.

Interrupt Service Routine(ISR)

Interrupt means to break the sequence of operation. While the CPU is executing a program an

interrupt breaks the normal sequence of execution of instructions & diverts its execution to some

other program. This program to which the control is transferred is called the interrupt service

routine. A small program or a routine that when executed services the corresponding interrupting

source is called as an ISR.

Execution of Interrupts

When there is an interrupt requests to the Microprocessor then after accepting the interrupts

Microprocessor send the INTA (active low) signal to the peripheral. The vectored address of

particular interrupt is stored in program counter. The processor executes an interrupt service

routine (ISR) addressed in program counter.

There are two types of interrupts used in 8085 Microprocessor:

Hardware Interrupts and Software Interrupts

Software Interrupts

A software interrupts is a particular instructions that can be inserted into the desired location in

the rpogram. There are eight Software interrupts in 8085 Microprocessor. From RST0 to RST7.

RST0, RST1, RST2, RST3, RST4, RST5, RST6, RST7

They allow the microprocessor to transfer program control from the main program to the

subroutine program. After completing the subroutine program, the program control returns back

to the main program.

Hardware Interrupts

There are 6 interrupt pins in the microprocessor used as Hardware Interrrupts given below:

TRAP, RST7.5, RST6.5, RST5.5, INTR

Note:

INTA is not an interrupt. INTA is used by the Microprocessor for sending the acknowledgement.

TRAP has highest priority and RST7.5 has second highest priority and so on.

TRAP

It is non maskable edge and level triggered interrupt. TRAP has the highest priority and vectored

interrupt. Edge and level triggered means that the TRAP must go high and remain high until it is

acknowledged. In case of sudden power failure, it executes a ISR and send the data from main

memory to backup memory.

As we know that TRAP can not be masked but it can be delayed using HOLD signal. This

interrupt transfers the microprocessor's control to location 0024H.

TRAP interrupts can only be masked by reseting the microprocessor. There is no other way to

mask it.

RST7.5

It has the second highest priority. It is maskable and edge level triggered interrupt. The vector

address of this interrupt is 003CH. Edge sensitive means input goes high and no need to maintain

high state until it is recognized. It can also be reset or masked by reseting microprocessor. It can

also be resetted by DI instruction.

RST6.5 and RST5.5

These are level triggered and maskable interrupts. When RST6.5 pin is at logic 1, INTE flip-flop

is set. RST 6.5 has third highest priority and RST 5.5 has fourth highest priority.

It can be masked by giving DI and SIM instructions or by reseting microprocessor.

INTR

It is level triggered and maskable interrupt. The following sequence of events occurs when INTR

signal goes high. The 8085 checks the status of INTR signal during execution of each

instruction. If INTR signal is high, then 8085 complete its current instruction and sends active

low interrupt acknowledge signal, if the interrupt is enabled. On receiving the instruction, the

8085 save the address of next instruction on stack and execute received instruction. It has the

lowest priority. It can be disabled by reseting the microprocessor or by DI and SIM instruction.

UNIT-II

1. 8085 MICROPROCESSOR ARCHITECTURE

The 8085 microprocessor is an 8-bit processor available as a 40-pin IC package and uses +5

V for power. It can run at a maximum frequency of 3 MHz. Its data bus width is 8-bit and

address bus width is 16-bit, thus it can address 2
16

 = 64 KB of memory. The internal

architecture of 8085 is shown is Fig. 2.

Fig. 2 Internal Architecture of 8085

Arithmetic and Logic Unit

The ALU performs the actual numerical and logical operations such as Addition (ADD),

Subtraction (SUB), AND, OR etc. It uses data from memory and from Accumulator to

perform operations. The results of the arithmetic and logical operations are stored in the

accumulator.

Registers

The 8085 includes six registers, one accumulator and one flag register, as shown in Fig. 3.

In addition, it has two 16-bit registers: stack pointer and program counter. They are briefly

described as follows.

The 8085 has six general-purpose registers to store 8-bit data; these are identified as B, C,

D, E, H and L. they can be combined as register pairs - BC, DE and HL to perform some

16- bit operations. The programmer can use these registers to store or copy data into the

register by using data copy instructions.

Accumulator

Fig. 3 Register organisation

The accumulator is an 8-bit register that is a part of ALU. This register is used to store 8-bit

data and to perform arithmetic and logical operations. The result of an operation is stored in

the accumulator. The accumulator is also identified as register A.

Flag register

The ALU includes five flip-flops, which are set or reset after an operation according to data

condition of the result in the accumulator and other registers. They are called Zero (Z),

Carry (CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags. Their bit positions in the

flag register are shown in Fig. 4. The microprocessor uses these flags to test data conditions.

Fig. 4 Flag register

For example, after an addition of two numbers, if the result in the accumulator is larger than

8-bit, the flip-flop uses to indicate a carry by setting CY flag to 1. When an arithmetic

operation results in zero, Z flag is set to 1. The S flag is just a copy of the bit D7 of the

accumulator. A negative number has a 1 in bit D7 and a positive number has a 0 in 2’s

complement representation. The AC flag is set to 1, when a carry result from bit D3 and

passes to bit D4. The P flag is set to 1, when the result in accumulator contains even number

of 1s.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register is a

memory pointer. The microprocessor uses this register to sequence the execution of the

instructions. The function of the program counter is to point to the memory address from

which the next byte is to be fetched. When a byte is being fetched, the program counter is

automatically incremented by one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register, used as a memory pointer. It points to a memory

location in R/W memory, called stack. The beginning of the stack is defined by loading 16-

bit address in the stack pointer.

Instruction Register/Decoder

It is an 8-bit register that temporarily stores the current instruction of a program. Latest

instruction sent here from memory prior to execution. Decoder then takes instruction and

decodes or interprets the instruction. Decoded instruction then passed to next stage.

Control Unit

Generates signals on data bus, address bus and control bus within microprocessor to carry

out the instruction, which has been decoded. Typical buses and their timing are described as

follows:

 Data Bus: Data bus carries data in binary form between microprocessor and other

external units such as memory. It is used to transmit data i.e. information, results of

arithmetic etc between memory and the microprocessor. Data bus is bidirectional in

nature. The data bus width of 8085 microprocessor is 8-bit i.e. 2
8
 combination of

binary digits and are typically identified as D0 – D7. Thus size of the data bus

determines what arithmetic can be done. If only 8-bit wide then largest number is

11111111 (255 in decimal). Therefore, larger numbers have to be broken down into

chunks of 255. This slows microprocessor.

 Address Bus: The address bus carries addresses and is one way bus from

microprocessor to the memory or other devices. 8085 microprocessor contain 16-bit

address bus and are generally identified as A0 - A15. The higher order address lines

(A8 – A15) are unidirectional and the lower order lines (A0 – A7) are multiplexed

(time-shared) with the eight data bits (D0 – D7) and hence, they are bidirectional.

 Control Bus: Control bus are various lines which have specific functions for

coordinating and controlling microprocessor operations. The control bus carries

control signals partly unidirectional and partly bidirectional. The following control

and status signals are used by 8085 processor:

I. ALE (output): Address Latch Enable is a pulse that is provided when an

address appears on the AD0 – AD7 lines, after which it becomes 0.

II. RD (active low output): The Read signal indicates that data are being read

from the selected I/O or memory device and that they are available on the

data bus.

III. WR (active low output): The Write signal indicates that data on the data bus

are to be written into a selected memory or I/O location.

IV. IO/M (output): It is a signal that distinguished between a memory operation

and an I/O operation. When

1 it is an I/O operation.

IO/M = 0 it is a memory operation and

IO/M =

V. S1 and S0 (output): These are status signals used to specify the type of

operation being performed; they are listed in Table 1.

Table 1 Status signals and associated operations

S1 S0 States

0 0 Halt

0 1 Write

1 0 Read

1 1 Fetch

The schematic representation of the 8085 bus structure is as shown in Fig. 5. The

microprocessor performs primarily four operations:

I. Memory Read: Reads data (or instruction) from memory.

II. Memory Write: Writes data (or instruction) into memory.

III. I/O Read: Accepts data from input device.

IV. I/O Write: Sends data to output device.

The 8085 processor performs these functions using address bus, data bus and control bus as

shown in Fig. 5.

Fig. 5 The 8085 bus structure

2. 8085 PIN DESCRIPTION

Properties:

 It is a 8-bit microprocessor

 Manufactured with N-MOS technology

 40 pin IC package

 It has 16-bit address bus and thus has 2
16

 = 64 KB addressing capability.

 Operate with 3 MHz single-phase clock

 +5 V single power supply

The logic pin layout and signal groups of the 8085nmicroprocessor are shown in Fig. 6. All

the signals are classified into six groups:

 Address bus

 Data bus

 Control & status signals

 Power supply and frequency signals

 Externally initiated signals

 Serial I/O signals

Fig. 6 8085 microprocessor pin layout and signal groups

Address and Data Buses:

 A8 – A15 (output, 3-state): Most significant eight bits of memory addresses and the

eight bits of the I/O addresses. These lines enter into tri-state high impedance state

during HOLD and HALT modes.

 AD0 – AD7 (input/output, 3-state): Lower significant bits of memory addresses and

the eight bits of the I/O addresses during first clock cycle. Behaves as data bus

during third and fourth clock cycle. These lines enter into tri-state high impedance

state during HOLD and HALT modes.

Control & Status Signals:

 ALE: Address latch enable

 RD : Read control signal.

 WR : Write control signal.

 IO/M , S1 and S0 : Status signals.

Power Supply & Clock Frequency:

 Vcc: +5 V power supply

 Vss: Ground reference

 X1, X2: A crystal having frequency of 6 MHz is connected at these two pins

 CLK: Clock output

Externally Initiated and Interrupt Signals:

 RESET IN : When the signal on this pin is low, the PC is set to 0, the buses are tri-

stated and the processor is reset.

 RESET OUT: This signal indicates that the processor is being reset. The signal can

be used to reset other devices.

 READY: When this signal is low, the processor waits for an integral number of

clock cycles until it goes high.

 HOLD: This signal indicates that a peripheral like DMA (direct memory access)

controller is requesting the use of address and data bus.

 HLDA: This signal acknowledges the HOLD request.

 INTR: Interrupt request is a general-purpose interrupt.

 INTA : This is used to acknowledge an interrupt.

 RST 7.5, RST 6.5, RST 5,5 – restart interrupt: These are vectored interrupts and

have highest priority than INTR interrupt.

 TRAP: This is a non-maskable interrupt and has the highest priority.

Serial I/O Signals:

 SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using RIM

instruction.

 SOD: Serial output signal. Output SOD is set or reset by using SIM instruction.

3. INSTRUCTION SET AND EXECUTION IN 8085

Based on the design of the ALU and decoding unit, the microprocessor manufacturer

provides instruction set for every microprocessor. The instruction set consists of both

machine code and mnemonics.

An instruction is a binary pattern designed inside a microprocessor to perform a specific

function. The entire group of instructions that a microprocessor supports is called

instruction set. Microprocessor instructions can be classified based on the parameters such

functionality, length and operand addressing.

Classification based on functionality:

I. Data transfer operations: This group of instructions copies data from source to

destination. The content of the source is not altered.

II. Arithmetic operations: Instructions of this group perform operations like addition,

subtraction, increment & decrement. One of the data used in arithmetic operation is

stored in accumulator and the result is also stored in accumulator.

III. Logical operations: Logical operations include AND, OR, EXOR, NOT. The

operations like AND, OR and EXOR uses two operands, one is stored in

accumulator and other can be any register or memory location. The result is stored

in accumulator. NOT operation requires single operand, which is stored in

accumulator.

IV. Branching operations: Instructions in this group can be used to transfer program

sequence from one memory location to another either conditionally or

unconditionally.

V. Machine control operations: Instruction in this group control execution of other

instructions and control operations like interrupt, halt etc.

Classification based on length:

I. One-byte instructions: Instruction having one byte in machine code. Examples are

depicted in Table 2.

I. Two-byte instructions: Instruction having two byte in machine code. Examples are

depicted in Table 3

II. Three-byte instructions: Instruction having three byte in machine code. Examples

are depicted in Table 4.

Table 2 Examples of one byte instructions

Opcode Operand Machine code/Hex code

MOV A, B 78

ADD M 86

Table 3 Examples of two byte instructions

Opcode Operand Machine code/Hex code Byte description

MVI A, 7FH 3E First byte

 7F Second byte

ADI 0FH C6 First byte

 0F Second byte

Table 4 Examples of three byte instructions

Opcode Operand Machine code/Hex code Byte description

JMP 9050H C3 First byte

 50 Second byte

 90 Third byte

LDA 8850H 3A First byte

 50 Second byte

 88 Third byte

Addressing Modes in Instructions:

The process of specifying the data to be operated on by the instruction is called addressing.

The various formats for specifying operands are called addressing modes. The 8085 has the

following five types of addressing:

I. Immediate addressing

II. Memory direct addressing

III. Register direct addressing

IV. Indirect addressing

V. Implicit addressing

Immediate Addressing:

In this mode, the operand given in the instruction - a byte or word – transfers to the

destination register or memory location.

Ex: MVI A, 9AH

 The operand is a part of the instruction.

 The operand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

Memory direct addressing moves a byte or word between a memory location and register.

The memory location address is given in the instruction.

Ex: LDA 850FH

This instruction is used to load the content of memory address 850FH in the accumulator.

Register Direct Addressing:

Register direct addressing transfer a copy of a byte or word from source register to

destination register.

Ex: MOV B, C

It copies the content of register C to register B.

Indirect Addressing:

Indirect addressing transfers a byte or word between a register and a memory location.

Ex: MOV A, M

Here the data is in the memory location pointed to by the contents of HL pair. The data is

moved to the accumulator.

Implicit Addressing

In this addressing mode the data itself specifies the data to be operated upon.

Ex: CMA

The instruction complements the content of the accumulator. No specific data or operand is

mentioned in the instruction.

4. INSTRUCTION EXECUTION AND TIMING DIAGRAM:

Each instruction in 8085 microprocessor consists of two part- operation code (opcode) and

operand. The opcode is a command such as ADD and the operand is an object to be

operated on, such as a byte or the content of a register.

Instruction Cycle: The time taken by the processor to complete the execution of an

instruction. An instruction cycle consists of one to six machine cycles.

Machine Cycle: The time required to complete one operation; accessing either the memory

or I/O device. A machine cycle consists of three to six T-states.

T-State: Time corresponding to one clock period. It is the basic unit to calculate execution

of instructions or programs in a processor.

To execute a program, 8085 performs various operations as:

 Opcode fetch

 Operand fetch

 Memory read/write

 I/O read/write

External communication functions are:

 Memory read/write

 I/O read/write

 Interrupt request acknowledge

Opcode Fetch Machine Cycle:

It is the first step in the execution of any instruction. The timing diagram of this cycle is

given in Fig. 7.

The following points explain the various operations that take place and the signals that are

changed during the execution of opcode fetch machine cycle:

T1 clock cycle

i. The content of PC is placed in the address bus; AD0 - AD7 lines contains lower bit

address and A8 – A15 contains higher bit address.

ii. IO/M signal is low indicating that a memory location is being accessed. S1 and S0

also changed to the levels as indicated in Table 1.

iii. ALE is high, indicates that multiplexed AD0 – AD7 act as lower order bus.

T2 clock cycle

i. Multiplexed address bus is now changed to data bus.

ii. The RD signal is made low by the processor. This signal makes the memory device

load the data bus with the contents of the location addressed by the processor.

T3 clock cycle

i. The opcode available on the data bus is read by the processor and moved to the

instruction register.

ii. The RD signal is deactivated by making it logic 1.

T4 clock cycle

i. The processor decode the instruction in the instruction register and generate the

necessary control signals to execute the instruction. Based on the instruction further

operations such as fetching, writing into memory etc takes place.

Fig. 7 Timing diagram for opcode fetch cycle

Memory Read Machine Cycle:

The memory read cycle is executed by the processor to read a data byte from memory. The

machine cycle is exactly same to opcode fetch except: a) It has three T-states b) The S0

signal is set to 0. The timing diagram of this cycle is given in Fig. 8.

Fig. 8 Timing diagram for memory read machine cycle

Memory Write Machine Cycle:

The memory write cycle is executed by the processor to write a data byte in a memory

location. The processor takes three T-states and WR signal is made low. The timing

diagram of this cycle is given in Fig. 9.

I/O Read Cycle:

The I/O read cycle is executed by the processor to read a data byte from I/O port or from

peripheral, which is I/O mapped in the system. The 8-bit port address is placed both in the

lower and higher order address bus. The processor takes three T-states to execute this

machine cycle. The timing diagram of this cycle is given in Fig. 10.

Fig. 9 Timing diagram for memory write machine cycle

Fig. 10 Timing diagram I/O read machine cycle

I/O Write Cycle:

The I/O write cycle is executed by the processor to write a data byte to I/O port or to a

peripheral, which is I/O mapped in the system. The processor takes three T-states to execute

this machine cycle. The timing diagram of this cycle is given in Fig. 11.

Fig. 11 Timing diagram I/O write machine cycle

Ex: Timing diagram for IN 80H.

The instruction and the corresponding codes and memory locations are given in Table 5.

Table 5 IN instruction

Address Mnemonics Opcode

800F IN 80H DB

8010 80

i. During the first machine cycle, the opcode DB is fetched from the memory, placed

in the instruction register and decoded.

ii. During second machine cycle, the port address 80H is read from the next memory

location.

iii. During the third machine cycle, the address 80H is placed in the address bus and the data

read from that port address is placed in the accumulator.he timing diagram is shown in Fig. 12.

Fig. 12 Timing diagram for the IN instruction

5. 8085 INTERRUPTS

Interrupt Structure:

Interrupt is the mechanism by which the processor is made to transfer control from its

current program execution to another program having higher priority. The interrupt signal

may be given to the processor by any external peripheral device.

The program or the routine that is executed upon interrupt is called interrupt service routine

(ISR). After execution of ISR, the processor must return to the interrupted program. Key

features in the interrupt structure of any microprocessor are as follows:

i. Number and types of interrupt signals available.

ii. The address of the memory where the ISR is located for a particular interrupt signal.

This address is called interrupt vector address (IVA).

iii. Masking and unmasking feature of the interrupt signals.

iv. Priority among the interrupts.

v. Timing of the interrupt signals.

vi. Handling and storing of information about the interrupt program (status

information).

Types of Interrupts:

Interrupts are classified based on their maskability, IVA and source. They are classified as:

i. Vectored and Non-Vectored Interrupts

 Vectored interrupts require the IVA to be supplied by the external device that

gives the interrupt signal. This technique is vectoring, is implemented in

number of ways.

 Non-vectored interrupts have fixed IVA for ISRs of different interrupt

signals.

ii. Maskable and Non-Maskable Interrupts

 Maskable interrupts are interrupts that can be blocked. Masking can be done

by software or hardware means.

 Non-maskable interrupts are interrupts that are always recognized; the

corresponding ISRs are executed.

iii. Software and Hardware Interrupts

 Software interrupts are special instructions, after execution transfer the

control to predefined ISR.

 Hardware interrupts are signals given to the processor, for recognition as an

interrupt and execution of the corresponding ISR.

Interrupt Handling Procedure:

The following sequence of operations takes place when an interrupt signal is recognized:

i. Save the PC content and information about current state (flags, registers etc) in the

stack.

ii. Load PC with the beginning address of an ISR and start to execute it.

iii. Finish ISR when the return instruction is executed.

iv. Return to the point in the interrupted program where execution was interrupted.

Interrupt Sources and Vector Addresses in 8085:

Software Interrupts:

8085 instruction set includes eight software interrupt instructions called Restart (RST)

instructions. These are one byte instructions that make the processor execute a subroutine at

predefined locations. Instructions and their vector addresses are given in Table 6.

Table 6 Software interrupts and their vector addresses

Instruction Machine hex code Interrupt Vector Address

RST 0 C7 0000H

RST 1 CF 0008H

RST 2 D7 0010H

RST 3 DF 0018H

RST 4 E7 0020H

RST 5 EF 0028H

RST 6 F7 0030H

RST 7 FF 0032H

The software interrupts can be treated as CALL instructions with default call locations. The

concept of priority does not apply to software interrupts as they are inserted into the

program as instructions by the programmer and executed by the processor when the

respective program lines are read.

Hardware Interrupts and Priorities:

8085 have five hardware interrupts – INTR, RST 5.5, RST 6.5, RST 7.5 and TRAP. Their

IVA and priorities are given in Table 7.

Table 7 Hardware interrupts of 8085

Interrupt Interrupt vector

address

Maskable or non-

maskable

Edge or level

triggered

priority

TRAP 0024H Non-makable Level 1

RST 7.5 003CH Maskable Rising edge 2

RST 6.5 0034H Maskable Level 3

RST 5.5 002CH Maskable Level 4

INTR Decided by hardware Maskable Level 5

Masking of Interrupts:

Masking can be done for four hardware interrupts INTR, RST 5.5, RST 6.5, and RST 7.5.

The masking of 8085 interrupts is done at different levels. Fig. 13 shows the organization of

hardware interrupts in the 8085.

Fig. 13 Interrupt structure of 8085

The Fig. 13 is explained by the following five points:

i. The maskable interrupts are by default masked by the Reset signal. So no interrupt is

recognized by the hardware reset.

ii. The interrupts can be enabled by the EI instruction.

iii. The three RST interrupts can be selectively masked by loading the appropriate word

in the accumulator and executing SIM instruction. This is called software masking.

iv. All maskable interrupts are disabled whenever an interrupt is recognized.

v. All maskable interrupts can be disabled by executing the DI instruction.

RST 7.5 alone has a flip-flop to recognize edge transition. The DI instruction reset interrupt

enable flip-flop in the processor and the interrupts are disabled. To enable interrupts, EI

instruction has to be executed.

SIM Instruction:

The SIM instruction is used to mask or unmask RST hardware interrupts. When executed,

the SIM instruction reads the content of accumulator and accordingly mask or unmask the

interrupts. The format of control word to be stored in the accumulator before executing SIM

instruction is as shown in Fig. 14.

Fig. 14 Accumulator bit pattern for SIM instruction

In addition to masking interrupts, SIM instruction can be used to send serial data on the

SOD line of the processor. The data to be send is placed in the MSB bit of the accumulator

and the serial data output is enabled by making D6 bit to 1.

RIM Instruction:

RIM instruction is used to read the status of the interrupt mask bits. When RIM instruction

is executed, the accumulator is loaded with the current status of the interrupt masks and the

pending interrupts. The format and the meaning of the data stored in the accumulator after

execution of RIM instruction is shown in Fig. 15.

In addition RIM instruction is also used to read the serial data on the SID pin of the

processor. The data on the SID pin is stored in the MSB of the accumulator after the

execution of the RIM instruction.

Fig. 15 Accumulator bit pattern after execution of RIM instruction

Ex: Write an assembly language program to enables all the interrupts in 8085 after

reset. EI : Enable interrupts

MVI A, 08H : Unmask the interrupts

SIM : Set the mask and unmask using SIM

instruction Timing of Interrupts:

The interrupts are sensed by the processor one cycle before the end of execution of each

instruction. An interrupts signal must be applied long enough for it to be recognized.

The longest instruction of the 8085 takes 18 clock periods. So, the interrupt signal must

be applied for at least 17.5 clock periods. This decides the minimum pulse width for the

interrupt signal.

The maximum pulse width for the interrupt signal is decided by the condition that the

interrupt signal must not be recognized once again. This is under the control of the

programmer.

Unit – III

3.1 What is meant by memory address space?

It is the maximum possible memory size which can be used with µp.

(i) Address space partitioning:

The allocation of address to memory chips and I/O devices depends on the µp architecture. Some

processors provide only one address space thereby treating I/O devices as memory locations.

Intel 8085 uses a 16- bit wide address bus for addressing memories and I/O devices, using 16- bit

wide address bus it can access 2
16

 = 64 bytes of memory and I/O devices. The 64k address are to

be assigned to memories and I/O devices for their addressing. There are two schemes for the

allocation of address to memories and input/output devices.

Arithmetic Operators

The basic arithmetic operations are addition, subtraction, multiplication, and division. Arithmetic is

performed according to an order of operations.An operator performs an action on one or more

operands. The common arithmetic operators are:

Action Common Symbol

Addition +

Subtraction -

Multiplication *

Division /

Modulus (associated with integers) %

These arithmetic operators are binary that is they have two operands. The operands may be either

constants or variables.This expression consists of one operator (addition) which has two operands. The

first is represented by a variable named age and the second is a literal constant. If age had a value of 14

then the expression would evaluate (or be equal to) 15.These operators work as you have learned them

throughout your life with the exception of division and modulus. We normally think of division as

resulting in an answer that might have a fractional part (a floating-point data type). However, division,

when both operands are of the integer data type, may act differently. Please refer to the next section on

“Integer Division and Modulus”.

Arithmetic Assignment Operators

Many programming languages support a combination of the assignment (=) and arithmetic operators

(+, -, *, /, %). Various textbooks call them “compound assignment operators” or “combined assignment

operators”. Their usage can be explained in terms of the assignment operator and the arithmetic

operators. In the table, we will use the variable age and you can assume that it is of integer data type.

 Arithmetic assignment examples: Equivalent code:

age += 14; age = age + 14;

age -= 14; age = age - 14;

age *= 14; age = age * 14;

age /= 14; age = age / 14;

age %= 14; age = age % 14;

Flowchart

1. Multiplication of two 8-bit numbers

Example: Multiply two 8-bit numbers stored at memory locations 1050 and 1051 and store

the result in memory location 1052.

Memory location Label Mnemonics Opcode

1000 MVI B, 00 06

1001 00

1002 LHLD 1050 2A

1003 50

1004 10

1005 XCHG EB

1006 LHLD 1052 2A

1007 52

1008 10

1009 CALL SUB1 CD

100A 1C

100B 10

100C DAD D 19

100 D JC LOOP1 DA

100E 14

100F 10

1010 CALL SUB1 CD

1011 1C

1012 10

1013 INR B 04

1014 LOOP1 SHLD 2500 22

1015 00

1016 25

1017 MOV A,B 78

1018 SHLD 2502 22

1019 02

101A 25

101B HLT 76

101C SUB1 MOV A,L 7D

101D CMA 2F

101E MOV L,A 6F

101F MOVA,H 7C

1020 CMA 2F

1021 MOV H,A 67

1022 INX H 23

1023 RET C9

2. Division of two 8-bit numbers

Example: Write an ALP to divide two 8-bit numbers

Label Mnemonics Comment

STEP 1:

STEP 2

LDA 6501 H

MOV B, A

LDA 6500 H

MVI C, 00H

CMP B

JC STEP 2

SUB B

INR C

JMP STEP 1

STA 6503H

MOV A, C

STA 6502 H

Load the divisor in accumulator

Move the divisor to B register

Load the dividend in accumulator

Clear C register to store quotient

Compare the content of A and B

If divisor < dividend , go to STEP 2

Subtract divisor from dividend

Increment quotient

continue the subtraction

Store the accumulator

Move the content of C to A

Store the quotient

3. Ascending order – Sorting of Numbers

Example: Write an ALP to arrange the data bytes in acending order (sorting of numbers)

Memory Label Mnemonics Comment

Address

4100H

4103 H

4104 H

LOC 5:

LDA 4300 H

MOV B, A

MOV C, B

Load the number of passes from memory into acc.

Move the data from the acc. to register B

Move the data from register B into the register C

4105 H LXI H 4400 H Load H-L pair with memory address

4108 H LOC 3: MOV A, M Move the data from memory location to acc.

4109 H INX H Increment the content of H-L pair

410A H CMP M Compare the content of M with acc.

410B H JC LOC 1 If carry = 1, Go to LOC 1.

410E H MOV D, M The data in memory pointed by H-L pair is

 transferred to register D

4110 H DCX H Decrement the content of H-L pair

4111 H MOV M, D Move the data in register D to H-L pair

4112 H INX H Increment the content of the H-L pair

4113 H LOC 1: DCR C Decrement the register C

4114 H JZ LOC 2 If the counter ≠ 0, jump to LOC 3

4117 H JMP LOC 3 If the counter = 0, jump to LOC 2

411A H LOC 2: DCR B Decrement register B (pass counter)

411B H JZ LOC 4 If the counter = 0, jump to LOC 4

411E H JMP LOC 5 If the counter ≠ 0, jump to LOC 5

4121 H LOC 4: HLT Stop

4. To find Two’s compliment

Example: Write an ALP to find Two‟s compliment of a 16-bit number

Label Mnemonics Comment

LXI H, 6501 H Address of 8 LSBs of the given no.

 MOV B, 00 H Clear B register

 MOV A, M Move 8 LSBs to accumulator

 CMA 1‟s compliment of 8 LSBs

 ADI 01 H 2‟s compliment of 8 LSBs

 STA 6503 H Store 8 LSBs of the result

 JNC STEP Jump on no carry to “STEP”

 INR B If carry is available, store in B

STEP: INX H Address of 8 MSBs of the given no.

 MOV A, M Move 8 MSBs to accumulator

 CMA 1‟s compliment

 ADD B Add carry

 STA 6504 H Store 8 MSBs of the result

 HLT Halt

UNIT-IV

Execution Unit (EU):

The EU contains (i) ALU (ii) General purpose registers (iii) Index registers (iv)

pointers .

Execution unit receives program instruction codes and data from the BIU, executes them and

stores the results in the general registers. It can also store the data in a memory location or send

them to an I/O device by passing the data back to the BIU. This unit, EU, has no connection with

the system Buses. It receives and outputs all its data through BIU.

ALU (Arithmetic and Logic Unit) : The EU unit contains a circuit board called the Arithmetic

and Logic Unit. This unit can perform various arithmetic and logical operation, if required, based

on the instruction to be executed. It can perform arithmetical operations, such as add, subtract,

increment, decrement, convert byte/word and compare etc and logical operations, such as AND,

OR, exclusive OR, shift/rotate and test etc.

Registers : A register is like a memory location where the exception is that these are denoted by

name rather than numbers. It has 4 data registers, AX, BX, CX, DX and 2 pointer registers SP,

BP and 2 index registers SI, DI and 1 temporary register and 1 status register FLAGS .

AX, BX, CX and DX registers has 2 8-bit registers to access the high and low byte data registers.

The high byte of AX is called AH and the low byte is AL. Similarly, the high and low bytes of

BX, CX, DX are BH and BL, CH and Cl, DH and DL respectively. All the data, pointer, index

and status registers are of 16 bits. Else these, the temporary register holds the operands for the

ALU and the individual bits of the FLAGS register reflect the result of a computation.

Bus Interface Unit:

The BIU contains (i) Segment registers (ii) Instruction registers (iii) Instruction queue and

(v) Flag register

As the EU has no connection with the system Busses, this job is done by BIU. BIU and EU are

connected with an internal bus. BIU connects EU with the memory or I/O circuits. It is

responsible for transmitting data, addresses and control signal on the busses.

Registers : BIU has 4 segment busses, CS, DS, SS, ES. These all 4 segment registers holds the

addresses of instructions and data in memory. These values are used by the processor to access

memory locations. It also contain 1 pointer register IP. IP contains the address of the next

instruction to executed by the EU.

Instruction Queue : BIU also contain an instruction queue. When the EU executes instructions,

the BIU gets up to 6 bytes of the next instruction and stores them in the instruction queue and

this process is called instruction prefetch. This is a process to speed up the processor. Also when

the EU needs to be connected with memory or peripherals, BIU suspends instruction prefetch

and performs the needed operations

Purpose of using Instruction Queue:

BIU contains an instruction queue. When the EU executes instructions, the BIU gets up to 6

bytes of the next instruction and stores them in the instruction queue and this process is called

instruction prefetch. This is a process to speed up the processor. A subtle advantage of

instruction queue is that, as next several instructions are usually in the queue, the BIU can access

memory at a somewhat "leisurely" pace. This means that slow-memory parts can be used without

affecting overall system performance.

5.2 Instruction Set of Intel 8085 Microprocessor

Instruction set of 8085 microprocessor can be divided into data copy/transfer instructions,

arithmetic and logical instructions, branch/loop instructions, machine control instructions, flag

manipulation instructions, string manipulation instructions. Instruction set refers to the

instructions which can be used to program a microprocessor etc,. Instruction set can be divided

into data copy/transfer instructions, arithmetic and logical instructions, branch/loop instructions,

machine control instructions, flag manipulation instructions, string manipulation instructions.

The instruction set of 8085 microprocessor is:

(i) Data Copy/Transfer Instructions

These are the type of instructions used to copy, move etc., data from source to destination.

Some of the data copy/transfer instructions are:

MOV : Move data from register to register, memory to register, register to memory,

memory to accumulator, accumulator to memory etc,.

PUSH : Push data into register, memory etc,.

POP : Pop data from register, memory etc,.

XCHG : Exchange data between register, memory etc,.

IN : Input from fixed port or variable port

OUT : Output to fixed port or variable port

LDS : Load pointer to DS

LES : Load pointer to ES

LAHF : Load AH with flags

SAHF : Store AH into flags

PUSHF : Push flags

POPF : Pop flags

(ii) Arithmetic and Logical Instructions

These are the type of instructions used to perform arithmetic operations like addition,

subtraction etc., and logical operations like and, or etc,. Some of the arithmetic and logical

instructions are :

(a) Arithmetic Instructions

ADD : Addition

ADC : Addition with Carry

INC : Increment by 1

AAA : ASCII Adjust for Addition

DAA : Decimal Adjust for Addition

SUB : Subtraction

SBB : Subtraction with Borrow

DEC : Decrement by 1

AAS : ASCII Adjust for Subtraction

DAS : Decimal Adjust for Subtraction

MUL : Unsigned Multiplication

IMUL : Signed Multiplication

AAM : ASCII Adjust for Multiplication

DIV : Unsigned Division

IDIV : Signed Division

AAD : ASCII Adjust for Division

NEG : Change Sign

CMP : Compare

CBW : Convert Byte to Word

CWD : Convert Word to Double Word

(b) Logical Instructions

AND : Logical AND

OR : Logical OR

NOT : Logical NOT

XOR : Logical XOR

SHL : Shift Logical Left

SHR : Shift Logical Right

ROL : Rotate Left

ROR : Rotate Right

RCL : Rotate Left through Carry Flag

RCR : Rotate Right through Carry Flag

(iii) Branch/Loop Instructions

These are the type of instructions used to control the transfer to a specified address. Some of the

branch/loop instructions are:

(a) Unconditional Branch/Loop Instructions

CALL : Call a subroutine Unconditionally

RET : Return from a procedure

INTN : Interrupt of Type N

INTO : Interrupt on Over flow

LOOP : Loop instructions Unconditionally

(b) Conditional Branch/Loop Instructions

JZ : Jump if zero

JE : Jump if equal

JNZ : Jump if not zero

JNE : Jump if not equal

JL : Jump if lesser

JLE : Jump if lesser or equal

JG : Jump if greater

JGE : Jump if greater or equal

JO : Jump on Over flow

JNO : Jump on not Over flow

JS : Jump on Sign

JNS : Jump on not Sign

LOOPZ : Loop if zero

LOOPE : Loop if equal

LOOPNZ : Loop if not zero

LOOPNE : Loop if not equal

(iv) Machine Control Instructions

These are type of instructions used to control machine status. Some of the machine control

instructions are:

WAIT : Wait for the test input to go low

HLT : Halt the processor

NOP : No operation

ESC : Escape to external device

LOCK : Lock instruction prefix

(v) Flag manipulation Instructions

These are the type of instructions used to manipulate different flags present in the flag register of

8086 microprocessor. Some of the flag manipulation instructions are:

CLC : Clear Carry Flag

STC : Set Carry Flag

CLD : Clear Direction Flag

STD : Set Direction Flag

CLI : Clear Interrupt Flag

STI : Set Interrupt Flag

(vi) String Manipulation Instructions

These are the type of instructions used to manipulate strings. Some of the string manipulation

operations are:

REP : Repeat Instruction Prefix

REPE : Repeat if equal

REPZ : Repeat if zero

REPNE : Repeat if not equal

REPNZ : Repeat if not zero

MOVS : Move String Byte/Word

CMPS : Compare String Byte/Word

SCAS : Scan String Byte/Word

LODS : Load String Byte/Word

STOS : Store String Byte/Word

5.3 Addressing Modes of 8085

8085 memory addressing modes provide flexible access to memory, allowing you to easily

access variables, arrays, records, pointers, and other complex data types. 12 addressing modes

classified in 5 groups

(1) Addressing modes for register and immediate data

(i). Register addressing: - the instruction will specify the name of the register which holds the

data to be operated by the instruction

Ex: MOV CL, DH : content of 8-bit DH register is moved to another 8-bit register CL

(ii). Immediate addressing: - an 8-bit or 16-bit data is specified as a part of the instruction

Ex: MOV DL, 08H : The 8-bit data (08H) given in the instruction is moved to DL

register

1. Addition of two 16-bit data:

Label Mnemonics

MOV AX, DATA 1

MOV CL, 00H

Comments

Load the first data in AX

register Clear the CL register

for carry

 ADD AX, DATA 2 Add 2nd data to AX, sum will be in

AX

 MOV 2000H, AX Store sum in memory location 1

 JNC STEP Check the status of carry flag

 INC CL If carry is set: increment CL by

one

STEP MOV 2002H CL Store carry in memory location 2

 HLT Halt

2. Subtraction of Two 16-bit data

Label Mnemonics Comments

MOV SI,

2000H MOV

AX, [SI] MOV

BX, [SI+2]

MOV CL, 00H

SUB AX, BX

JNC STEP

INC CL

Load the address of data in SI

register Get the minuend in AX

register

Get the subtrahend in BX register

Clear the CL register to account for

sign Get the difference in AX

register

Check the status of carry flag

If carry is set: increment CL by one

STEP

NOT AX

ADD AX,

0001H MOV

[SI+4], AX

Then take 2’s compliment of difference

Store the difference in memory

location 1

 MOV [SI+6], CL Store sign bit in memory location 2

HLT Halt

3. Multiplication of Two 16-bit data

Label Mnemonics comments

MOV AX, [2000] Move the first data to AX register from

memory MUL [2002] Multiply the data in AX with the data in

memory

location 2002 H

MOV [2100], DX Save the MSW (higher order) of the result in DX

Register

MOV [2102], AX Save the LSW (ligher order) of the result in AX

register

HLT Halt

4. Division of Two 32-bit data by 16-bit data

Label Mnemonics comments

MOV DX, [2000] Move the high order word dividend to DX

register MOV AX, [2002 Move the lower order word dividend to AX

register DIV [2004] Divide the data in DX: AX by the divisor

MOV [2100], AX The quotient is stored in AX

MOV [2102], DX The remainder is stored in

DX HLT Halt

5. Find the sum of the elements in an array

Label Mnemonics comments

MOV SI, 2000H Set SI register as pointer for

array MOV DI, 3000H Set DI register as pointer for

result

MOV CL, [SI] Set CL as count for number of bytes in

array INC SI Set Si to point to I- st byte of array

MOV AX, 0000H Set initial sum as zero

STEP 1: DD AL, [SI] Add a byte of array to

JNC STEP2 Check for carry flag

INC AH If carry flag is set then increment

AH STEP 2: INC SI Increment array pointer

LOOP STEP 1 Repeat addition until count is zero

MOV [DI], AX Store the sum in memory

HLT Halt

6. Find the largest data of signed numbers

Label Mnemonics comments

MOV AX, @data Initialize DS

register MOV DS, AX

MOV SI 2000H Initialize SI register

MOV BX, 0000H Initialize maximum number

MOV CX, 05H 5 numbers to be

processed STEP 2: MOV AX, [SI] Load

number from sequence

CMP BX, AX Compare with current maximum

number JCE STEP1

MOV BX, AX Save new maximum number

MOV DX, SI Save location of maximum

number STEP 2: INC SI Update pointer

LOOP STEP 2: Repeat until CX

> 0 MOV AX, 5C00H

HLT Halt

7. Sorting of Data in ascending order

Label Mnemonics comments

MOV AX, @data Initialize DS

register MOV DS, AX

MOV CX,Bytes Number of bytes used by elements

STEP 1 MOV DX, CX Copy in DX register

 DEC DX Number of comparisons

 ADD SI, DX Point to the last element

 MOV AX, Array [SI] Move the number to AX register

STEP 2: CMP Array [SI-2], AX Compare it with previous number

 JBE STEP 3 If previous number < AX, then go to

step 3

 MOV DL, Array {SI-2} Exchange the elements

 MOV Array [SI], DL Point to previous element

DEC SI

DEC DX Decrement counter

 JNZ STEP 2 If DX ≠ 0 then

repeat

STEP 3: MOV Array [SI], AX Exchange

 INC CX CX = CX +1

CMP CX, Bytes Compare CX with number of bytes

JBE STEP 1 If CX < number of bytes, goto

step 1 MOV AX, 5C00H

HLT Halt

8. Finding Factorial of 8-bit dat

Label Mnemonics

MOV AX, @data

comments

Initialize DS register

 MOV DS, AX

MOV AL, Num

Number to AL

STEP 1 MOV CL, AL Copy in DX register

LOOP 2:

DEC DX

MOV AH,

00

CMP AL, 1

JC LOOP 1

MOV BL, 2

MOV AL,

Keep a copy in CL

Clear upper 8 bits of

accumulator If number = 1

then factorial = 1

b = 2

a = 1

a = a x b

C BL b = b +1

CMP BL, CL Is BL < = CL

JNA LOOP2 If yes, then do another pass

LOOP 1: MOV Fact , AX Fact =

AX MOV AX, 5C00H

HLT Halt

Unit –V

5.1 Delays:

Delay routines are subroutines used for maintaining the timings of various operations in

µp. In control applications, certain equipment need to be ON/OFF after a specified time delay. In

some applications, a certain operation has to be repeated after a specified time interval. In such

cases simple time delay routines can be used to maintain the timings of the operations. A delay

routine is generally written as a subroutine (It need not be a subroutine always. It can be even a

part of main program). In delay routine a count (number) is loaded in a register of µp. Then it is

decremented by one and the zero flags is checked to verify whether the content of register is zero

or not. When it is zero the time delay is over and the controls transferred to main program to

carry out the desired operation.

The delay time is given by the total time taken to execute the delay routine. It can computed

by multiplying the total number of T required to execute subroutine and the time for T-state of

the processor. The total number of time can be computed from the knowledge of T states each

instruction. The time for one T state processor is given by the inverse of the internal clock

frequency of the processor. For example, of the 8085 µp has 5 MHz quartz crystal then,

5.1.1 Time delay using one register:

The flow chart in Fig. 5.1 shows a time delay loop. A count is loaded in a register, and

the loop is executed until the count reaches zero. The set of instructions necessary to set up the

loop is also given Fig 5.1

Thus we see that delay obtained is very small. For some purpose this time is sufficient. If more

delay is required 3 or more registers can be used.

(a) (b)

Fig.5.2

Similarly , the time delay with in a loop can be increased by using instructions such that will not

affect the program except to increase the time delay. For example, the instruction NOP (no

operation) can add four T states in the delay loop. The desired time delay can obtained by using

any or all available registers.

5.1.2 Delay subroutine using 3 register:

The delay program using 3 registers is given below. To see the indication after certain

delay one LED display can be incorporated. The interfacing circuit of a simple LED is shown in

Fig.5.3. The LED display is connected to the pin PB0 of the port B through the buffer. A 560

ohm register is used in series with the LED to limit the circuit drawn by it. A pull up register of

about 1 k is used to boost the output voltage of the buffer. The control wordis 98 H, which makes

port B as output port.

Fig 5.3: Interfacing of LED display

The numbers 50 in register B, FF in C and FF in D are moved to get the desired delay. The delay

time with to get the desired delay. The delay time with these numbers is a about 25 sec. This

time has been noted by stop watch in the laboratory. The maximum delay with 3 registers can be

obtained when all registers are loaded with FF. The maximum delay is about 74 sec.

Example 1:

Write a delay routine to produce a time delay of 0.5 m sec in 8085 µp based system

whose clock source is 6 MHz quartz crystal.

Solution:

The delay required in 0.5 m sec, hence an 8- bit register of 8085 can be used to store a

count value and then decrement to zero. The delay routine is written as a subroutine as shown

below:

Loop

MVI D,N Load the count value, N in D register.

DCR D Decrement the count

JNZ Loop If the count is not zero go to the loop

RET Return to main program

5.2 Generation of square waves or pulses using µp:

A square wave or pulse can easily be generated by microprocessor. The µp sends high

and then low signals to generate square wave or pulse. A pulse or square wave can be generated

using I/O port or SOD line or timer/ counter (Intel 8253)

To generate square wave connections are made in Fig. 5.4. The pin PBo of the port B of

8255-2 is used for taking output. This is connected to a buffer 7407. The final output is taken

from the buffer terminal. The control word used in the program is 98H to make port B an output

port.

Fig 5.4: To generate square wave using µp

In this program Delay 1 controls the time period for which the square wave remains low, ie, zero.

Delay 2 controls the time for which the wave remains High ie, 1. If the time period for Low and

High are to be kept equal the counts in register B and register c are made equal. For such a case

there is no need of two subroutines only one delay subroutine will be called at two places ie, at

2408 and 240F memory addresses .There will be slight difference in timing of Low and High due

to the instruction JMP loop. If accuracy is desired this can be adjusted by suitable adjustment in

the cunts of register B and register C. The difference can also be minimized by inserting two

NOP instructions in Delay 1 subroutines. The instruction JMP Loop has been used at the end of

the program to repeat the whole process to generate equal wave.

5.2.1 To generate square wave or pulse using SOD line:

A square wave can also be generated using SOD line of the µp. zero and one can be

outputted at SOD lines using SIM instruction. The execution of SIM instruction loads the content

of the 7
th

 bit of the accumulator into SOD latch. While executing SIM instruction the 6
th

 bit of

the accumulator is set to 1 to enable SOD lines. To generate square wave the connections are

made as shown in Fig 5.5. The SOD terminal is available on a µp kit.

Fig 5.5: To generate square wave using SOD lines

Delay 1 and Delay 2 are subroutines to control time periods for which SOD line remains

Low and High respectively. To output Low on the SOD line the 7
th

 bit of the accumulator is set

to zero. The 6
th

 bit is set to 1 as it is for enabling the SOD line. Other bits of the accumulator are

for setting/resetting of Interrupts. For this case other bits are zero or one, it is immaterial. In the

above program they have been set to zero. The first instruction of the program MVI A, 40

indicates that the 7
th

 bit is zero, 6
th

 bit is one and other bits are zero. The SIM instruction outputs

the 7
th

 bit of the accumulator on SOD line. CALL Delay 1 is for controlling the time period for

which the square wave remain low. The instruction MVI A, CO indicates that the 7
th

 bit of the

accumulator is one, 6
th

 bit one and other bits zero. Now the execution of SIM instruction outputs

High, ie, 1 on the SOD line. Call Delay 2controls the time period for which the square wave

remains High. The JMP loop instruction repeats the whole process to generate a square wave.

5.3 Sensors and Transducers:

5.3.1 Transducers or Transductors:

A general term used for any device receiving input power from one system and supplying

output power corresponding to the input certain characteristics(e.g wave from) to another

system; which may electrical, mechanical ,or acoustic and thus including transformers,

amplifiers, filters, microphones , loud speakers etc.,

Transducers syn.sensors:

Any device that converts a non-electrical parameters ,e.g. sound , pressure, or light, into

electrical signals or vice versa. The variations in the electrical signal parameters are functions of

the input parameter. Transducers are used in the electro acoustic field. Gramophone pickups,

microphones, and loud-speakers are all electro acoustic transducers. The term is also applied to

device in which both the input and output electrical signals. Such a device is known as an electric

transducers.

For the measurement of physical quantities like temperature, pressure, speed, flow etc.,

transducers are used to current them to electrical quantities. The electrical output of the

transducers is proportional to the input quantity which may be temperature or speed or any other

physical quantity.

A transducers used for strain measurement is called a strain Gauge. Strain gauges are

used to measure strains and stresses in structures and strain.

Sensors:

A transducers or device whose input is a physical phenomenon and whose output is a

quantitative measure of that physical phenomenon.

5.4 Measurement of physical quantities:

Microprocessor – based systems are widely used in industries for the measurement,

display and monitoring of physical quantities like temperature, pressure , speed , flow etc.,

Transducers are used to convert the physical quantities into electrical signal. If the electrical

signal is small it is amplified ,using amplifiers. The electrical signal is applied to an A/D

converter which is connected to a µc. It more than one physical quantities are to be monitored a

multiplexer is included in the interface. A schematic diagram for general interface is shown in

Fig.5.6

Fig 5.6: Schematic diagram of Interface for physical quantity measurement

5.4.1 Temperature measurement and control:

For the measurements of temperature one of the following devices are used.

(i) Resistance thermometers (-100 to +300
0
c)

(ii) Thermo couples (-250 to +200
0
c)

(iii) Thermistor (-100 to +100
0
c)

(iv) Pyrometers(+100 t0 +5000
0
c)

(i) Resistance thermometers:

Platinum wires are frequently used in resistance thermometers for industrial applications

because of greater resolution, and mechanical and electrical stability as compared to copper or

nickel wires.

A change in temperature causes a change in resistance. The resistance thermometer is

placed in an arm of a wheatstone bridge to get a voltage proportional to temperature.

(ii) Thermistor:

A thermistor is a semiconductor device fabricated from a sintered mixture of metal alloys

having a large negative temperature co efficient. A thermistor is used in a wheatstone bridge to

get a voltage proportional to temperature. It can be used in the range of -100
0
c to +100

0
c for

greater accuracy as compared to platinum resistance thermometer.

(iii) Thermocouple:

A two-terminal device based on the seeback effect, which is composed of two dissimilar

metals that produce a voltage across function that is linearly proportional to the temperature nof

the junction.

A thermocouple is the most widely used transducer to measure temperature.

Thermocouple materials for the different range of temperatures are as follows:

Material Temp . range
0
c

Iron-constantan -200 to +1300

Chromel – alnmel -200 to +1200

Copper – constantan -200 to +400

Pt – Rh – Platinum 0 to 1500

Tungsten – rhenium O to 2000

5.4.2 Microprocessor – Based scheme:

Fig 5.7(a) shows a microprocessor-based scheme for temperature measurement and

control. The output of a thermocouple proportional to the furnace or oven etc,. is in millivolt. It

is to be amplified using multistage amplifier before it is processed by microprocessor. The

amplified voltage is applied to an A/D converter. The µp sends a start of conversion signal to the

A/D converter through the port of 8255PPI. When A/D converter completes conversion, it

sends an end of conversional signal to microprocessor. Having received an end of conversion

signal from A/D converter the microprocessor reads the output of the A/D converter which is a

digital quantity proportional to the temperature to be measured. The µp displays the measured

temperature. If the temperature of a furnace, oven or water- bath is to be controlled, the µp first

measures its temperature and then compares the measured temperature with a reference

temperature at which the temperature is to be maintained. If the measured temperature is higher

than the reference temperature, µp sends control signal to reduce temperature .If the measured

temperature is less than the reference temperature, the µp sends a control signal to increase

temperature. The temperature of a furnace or oven can be increased or decreased by increasing or

decreasing the final input to the furnace. If heating is done by electric heaters, current in heating

element is controlled.

Fig 5.7(a): µp based scheme for temperature measurement

Fig. 5. 7(b) shows an amplifier circuit to amplifier the output of the thermocouple, D.C. level

indicator is for initial adjustment.

Fig 5.7(b): Three stage Amplifier and D.C. Level Detector

5.4.3 Temperature Monitoring System:

Two transducers have been shown in figure 6. These transducers sense the temperature of

two ovens. The temperatures of these two ovens are to be maintained at T1 and T2 respectively.

The µp sends command to switch on the channel s1 to get the electrical signal proportional to the

temperature of oven no 1. Then it sends start of conversion pulse S/C to the A/D converter. After

the conversion is over the A/D converter sends end of conversion signal E/C to the µp. on

receiving E/C signal the µp reads the output of the A/D converter. The output of the A/D

converter is a digital voltage. This is proportional to t1, the temperature of the oven no 1. The µp

compares t1 with T1. If t1 is less than T1, the µp issues a control signal to raise the temperature of

the oven no 1. If the heating of the oven is electrical and current is controlled by thyristors , the

µp will directly control the firing circuit of thyristors to increase current resulting in increase of

the temperature. If the heating is done by final, the µp will send a signal to the relay which is

controlling the final input. The measurement temperature is also displayed. If t1>T1, the µp sends

signal to decrease it till it becomes equal to T1. After this the µp sends commands to switch on

the multiplexer channel S2 to get the electrical voltage proportional to the temperature of over no

2. The µp measures and control its temperature as explained above. After certain internal of time

the µp repeats the process of measuring and controlling the temperature of the two ovens. A

program flow chart is shown in Fig. 5.8. Similarly any other physical quantity can be measured

and monitoring continuously. If a transducers given A.C signal it can be rectified using precision

rectifiers.

Fig 5.8: Program flow chart for temperature display and monitoring

5.5 Measurements of Electrical quantities:

(i) Frequency measurements:

To measure the frequency of a signal, the time period for half cycle is measured which is

inversely proportional to the frequency. A sinusoidal signal is converted to square wave using a

voltage comparator LM 311 or operational amplifier LM 747 or LM 324 as shown in Fig.5.9.

Fig 5.9: Sine to square wave generator

A diode is used to rectify the output signal. A potential divides is used to reduce the

magnitude to 5 volts.

A program has been developed to sense the zero instant of the rectified square wave. The

µp measures the magnitude of the square wave at two consecutive points as shown in fig 10. The

two magnitudes are compared and decision is taken on the basis of carry and zero states flags,

whether the point is at zero point.

Various points have been shown in Fig 5.10. Very nearly to P3 at its left side the

magnitude of the square wave is zero, and at P4 , 5v, at logic „1‟. The µp subtracts the 1
st
 value

from the 2
nd

, so the result is non- zero and there is no carry. This is the basis for the selection of

zero instant point. Suppose the µp takes reading at p1 and p2 where both magnitudes are zero.

Difference of the two is zero. So this is not the zero instant of the wave. At points p5 and p6 the

difference of the two values is zero. So it is also not a zero instant point. At p7 and p8, the

difference is non-zero but that is carry. So it is the end point of the half- square wave.

Fig 5.10: Rectified square wave

As soon as the zero instant point is detected the µp initiates a register pair to count the number

how many times the loop is executed. The µp reads the magnitude of the square wave again and

moves in the loop. It crosses the loop when the magnitude of the square wave becomes zero.

Thus the time for half cycle is measured. The count can be compared with the stored numbers in

the look-up table and the frequency can be displayed. The count is inversely proportional to the

frequency of the input signal can be used for further processing and control as desired. An

interfacing circuitary is shown in Fig 5.11. The program flow chart is shown in Fig 5.12. The

port is input control word is 98H.

Fig 5.11: Interface for frequency measurement

Flow chart for frequency measurements:

5.6 Digital clock:

Many µp applications would require doing certain tasks at specific time of the day or involve

the time of day in some other form. For example, switching ON and OFF street lights at

specific time in the evening and following morning or punching entry time of every worker for

a shift, at a factory gate etc,. A basic requirement of this type of application is a real time digital

clock with a display of current time. The flow chart and the corresponding program are shown in

Fig.5.15.

Flow Chart for digital clock program:

(i) Display and keyboard:

i. For displaying the speed of the motor the data fields display of the drainer

kit is used.

ii. Keyboard of the trainer kit is used for entiring the required speed.

(ii) Software design:

Software has to be designed to implement the following steps:

i. Read the desired speed from the keyboard.

ii. Choose an initial data to be applied to the DAC. So that the motor starts running.

iii. Apply data to the DAC through port A

iv. Generate delay for the motor to attain stable speed.

v. Measure the speed of the motor.

vi. Compare the speed with the required speed. If the speed matches then go to step 7. If the

required speed is low and then increment data by 1, otherwise decrement data by 1 and

go to step 7.

vii. Display the speed on the display

viii. Go to step 3.

Flow chart:

A flow chart of these operation in the proper sequence is shown in Fig.5.19.

Fig.5.19

(i) Set up registers for display:

• MVI B, 08H : load count

• MVI C, 7FH : load select pattern

• LXI H, 6000B : starting address of message

Display message:

• DISP 1: MOV A, C : select digit

• OUT PB

• MOV A, M : get data

• OUT PA : display data

• CALL DELAY : wait for some time

• DISP 1: MOV A, C

• RRC

• MOV C, A : adjust selection pattern

• INX H

• DCR B : Decrement count

• JNZ DISP 1 : repeat 8 times

• RET

Note: This "display message subroutine" must be called continuously to display the 7-segment

coded message stored in the memory from address 6000H.

Delay Subroutine:

 Delay: LXI D, Count

 Back: DCX D

 MOV A, D

 ORA E

 JNZ Back

 RET

