Subiect Title RELATIONAL DATABASE
) MANAGEMENT SYSTEMS

Semester

Subject Code | 21UCS04

Specializat

ion

Type Core: Theory

L:T:P:C

COURSE OBJECTIVE:

1. Understand the basic concept of Data Base and database management system.

2. Understand and apply the SQL fundamentals.
3. Evaluate the Relational database design.

CO Statement

Knowledge Level

Remember the concept of database.

K1

Understanding the data models and ER Diagram.

K2

Apply SQL commands.

Evaluate the DBMS in SQL.

Analyze the Transaction management.

Subject RELATIONAL DATABASE
Title MANAGEMENT SYSTEMS

Subject -
il 21UCA06 Specialization

Type Core: Theory L:T:P:C
Unit Contents Sessions

Introduction: Database System Applications-Purpose of
Database Systems-View of Data-Database Languages-
Transaction Management-Database Architecture-Database users
and Administrators.

Relational Model: Structure of Relational Databases — Database
Design — ER Model-Overview of the Design Process — The
Entity — relationship Model — Constraints — Entity Relationship
Diagrams.

Relational Algebra Operations —Relational Languages: The
Tuple Relational Calculus —The Domain Relational Calculus —
SQL: Background — Data Definition — Basic Structure of SQL
Queries — Set Operations — Aggregate Functions — Null Values —
Nested Sub-Queries — Views — Modification of the Database.
Data Normalization: Pitfalls in Relational Database Design —
Decomposition — Functional Dependencies — Normalization —
First Normal Form — Second Normal Form — Third Normal
Form — Boyce-Codd Normal Form — Fourth Normal Form —
Fifth Normal Form — Denormalization — Database Security: Data
Security Requirements — Protecting the Data within the Database
— Granting and Revoking Privileges — Data Encryption.

PL/SQL: A programming Language: History - Fundamentals —
Block Structure — Comments — Data Types — Other Data Types —
Declaration — Assignment operation — Bind variables -
Substitution Variables — Printing — Arithmetic Operators.
Control Structures and Embedded SQL: Control Structures —
Nested Blocks — SQ L IN PL/SQL — Data Manipulation-
Transaction Control statements. PL/SQL Cursors and
Exceptions: Cursors — Implicit & Explicit Cursors and Attributes
— Cursor FOR loops — SELECT...FOR UPDATE — WHERE
CURRENT OF clause — Cursor with Parameters — Cursor
Variables — Exceptions — Types of Exceptions.

PL/SQL Composite Data Types: Records — Tables — V arrays.

Named Blocks: Procedures — Functions — Packages - Triggers —

Data Dictionary Views.

Learning Resources

1. -Database System Conceptsl,Abraham Silberschatz, Henry F.Korth, S.Sudarshan,
TMH 5™ Edition (Units — I,11)

2. -Fundamentals of Database Management Systemsl, Alexis Leon, Mathews Leon,
Vijay Nicole Imprints Private Limited. (Unit-111)

3. -Database Systems Using Oraclell Nilesh Shah,2™ edition,PHI.UNIT-1V:
Chapters 10 & 11 UNIT-V:Chapters 12,13 & 14.

Semester

1. Alexix Leon & Mathews Leon, "Essential of DBMS", 2nd reprint, Vijay Nicole
Reference | Publications, 2009.
Books

e https://www.w3schools.com/sgl
e https://www.tutorialspoint.com/sql
e https://livesgl.oracle.com

Website /
Link

Mapping with Programme Qutcomes

CO Number PO1

COo1
CO2
CO3
CO4
CO5

S- Strong, M- Medium , L — Low

http://www.w3schools.com/sql
http://www.tutorialspoint.com/sql/
https://livesql.oracle.com/

A database management system (DBMS) is a collection of interrelated data and a set of programs to access
those data.

The collection of data, usually referred to as the database, contains information relevant to an enterprise.

The primary goal of a DBMS is to provide a way to store and retrieve database information that is both
convenient and efficient.

DATABASE SYSTEM:
= Database systems are designed to manage large bodies of information.

= Management of data involves both defining structure for storage of information and providing mechanisms
for the manipulation of information.

Database System Applications

Databases are widely used. There are some representative applications.

Banking: For customer information, accounts, loans and banking transaction.

Airlines: For reservation and schedule information. Airlines were the first to use databases in a
geographically distributed manner.

Universities: For student information, course registration and grades.

Credit Card Transaction: For purchase of credit cards and generation of monthly statements.

Telecommunication: For keeping records of calls made, generating monthly bills, maintaining balances
on prepaid calling cards and storing information about the communication networks.

Finance: For storing information about holding sales and purchase of financial instruments such as
stocks and bonds.

vii) Sales: For customer products and purchase information.

viii) On-line retailers: For sales data noted above plus on-line order tracking, generation of recommendation
lists and maintenance of on-line product evaluations.

Manufacturing: For management of supply chain and for tracking production of items in factories,
inventories of items in warehouses and stores and orders for items.

Human Resources: For information about employee’s salaries, payroll, taxes, and benefits and for
generation of paychecks.

Purpose of Database Systems

= Consider part of a bank enterprise that, among other data, keeps information about all customers and
savings accounts.

One way to keep the information on the computer is to store it in operating system files.

To allow users to manipulate the information, the system has a number of application programs that
manipulates the files, including program to

Debit of Credit an account
Add a new account
Find the balance of an account

Generate monthly statements

System programmers wrote these application programs to meet the needs of the bank.
New application programs are added to the system as the need arises.
For example, a savings bank decides to offer checking accounts.

As a result, the bank creates new permanent files that contain information about all the checking accounts
maintained in the bank.

The system acquires more files and more application programs.
This typical file processing system is supported by a conventional operating system.

The system stores permanent records in various files, and it needs different application programs to extract
records from and add records to the appropriate files.

File processing system has a number of major disadvantages

i)

Data redundancy and inconsistency:

1. Since different programmers create the files and application programs over a long period, the
various files are likely to have different structures.

The programs may be written in several programming languages.

For example, the address and telephone number of a particular customer may appear in a file that
consists of savings account records and checking account records.

This redundancy leads to higher storage and access cost
Data inconsistency is the various copies of the same data ma no longer agree.

For example, a changed customer address may be reflected in saving account records but not
elsewhere in the system.

Difficult in accessing data:

1. Suppose one of the bank officers needs to find out the names of all customers who live within the
city 78733 zip code.

The officer asks the data — processing department to generate such a list.

Because this request was not anticipated when the original system was designed, there is no
application program on hand to meet it.

An application program to generate the list of all customers.

The bank officer has two choices. Either obtains the list of all customers and has the needed
information extracted manually or to obtain the original system as designed.

Data Isolation:

1. Data are scattered in various files and files ma be in different formats, writing new application
programs to retrieve the appropriate data is difficult.

Integrity Problems:

1. The data values stored in the database must satisfy certain types of consistency constraints.

2. For example, the balance of certain types of bank accounts may never fall below a prescribed
amount (say, $25).

3. These constraints in the system by adding appropriate code in the various application programs.

4. However, when new constraints are added, it is difficult to change the programs to enforce them.

5. The problem is compounded when constraints involve several data items from different files.

Atomicity Problems:

A computer system, like any other mechanical or electrical device, is subject to failure.

In many applications, it is crucial to ensure that, once a failure has occurred and has been detected,
the data are stored to the consistent state that existed prior to the failure.

Consider a program to transfer $50 from account A to B.

If a system failure occurs during the execution of the program, it is possible that the $50 was
removed from account A, but was not credited to account B, resulting in an inconsistent database
state.

5. The fund transfer must be atomic — it must happen in it entirely or not at all.

Concurrent — Access Anomalies:

1. The overall performance of the system is improved and a faster response time is possible, many
systems allow multiple users to update the data simultaneously.

Consider bank account A, Containing $500.

If two customers withdraw funds (say $500 and $100) from account A at about the same time, the
result of the concurrent executions may leave the account in an incorrect state.

Suppose that the programs executing on behalf of each withdrawal read the old balance, reduce that
value b the amount being withdrawn, and write the result back.

If the two programs run concurrently, the may both read the value $500, and write back $450 and
$400, respectively.

Depending on which one writes the value last, the account may contain $450 or $400, rather than
the correct value of $350.

The system must maintain some form the supervision.

Because data may be accessed b many different application programs that have not been coordinated
previously, however, supervision is difficult to provide.

Security Problems:

1. Not ever user of the database system should be able to access all the data.

2. For example, in a banking system, payroll, personnel need to see only that part of the database that
has information about the various bank employees.

The do not need access to information about customer accounts.

Since application programs are added to the system in an ad hoc manner, it is difficult to enforce
such security constraints.

5. These difficulties, among others, have prompted the development of DBMS.

1.3 View of Data

= A DBMS is collection of interrelated files and a set of programs that allow users to access and modify these
files.

= A major purpose of a database system is to provide users with an abstract view of the data.
= That is the system hides certain details of how the data are stored and maintained.
i) 1.3.1 Data Abstraction

= For the system to be usable, it must retrieve data efficiently.

= Since many database system users are not computer trained, developers hide the
complexity from users through several levels of abstraction, to simplify user’s
interactions with the system.

6

a) Physical Level
= The lowest level of abstraction describes how the data are actually stored.

= Complex low —level data structures are described in detail.

b) Logical Level

= The next higher level of abstraction describes what data are stored on the
database, and what relationships exist among those data.

The entire database is thus described in terms of a small number of relatively
simple structures.

Although implementation of the simple structures at the logical level may
involve complex physical level structures, the user of the logical level does
not need to be aware of this complexity.

The logical level of abstraction is used by database administrators, who must
decide what information is to be kept in the database.

c) View level
= The highest level of abstraction describes only part of the entire database.

= Despite the use of simpler structures of the logical level, some complexity
remains, because of the large size of the database.

= Man users of the database system will not be concerned with all this
information.

= Such users need to access only a part of the database.

= So that their interaction with n the system is simplified, the view level of
abstraction is defined.

= The system may provide many views for the same database.

= The concept of data types in programming languages may clarify the
distinction among levels of abstraction.

= Most high level programming languages support the notion of a record type.
= For example, in a Pascal — lie language, we may declare a record:
Type customer = record
customer — name: string;
social — security: string;
customer — street: string;
customer — city: string;
end;

= This code defines a new record called customer with three fields. Each field
has a name and a type associated with it. A banking enterprise may have
several such record types. Including account, with fields account — number
and balance, employee, with fields’ employee — name and salary.

= At the physical level, a customer, account, or employee record can be
described as a block of consecutive storage locations (for example, words or

bytes).
= The language complier hides this level of detail from programmers

= The database system hides many of the lowest — level storage details form
database programmers.

= Database administrators may be aware of certain details of the physical
organization of the data.

= At the logical level, each such record is described by a tie definition, and the
interrelationship and these record types is defined.

= Programmers using a programming language work at this level of abstraction.
= Database administrators usually work at this level of abstraction.

= At the view level, computer user see a set of application programs that hide
details of the data types.

= At the view level, several views of the database are defined, and database users
see these views.

In addition to hiding details of the logical level of the database, the views also
provide a security mechanism to prevent users from accessing parts of the
database.

1.3.2 Instances and Schemes

Database changes overtime as information is inserted and deleted.

The collection of information stored in the database at a particular moment
called an instance of the database.

The overall design of the database is called the database schema.
Schemas are changed infrequently, at all.

Analogies to the concept of data type, variables, and values in programming
language.

Returning to the customer — record type definition, in declaring the type
customer we have not declared any variables

A database schema corresponds to the programming language type definition.
A variable of a given type has a particular value at a given instant.

The value of a variable in programming languages corresponds to an instance
of a database schema.

Database systems have several schemas, at the lowest level is the physical
schema. A the intermediate level is the logical schema, and at the highest level
is a subschema,

iii) 13.3 Data Independence

= The ability to modify a schema definition in one level without affecting a
schema definition in the next higher level is called data independence.

= There are two levels of data independence:

o Physical Data Independence

= |t is the ability to modify the physical schema without causing
application programs to be rewritten.

8

= Modifications at the physical level are occasionally necessary
to improve performance.

o Logical Data Independence

It is the ability to modify the logical schema without causing application
programs to be rewritten.

Modifications at the logical level are necessary whenever the logical structure
of the database is altered. For example, money market accounts are added to a
banking system.

Logical data independence is more difficult to achieve than is physical data
independence.

Application programs are heavily dependent on the logical structure of the
data.

The concept of the data independence is similar in many respects to the
concept of abstract data types in modern programming language.

DATABASE LANGUAGE

A database system provides two different types of languages: One to specify the database schema, and the other to
express database queries and updates.

= The two languages are:
Data Definition Language

= A database schema is specified by a set of definitions expressed by a special language
called a data—definition language (DDL).

The result of compilation of DDL statement is a set of tables that is stored in a special
filed called data dictionary, or data directory.

A data dictionary is a file that contains metadata.
This file is consulted before actual data ate read or modified in the database system.

The storage structure and access method used by the database system ate specified by a set
of definitions in a special type of DDL called a data storage and definition language.

The result of compilation of these definitions is a set of instructions to specify the
implementation details of the data schemas.

Data Manipulation Language

= The levels of abstraction are not only to the definition of structuring of data, but also to the
manipulation of data.

By data manipulation, we mean

o The retrieval of information stored in the database
e The insertion of new information into the database
o The deletion of information from the database.

o The modification of information stored in the database

At the physical level, we must define algorithms that allow efficient access to data.

At higher levels of abstraction, we emphasize the case of use.

The goal is to provide efficient human interaction with the system.

9

= A data—manipulation language DML is a language that enables users to access or manipulate data as
organized by the appropriate data model.

There are basically two types:
Procedural DMLs
It requires a user to specify what data are needed and how to get those data.

Nonprocedural DMLs

It requires a user to specify what data are needed without specifying how to get those data.
Nonprocedural DMLs are usually easier to learn and use than are procedural DMLs.

However, since a user does not have to specify how to get the data, these languages may generate code
that is not as efficient as that produced by procedural languages.

= Aquery is a statement requesting the retrieval of information.
= The portion of a DML that involves information retrieval is called a query language.

Transaction Management

Several operations on the database form a single logical unit of work.

An example, a fund transfer, in which one account (say A) is debited and another account (say B) is
credited.

It is essential that either both the credit and debit occur, or that neither occurs.

That is, the fund transfer must happen in it do entirely or not at all. This all-or—none requirement is called
atomicity.

In addition, it is essential that the execution of the fund transfer preserve that consistency of the database.
The value of the sum A+B must be preserved. This correctness requirement is called consistency.

Finally, after the successful execution of a fund transfer, the new values of accounts A and B persist,
despite the possibility of system failure. This persistency requirement is called durability.

A transaction is a collection of operations that performs a single logical function in a database application.

Each transaction is a unit of both atomicity and consistency.

Thus, we require that transactions do not violate any database—consistency constraints.

If the database was consistent a transaction started, the database must be consistent when the transaction
successfully terminates.

During the execution of a transaction, it may be necessary temporarily to allow inconstancy.
The temporary inconsistency, although necessary, may lead to difficulty if a failure occurs.

It is the responsibility of the programmer to define properly the various transactions, such that each
preserves the consistency of the database.

For example, the transaction to transfer funds from account A to account B could be defined to be
composed of two separate programs. One debits account A, another credits account B.

Ensuring the atomicity and durability properties is the responsibility of the database system itself—
specifically, of the transaction—management component.

Due to various types of failure, a transaction may not always complete its execution successfully.

Several transactions update the database concurrently, the consistence of data may no longer be preserved,
even though each individual transaction is correct.

= It is the responsibility of the concurrency — control manager to control the interaction among the
concurrent transactions, to ensure the consistency of the database.

DATABASE ARCHITECTURE:

= Database application are usually portioned into two or three parts.

= In a two-tier architecture, the application is portioned into a component that resides at the
client machine, which invokes database system functionality at the server machine, which through
query language statements.

Application program interface standards like ODBC and JDBC are used for interaction
between the client and the server.

In contrast in three tier architecture, the client machine acts a merely a front end and does
not contain any direct databases calls. Instead the client end communicates with an application server,
usually through a form interface.

The application server in turn communities with a database system to access data.

The business logic of the application, which says what action to carry out under what
condition, is embedded in the application server, instead of being distributed across multiple clients.

Three tier applications are more appropriate for large applications and for applications
that run on the World Wide Web.

@ USER

Application Application client

Database system

Application Server

Two-tier

Database system

Three-tier
Sophisticated Users:

Interact with the system without writing programs.
The form their requests in a database query language.

Each such query is submitted to a query processor whose function is to break down DML statement into
instructions that the storage manager understands.

Specialized Users:

= These are sophisticated users who write specialized database applications that do not fit into the
traditional data—processing frame—work.

= These applications are computer — aided design systems, knowledge — base and expert system, systems
that store data with complex data types. For example, graphics data and audio data.

Storage Manager:

= The storage manager components provide the interface between the low—level data stored in the
database and the application program and queries submitted to the system.

= The storage components include:
1. Authorization and integrity manager:

= Authorization and integrity manager tests for the satisfaction of integrity
constraints and checks the authority of users to access data.

Transaction manager:

= Transaction manager ensures that the database remains in a consistent (correct)
state despite system failures, and that concurrent transaction execution proceed
without conflicting.

File manager:

= File manager manages the allocation of space on disk storage and the data
structures used to represent information stored on disk.

Buffer manager:

= Buffer manager is responsible for fetching data from disj storage into main
memory, and deciding what data to cache in memory.

= Several data structures are required as per part of the physical system
implementation.

Data file:
= Data files store the database itself.
Data dictionary:

= Data dictionary stores metadata about the structure of the database.

= The data dictionary is used heavily. Therefore, great emphasis should be placed on
developing a good design and efficient implementation of the dictionary.

= An index provides fast access to data items that hold particular values.
Statistical data:
= The store statistical information about the data in the database.

= This information is used by the query processor to select efficient way to execute a
query.
DATABASE USERS AND ADMINISTRATOR:

= A primary goal of a database is to retrieve information from and store new information in
the database.

= People who work with a database can be categorized as database user or database
administrator.

Database user and user interfaces:

= There are four different types of database system users, differentiated by the way they
except to interact with the system.

Different types of user interfaces have been designed for the different types of users.

12

Navie users are unsophisticates users:

= Who interact with the system by invoking one of the application programs that have been
written previously.

= For example, a bank teller who needs to transfer $50 from account A to account B
invokes a program called transfer.

= This program asks the teller from the amount of money to be transferred, the account
from which the money is to transferred and the account to which the money is to be transferred.

Application programmers:

= Application programmer is computer professionals who wrote application programs.
= Application programmers can choose from many tools to develop user interface.

= Rapid application development tools are tools that enable an application programmer to
construct forms and reports without writing a program.

There are also special types of programming language that combine imperative control
statements of the data manipulation language.

One of the main reasons for using DBMS is to have central control of both the data and
the programs that access those data.

A person who has such cental control over the system is called a database
administrator(DBA).

The function of DBA include:

The DBA creates the original database schema by executing a set of data definition
statements | the DDL.. Storage structure and access-method definition.

Schema and physical organization modification:

The DBA carried out changes to the schema and physical organization reflect the
changing need of the organization or to alter the physical organization to improve
performance.

Granting of authentication for data access:

By granting different types if authorization the database administrator can regulate
which parts of the database various user can access. The authorization information is kept in a
special system structure that the database system consults whenever some one attempts to
access the data in the system.

Routine maintenance:
Examples of the database administrator routine maintenance activities are:

Periodically backing up the database, either onto tapes or onto remote servers
prevent loss of data in case of disasters such as flooding.

Ensuring that enough free disk space is available for normal operations and
upgrading disk space as required.

Monitoring jobs running on the database and ensuring that performance is not
degraded by very expensive tasks submitted by some users.

13

RELATIONAL MODEL

The relational model has established as the primary data model for commercial data— processing
applications.

The database systems were based on either the network model or the hierarchical model.

A substantial theory exists for relational databases. This theory assists in the design of relational databases
and in the efficient processing of user requests for information from the database.

STRUCTURE OF RELATIONAL DATABASES:
= A relational database consists of a collection of Tables, each of assigned a unique name.

= A row in atable represents a Relationship among a set of values.

= Since atable is a collection of such relationships, there is a close correspondence between the concept of
table and the mathematical concept of relation, from the relational data model takes its name.

a) Basic Structure

w It has three column headers: branch-name, account-number, and balance.

= For each attribute - there is a set of permitted values, called the Domain of that
attribute.

For the attribute branch-name - for example, the domain is the set of all branch names.

THE ACCOUNT RELATION

Branch—-Name | Account-Number | Balance

Downtown A-101 500
Mianus A-215 700
Perry ridge A-102 400
Round Hill A-305 350
Brighton A-201 900
Redwood A-222 700
Brighton A-217 750

= Let D1 denote the set of all branch-name, D2 denote the set of all account number, and
D3 denote the set of all balances.

= An row of account must consist of a 3-tule (v1,v2, v3), where v1 is a branch name(that
is, vl is in domain D1), v2 is an account number(that is, v2 is in domain D2), and v3
is a balance (that is, v3 is in domain D3).

= Account will contain on a subset of the set of all possible rows.

w. Therefore, account is a subset of
= D1xD2xD3

= A table of n attributes must be a subset of
D1 x D2 x X Dn-1 x Dn

= Mathematicians define a relation to be a subset of a Cartesian product of a list of
domains.

= It have assigned names to attributes the mathematicians rely on numeric “Names”,
using the integer 1 - to denote the attribute whose domain appear first in the list of
domains, 2- for the attribute whose domain appear second and so on.

= The mathematical terms Relation and Tuple in place of the terms Table and Row.

= The tuple variable t refers to the first tuple of the relation
= The notation t[branch-name] to denote the value of t on the branch-name attribute.
= Thus, t[branch-name] = “Downtown,” and t[balance] = 500.

= t[1] to denote the value of tuple t on the first attribute (branch-name), t[2] to denote
account number, and so on.

= Since a relation is a set of tuples, the mathematical notation of t € r to denote that tuple
tisin relationr.

= All relations r, the domains of all attributes of r be atomic.
w= A domain is atomic if elements of the domain are considered to be indivisible units.

= For example, the set of integers is an atomic domain, but the set of all sets of integers is
a non-atomic domain.

= One domain value that is a member of a possible domain is the null value, which
signifies that the value is unknown or does not exist.

= For example, the attribute telephone-number in the customer relation, a customer does
not have a telephone

DATABASE DESIGN:
The database design by observing that this is typically just one part, although central parts in
data-intensive applications of a larger software system design.
The database design process can be divided into six steps. The ER model | most relevant to the first three
steps.

1. Requirement Analysis: The very first step designing a database
application is to understand what data is to be stored in the database,
what application must be built on top of it and what operation are
most frequent. This can be done by succession with user groups
study of current operation environment.

Conceptual database design: The information gathered in the
requirement analysis step is used to develop a high-level description
of the data to be stored in the database, along with the constraints
known to hold over this data. The ER model is one of several high-
level or semantic, data model used in database design.

Logical database design: We must choose a DBMS to implement our
database design, and convert the conceptual database design into a
database schema in the data model.

ERMODEL:
= The Entity-Relationship(ER) data model is used to develop an initial database design. It provides
useful concept that allow to move from an informal description of what users want from their
database to more detailed.
= The ER diagram is just an approximate description of the data, constructed through a subjective
evaluation of the information collected during requirements analysis. Finally, we must address

15

security issues and ensure that users are able to access the data they need, but not data that we wish
to hide from them.
= Steps:

1. Shema Refinement: This step is used to analyze the collection of
relations in our relational schema to identify potential problems, and
to refine it.

Physical Database Design: This step involves building indexes on
some tables and clustering some tables, or it may involve a
substantial redesign of parts of the database schema obtained from
the earlier dasign steps.

. Application and security Design: We must identify the enities and
processes involved in the application. We must describe the role of
each entity in every process that is reflected in some application task,
as part of a complete workflow for that task. For each role, we must
identify the parts of the database that must be accessible and the
parts of th e database that must not be accessible and we must take
steps to ensure that these access rules are enforced.

Entities, Attributes and entity set:
= An entity is an object in the real world that is distinguishable from other objects. Collection of
similar entities is called an entity set.
= An entity is described using a set of attributes. All entities in a given entity set have the same
attributes this is what we mean by similar.
= For each entity attributes associated with an entity set, we must identify a domain of possible values.
= For each entity set, we choose a key. A key is a minimal set of attributes whose values uniquely
identify an entity in the set.
= There could be more than one candidate key, if so, we designate one of them as the primary key. A
primary key is that uniquely identifies an entity.
= A relationship is an association among two or more entities. Collection of similar relationship is
called relationship set.
Rectangles, which represent entity sets.
Ellipses, which represent attributes
Diamonds, which represent relationship sets
Lines, which link attributed to entity sets and entity sets to relationship set5s
Double ellipses, which represent mulivalued attributes
Dashed ellipses, which denote derived attributes
Double lines, which indicate total participation of an entity in a relationship set
Double rectangles, which represent weak entity sets
= We show the relationship set works in which each relationship indicates a department in which an
employee works.

Entity set

Employee

= Note that several relationship sets might involve the same entity sets. For example we could also
have a manages relationship set involving employees and departments.

Employee departments

= A relationship can also have descriptive attributes. Descriptive attributes are used to record
information about the relationship, rather than about any one of the participating entities.

= An instance of a relationship set is a relationship, rather than about any one of the participat9ing
entities.

= An instance of a relationship set is a relationship. Intuitively, an instance can be thought of as a
snapshot of the relationship set at some instant in time.

= As another example of an ER diagram, suppose that each department has offices in several location
and we want to record the location at which each employee works.

= This relationship is ternary because we must record an association between an employee, a
department and a location.

departments

Employee

Location

Teranary Relation Set

Additional feature of the ER Model:
Key constraints:
= In relationship, an employee can work in the work in several departments, and a department can
have several employees.
= Now consider another relationship set called manages between the employee and departments entity
sets such that each department has at most one manager, although a single employee is allowed to
manage more than one department.
= The restriction that each department has at most one manager is an example of a key constraint.
= A relationship set like manages is sometimes said to be one-to-many to indicate that one employee
can be associated with many departments whereas each department can be associated with at most
in employee as its manager.
= In contrast the work in relationship set, in which an employee is allowed to work in several
departments and a department is allowed to have several employees, is said to be many-to-many.

17

Employee Departments

Key constraints on manager

3/3/93

123-22-3666
212192

231-31-5368
3/1/92

131-24-3650

223-32-6316

An Instance of the manages Relationship set

Employee @ departments
Location

Key constraint for Teranary Relation Set

Participation Constraints:
= The key constraint on manages tell us a department has at most one manager. A natural question to
ask is whether every department has a manager.
= Let us say that every department is required to have a manager.
= This requirement is an example of a participation constraint.
= The participation of the entity set department in the relationship set manages is said to be a total. A
participation that is not total is said to be partial.

CPICIICEY

Employee Departments

(Manages and work_in)

Weak Entities:
= We have assumed that the attributes associated with an entity set include key. This assumption does
not always hold.
= For example, suppose that employees can purchase insurance policies to cover their dependents, we
wish to record information about polices, including who is covered by each policy, but this
information our only interest in the depends of an employee. If an employee quits, any policy
owned by the employee is terminated from the database.
= A dependent is an example of a weak entity set. A weak entity can be identified uniquely only by
considering some of its attributes in conjunction with the primary key of another entity, which is
called the identifying owner.
The following restrictions must hold:
= The owner entity set and weak entity set must participate in a one-to-many relationship set. This
relationship set is called identifying relationship set of the weak entity set.
= The weak entity set must have total participation in the identifying relationship set.

Employee ¢ Departments

Weak entity set

Aggregation:
= A relationship set is an association between entity sets. Sometimes, we have to model a relationship

between a collection of entities and relationship.

= Suppose that we have an entity set called projects and that each projects entity is sponsored by one
or more departments.

= The sponsors relationship set captures this information.

= A department that sponsors a project might assign employees to monitor the sponsorship. Monitor
should be a relationship set that associates a sponsors relationship with an employees entity.

= Aggregation allow us to indicate that a relationship set participates in another relationship set.

Employee Departments

Aggregation
Entity versus attribute:

Employee Department

= While identifying the attributed of an entity set, it is sometimes not clear whether a properly should
be modeled as an attribute or as an entity set.

= In the above relationship set has attribute from and to. It records the interval during which an
employee works for a department.

= Now suppose that is possible for an employee to work in a given department over more than one
period.

20

Entity versus Relationship:
= |f we assume that a manager receives a separate discretionary budget for each department. But what
if the discretionary budget is a sum that covers all departments managed by that employee.

Employee Departments

Binary versus Ternary relationship:
Consider the ER diagram shown below.

Employee Departments

Departments

5 Marks:

10 Marks:

QUESTION BANK

UNIT -1

Write about Database system application.
Explain about view of data.

Explain about Database Languages.

Explain about transaction management.
Explain about database user and administrators.
Explain about ER-Model.

Explain briefly about Database Architecture.
Explain briefly about Relational model.

UNIT -1

RELATIONAL ALGEBRA

Introduction:
The inputs and outputs of a query are relations. A query used to evaluate using instances of each

input relation and it produces an instance of the output relation.

= Query language can be categorized as procedural or nonprocedural.

= In nonprocedural language, the user describes the information desired without giving a specific
procedure for obtaining that information (ex: relational calculus)

= In procedural language, the user instructs the system to perform a sequence of operations on the
database to compute the desired result (ex: relational algebra).

Relational algebra:
Relational algebra is one of the two formal query languages associated with the relational model.
Queries in algebra are composed using a collection of operators.
Every operator in the algebra accept relation instance as arguments and returns a relation instance as
the result.
Each relational query describes a step-by-step procedure for computing the answer based on the order
in which operators are applied in the query.

SELECTION:
This operation is used to select the rows / Tuples from a relation, which satisfies the given condition.

It is denoted by Greek letter sigma (o). The selection operator ¢ specifies the tuple to retain through a
selection condition.
The selection condition is a Boolean combination that has the form

Attribute op constant

(Orn)
Attributel op attribute2
Where op is one of the comparison operator <, <=, =, =, >=, or >. The reference to an attribute can
be a position or by name. For example consider the following relation instance.

Sid | Sname Age
S1 David 23

S2 Smith 19
S3 John 22
S4 Henry 21
S5 Joni 20

= Find out all the name whose age is greater than 21.

(student) = o age>21

Sid | Sname Age
S3 | John 22
S5 | Joni 20

= Find out all the name that starts with the letter J and age >20

(student) = 6 name ="J%” ” age>20 Sid | Sname
S3 | John

Write a note on projection.
PROJECTION:
Projection operator () is used to extract columns of the relation, which satisfy the given
condition.
For example consider the following relation instance.

Sid | Sname
S1 | David
S2 | Smith
S3 | John
S4 | Henry
S5 | Joni

Student

xw Find out all student names in the student relation.

(student) = Ttsname Sname
David

Smith
John
Henry
Joni

SET OPERATIONS:

Union: (V)
= R U Sreturns a relation instance containing all tuples that occur in either relation instance R or
relation instance S (or both).
» Rand S must be union compatible and the schema of the result is defined to be identical to the schema
of R.
= Two relation instances are said to be union-compatible it hold two conditions which are
1. They have the same number of the fields
2. Corresponding fields taken in order form left to right, have the same domain.

Sid | Sname Age Sid |Sname | Age Example
21 | Madhan |18 19 | Mahesh |30

20 Kamala 21 21 Madhan | 18

Relation R Relation S

Sname | Age
21 | Madhan | 18
20 | Kamala |21
19 | Mahesh | 30

RelationRU S

Intersection: (M)

= R N Sreturns a relation instance containing all tuples that occur in both R and S.

= Rand S must be union compatible and the schema of the result is defined to be identical to the schema
of R.

Sname Age
Madhan 18

RelationR N S

Set difference: (-)

= R-S returns a relation instance containing all tuples that occur in R but not in S.

= Set difference is denoted by minus (-)

= Rand S must be union compatible and the schema of the result is defined to be identical to the schema
of R.

Sid Sname Age
20 Kamala 21

Relation R-S

Cross Product: (X)

= R X S returns a relation instance whose schema consists of all the fields of R followed by all the fields
of S.

= This operation is denoted by a cross (X). This operation is sometimes called Cartesian product.

= The result of R X S contains one tuple <r, s> for each pair of tuplesr e R, s € S.

Example:
Consider the relations R and S,

Sid Sname Age i Sname

21 Madhan 18 19 Mahesh
21 Madhan 18 21 Madhan
20 Kamala 21 19 Mahesh

20 Kamala 21 21 Madhan
Relation R X S

RENAMING: (p)
The results of relational- algebra expressions do not have a name that we can use to refer to them.
It is useful to be able to give them names; the rename operator, denoted by the lower-case Greek letter rho

(p)-

oldnams new name (or) positier newname
Example:

=

Consider the expression p(R (F),_E) takes an arbitrary relational algebra expression E and returns an
instance of a (new) relation called R. R contains the same tuples as the result of E and has the same
schema as E but some fields are renamed.

The expression px (E) returns the result of expression E under the name X. ‘X’ contains the same

tuples as E, and same scheme as E, but some fields can be renamed. For example, consider the relation
Another form of the rename operation is as follows. Consider a relational-algebra expression E has n

attributes. Then, the expression

O (al a2, a3...)(E) Consider the query for rename operations

Thame (O'student.age > d.age (Student X pq (student)))

OINS:

Rel

It is one of operation in relational algebra that allows us to combine information from two or more
relation.

A join can be defined as a cross product followed by selection and projections.

The result of a cross product is typically much larger than the result of a join.

It is denoted by the “join” symbol . It has various types.

Condition joins:
It accept a join condition ¢ and a pair of relation instances as arguments and return instance. The join
condition is identical to a selection condition in form. The operation is defined as, R S = 6,(R X S)

Example:

Sid | Sname | Age : i
21 | Madhan |18 Sid_| Bid
20 Kaman 21 21 10
24 | Mages | 30 20 |12

ationR X S Relation R Relation S 20 10

Sid

Sname | Age | (Sid) | Bid

21

Madhan 18 21 10

21

Madhan 18 20 12

21

Madhan | 18 | 20 10 Sid | Sname | Age

20

Kaman 21 21 10 21 | Madhan 18

20

Kaman 21 20 12 21 | Madhan |18

20

Kaman | 21 | 20 | 10 24 | Mages | 30

24

24 | Mages 30

Mages 30 | 21 10 24 | Mages 30

24

Mages 30 20 12

24

Mages 30 20 10 the result of O¢(R X S)

Equijoin:

When the join operation contains only equalities then the join operation is called equijoin. The
scheme of the result of an euijoin contains the fields of R followed by the fileds of S that do not appear
in the join condition.

Example:

The result of R (R sid = S.sid) Age | (Sid)
18 | 21
21 | 20
21 | 20

=>» Natural join:
Natural join is an equijoin in which equalities are specified on all fields having the same name
in R and S. Here we can omit the condition; generally, join condition is a collection of equalities on all
common fields. If the two relations have no attributes in common, S1 R1 is simply the cross product.

DIVISION:

The division operation used for expressing certain kinds of queries. Consider two relation A and B
in which A has exactly two fields x and y and B has just one field y, with the same domain as in A. we
define the division operation A/B as the set of all x values such that for every y value in B, there is tuple
<X, y>in A. For example, consider the relations A and B1, and B2, In general we can define A/B as,

Tix(A) -

— m{(m(A) X B) ~A)

s1 | P1 Pno A/B1 Ss1
S1 | P2 P2 S2
S1 | P3 S3
S1 | P4 S4
S2 | P1
S2 | P2
S3 | P2
S4 | P2

S4 | P4

THE TUPLE RELATIONAL CALCULUS

When we write a relational-algebra expression, we provide a sequence of procedures that generates the
answer to our query. The tuple relational calculus, by contrast, is a nonprocedural query language. It
describes the desired information without giving a specific procedure for obtaining that information.

A query in the tuple relational calculus is expressed as

{t | Ple)}
that is, it is the set of all tuples t such that predicate P is true for t. Following our earlier notation, we use
t[A] to denote the value of tuple t on attribute A, andwe use
£t =r todenote that tuple tis in relation r.
Example Queries
Say that we want to find the branch-name, loan-number, and amount for loans of over
$1200:

|t £ loan A tlamount] > 1200}

Suppose that we want only the loan-number attribute, rather than all attributes of the loan relation. To
write this query in the tuple relational calculus, we need to write an expression for a relation on the
schema (loan-number). We need those tuples on (loan-number) such that there is a tuple in loan with the
amount attribute > 1200. To express this request, we need the construct “there exists” from mathematical

logic. The notation
¢ = r (N

means “there exists a tuple t in relation r such that predicate Q(t) is true.” Using this notation, we can
write the query “Find the loan number for each loan of an amount greater than $1200” as

[t| 32 £ loan (t{loan-number| = s[loan-number|
A s|amount] > 1200)}

In English, we read the preceding expression as “The set of all tuples t such that there exists a tuple s in
relation loan for which the values of t and s for the loan-number attribute are equal, and the value of s for
the amount attribute is greater than $1200.”
Tuple variable t is defined on only the loan-number attribute, since that is the only attribute having a
condition specified for t. Thus, the result is a relation on (loannumber).
Formal Definition
We are now ready for a formal definition. A tuple-relational-calculus expression is of
the form

{# | P&}

where P is a formula. Several tuple variables may appear in a formula. A tuple variable
is said to be a free variable unless it is quantified by a ot % Thus, in

t € loan A s £ customer|t|branch-name| = s|branch-name|)
t is a free variable. Tuple variable s is said to be a bound variable. A tuple-relational-calculus formula is
built up out of atoms. An atom has one of the following forms

= 5 = r,where sis a tuple variable and r is a relation (we do not allow use of the
& operator)

e s[x] @ uly], where s and u are tuple variables, x is an attribute on which s is
defined, y is an attribute on which is defined, and & is a comparison operator
(<, =, =, #, =, =% we require that attributes x and y have domains whose
members can be compared by ©

s s[x] & ¢, where sis a tuple variable, x is an attribute on which s is defined, & is
a comparison operator, and ¢ is a constant in the domain of attribute x

We build up formulae from atoms by using the following rules:

& Anatom is a formula.
= If P is a formula, then so are =Py and (Py).
« If P and Py are formulae, thensoare By v Py, Py A Fp,and P = P
e IF Py(=) is a Formula containing a free tuple variable s, and r is a relation, then
Js & r{P(s)) and ¥ = = v (Fy(=))
are alzo formulae.

As we could for the relational algebra, we can write equivalent expressions that
are not identical in appearance. In the tuple relational calculus, these equivalences
include the following three rules:

1. Py~ Fyisequivalent to — (—{Py) v —({Fa)).
2.9t 2 ¢ (Fi(t)) is equivalentto =3¢ = ¢ (=Pt

3. Py = P isequivalentto —(P) v P

The Domain Relational Calculus

A second form of relational calculus, called domain relational calculus, uses domain variables
that take on values from an attributes domain, rather than values for an entire tuple. The domain relational
calculus, however, is closely related to the tuple relational calculus.

Domain relational calculus serves as the theoretical basis of the widely used QBE language, just as
relational algebra serves as the basis for the SQL language.

Formal Definition
An expression in the domain relational calculus is of the form
{= =1 o, @ |

where =y, =g r, represent domain variables. P represents a formula composed
of atoms, as was the case in the tuple relatonal calculus. An atom in the domain
relational calculus has one of the following Forms:

. < T, ' = e v, where r is a relation on n attributes and =y, oo
are domain variables or domain constants.

® X E" i, where x and y are domain variables and © is a comparison operator
(w2, =, =, 3, =, =) We require that attributes x and y have domains that can

[—

be compared bx a.

e x & ¢, where x is a domain variable, © i= a comparison operator, and ¢ i= a
constant in the domain of the atribute for which r is a domain variable.

We build up formulae from atoms by using the following rules:
= Anatom is a formula.
= [If) is a formula, then so are -7 and { 7).
s It P and Py are formulae, then so are P W Py, Py A Po,and Py = P,
e If iz} isa formula in x, where v is a domain variable, then
Jri(Hiz)vand ¥ = (Pl
are also formulae.

As a notatdonal shorthand, we write

da, b (Pla. b, el

Ja (b (el Fia, b clll)

We now give domain-relational-calculus queries for the examples that we considered earlier. Note the
similarity of these expressions and the corresponding tuple relational- calculus expressions.
= Find the loan number, branch name, and amount for loans of over $1200:
[« Lba> | <l,ba>ec loan A a > 1200}

» Find all loan numbers for loans with an amount greater than $1200:
[«l>|3ba(<iba>c loan A a > 1200)}

Although the second query appears similar to the one that we wrote for the tuple relational calculus, there
is an important difference. In the tuple calculus, when we write 3 : for some tuple variable s, we bind it

—

immediately to a relation by writing 3= = m™However, when we write 3 in the domain calculus, b
refers not to a tuple, but rather to a domain value. Thus, the domain of variable b is unconstrained until the
subformula < [k a = £ lean constrains b to branch names that appear in the loan relation.

29

SQL
» SQL uses a combination of relation algebra and relational calculus constructs.
= It includes features for defining the structures of the data for defining the structure of the data, for
the structure of the data, for modifying data in the database, and for specifying security constraints.

Background:
SQL, standard relational database language.
> There are numerous versions of SQL. The original version was developed at IBM’s Sanjose research
laboratory.
= This language, originally called ‘sequel’, was implemented as part of the system R project in the
early 1970’s
» The sequel language has evolved language since than, and its name has changed to SQL (Structured
Query Language).
The SQL language has several parts.

DATA DEFINITION [LANGUAGE (DDL):]

The SQL DDL provides commands for defining relation schemas, deleting relations, creation
indices and modifying relation schemas.
Interactive Data Manipulation Language (DML):

The SQL DML includes a query language based on both the relational algebra and the tuple
relational calculus.
Embedded DML:

The embedded form of SQL is designed for use within general purpose programming languages,
such as PL/I, COBOL, PASCAL, FORTRON, and C
View definition:

The SQL DDL includes commands for defining views.
Authorization:

The SQL DDL includes commands for specifying access rights to relations and views.
Integrity:

The SQL includes commands for specifying integrity constraints for specifying integrity
constraints that the data stored in the database must satisfy.

Transaction control:
SQL includes commands for specifying the beginning and ending of transactions.
The following relation schemas:
o Branch-schema= (branch-name, branch-city.assets)
Customer-schema= (customer-name, customer-street, customer-city)
Loan-schema = (branch-name, loan-number, amount)
Borrower-schema= (customer-name, loan-number)
Account-schema = (branch-name, account-number, balance)
Depositor-schema= (customer- name, account-number)

BASIC STRUCTURE OF SQL:

= A relational database consists of a collection of relations, each of which is assigned a unique name
the basic structure of an SQL expressions consists of three
= Clauses: select, from, and where.

30

= The ‘select’ clause corresponds to the projection operation of the relation algebra. It is used to list
the attributes desired in the result of a query.
= The ‘form’ clause corresponds to the Cartesian-product operation of relation algebra. It lists the
relation to be scanned in the evaluation of the expressions. The ‘where’ clause corresponds to the
selection predicate of the relational algebra. It consist of a predicate involving attributes of that
appear in the ‘from’ clause.
A typical SQL query has the form,
Select Ay, A2....Ap.
Fromry, 12....1m
Where P.
Each A, represents an attribute, and each r;a relation, p is a predicate. The relational-algebra
expression.
T A1, A2... Ay (o p(riXrx...xrm)).
The select clause:
The result of an SQL query is a relation.
To find, the names of all branches in the loan relation.

SQL> Select branch_name from loan;

The result is a relation consisting of a signal attribute with the heading branch-name.
If we want to force the elimination of duplicates, we insert the keyword “distinct” after “select”.

SQL> select distinct branch_name from loan;

The select clause can also contain arithmetic expressions involving the operators +, -, *, and /, and
operating on constant or attributes of tuple. For example, the query.

SQL> select branch_name, loan_number, amount *100 from loan;

The where clause:
To find all loan numbers for loans made at the Los Angels branch with loan amounts greater that
$1200.”This query can be written in SQL as

SQL> select lone_number from loan where branch_="Los Angel” and amount > 1200;

SQL uses the logical connectives and, or and not- rather than the mathematical symbols.

SQL includes a between comparison operator to simplify where clauses that specify that a value be
less than or equal to some other value.

To find the loan-number of those loans with loan amount between $90000 and $10000,

We can use the between comparison to write,

SQL> select loan_number from loan where amount between 90000 and 100000;
Inside of:
SQL> select loan_number from loan where amount <= 100000 and amount >= 90000;

The from clause:
The ‘from’ clause by itself defines a Cartesian of the relation in the clause.
“For all customers who have a loan from the bank, find there names and loan numbers”.

31

SQL> select distinct customer_name, borrower, loan_number from borrower, loan where
borrower.loan_number = loan.loan_number;
The rename operation:
SQL provides a mechanism for renaming both relations and attributes. It uses the’as’clause, taking
the form;
Old-name as new-name.
The ‘as’ clause appear in both the ‘select’ and ‘form’ clauses.

SQL> select distinct customer_number from borrower, loan where borrower.loan_number =
loan.loan_number and branch_name="1los angels”;

The result of this query is a relation of this query is a relation with the following two attributes:
Customer_name, loan_number

Tuple variables:

A tuple variable in SQL must be associated with a particular relation. Tuple variables are defined
in the ‘form’ clause via the use of the ‘as’ clause.

“For all customer who have a loan from the bank, find their names and loan numbers” as

SQL> select distinct customer_name, T.loan_number as T, loan as S where T.loan_number
= S.loan_number;

Find the names of all branches that have assets greater than at least one branch located in Los
Vegas, we can write the SQL expression,

SQL> select distinct T.branch_name from branch as T, branch as S where T.assets s.assets
and S.branch.city = “losvegas”;

String operations:
That must commonly used operation on string is pattern matching using the operator “like”.
We describe patterns using two special characters:
o Percent (%): the character matches any substring.
o Underscore (_): the_ character matches any character.

Patterns are case sensitive; that is upper case characters do not match lower case characters, or vice
VErsa.
Let us consider the following example:
= “Perry %” matches any string beginning with “perry”.
= “% idge %” matches any string contain “idge” as a sub string,
for example,”perryridge”,”Rock ridge”, ”"Mianus bridge”, and “ridge way”.
“matches any string of exactly three characters.
%” matches any string of at least three characters.
Patterns are expressed in SQL using the “like” comparison operator.

“Find the names of all customers whose street address includes the substring ‘main’ this query can be
written as,

SQL> select customer_name from customer where customer_street like “%main%”;

32

For pattern to include the special pattern characters (that is, %, and_) SQL allows the specification
of an escape character.

Consider the following patterns, which use a backslash (\) as the escape character:
w Like “ab \ %” escape “\” matches all string beginning with “ab % cd”.
= Like”ab\\cd” escape”\” matches all string beginning with “ab\cd”.
SQL allows us to search for mismatches instead of matches by using
‘Not like’ comparison operator.
Ordering the display of tuple:
SQL offers the user some control over the order in which tuples in a relation are displayed.
The ‘orderby’clause causes the tuples in the result of a query to appear in sorted order.

To list in alphabetic order all customer who have a loan at the Los angels branch, we write,

SQL> select distinct customer_name from borrower, loan where barrower.loan_number =
loan.loan_number and breanch_name ="los angels” order by customer_name;

If several loans have the same amount, we order them in ascending order by loan-number. We
express this query in SQL as follows:

SQL> select * from loan order by close, loan_number asc;

Duplicates:
We can define the duplicate semantics of an SQL query using ‘multiset” versions of the relational

operators.
We define the multiset versions of several of the relation-algebra operators here. Given multiset

relations ry, and r».
If there are ¢, copies of tuple t; in r; and t; satisfies selection o xxx, then there are cycopies of tjin
o0 (rl).
For each copy of tuple t; in ry, there is a copy of tuple ma (t1) in ma(r1), where ma(t1) denotes the

projection of the signal tuple t;.
If there are ¢, copies of tuple t; in r;and c; copies of tuple t; in r,, there are ¢; X ¢, copies of the ty.t;

inryxr,.

SET OPERATIONS:

The SQL-92 operations union, intersect, and except operate on relations and except on relation and
correspond to the relations and correspond to the relation-algebra operations W, and _.like union,
intersection, and set difference in relational algebra, the relations participating in the operations must be
compatible.

We will construct queries involving the union, intersect, and except operations of two sects: the set
of all customers who have an account at the bank, which can be derived by

SQL> select customer_name from depositor;
And the set of customer who have a loan at the bank, which can be derived by

SQL> select customer_name from barrower;

33

The union operation:
To find all customers having a loan, an account, or both at the bank, we write

SQL> (select customer_name from depositor) union (select customer_name from barrower);

The union operation automatically eliminates duplicates, unlike the select clause.
If we want to retain all duplicates, we must write “union all” in place of union.

SQL> (select customer_name from depositor) union all (select customer_name from
borrower);

The intersect operation:
To find all customers who have both a loan and an account at the bank, we write.

SQL> (select distinct customer_name from depositor) intersect (select distinct
customer_name from borrower);

The intersect operation automatically eliminates duplicates.
If we want to retain all duplicates, we must write intersect all in place of intersect:

SQL> (select customer_name from depositor) intersect all (select customer_name from
borrower);

The except operation:

To find all customers who have an account but no loan at the bank, we write
SQL> (select distinct customer_name from depositor) except (select customer_name from
borrower);
The except operation automatically eliminates duplicates.
If we want to retain all duplicates, we must write except all in place of except:

SQL> (select customer_name from depositor) except all (select customer_name from
borrower);

Aggregate functions:
Aggregate functions are functions that take a collection (a set or multiset) of values as input and
offer five built-in aggregate functions:

Average: avg.
Minimum: min.
Maximum: max.
Total: sum
Count: count.

The input to sum and avg must be a collection of numbers, but the other operators can operate on
collections of nonnumeric data types, such as string, as well.

To find the average account balance at the Los Vegas branch”, we write the query as follows
SQL> select avg (balance) from account where branch_name= “Los Vegas”

34

The result of this query is a relation with a signal attribute, containing a single row with a numerical value
corresponding to the average balance at the Los Vegas branch.

“Find the average account balance at each branch” we write the query as follows:
SQL> select branch_name avg (balance) from account group by branch_name;

There are cases where we must eliminate duplicates, prior to computing an aggregate function.
If we do want to eliminate duplicates, we use the keyword ‘distinct’ in the aggregate expression.

“To find the number of depositor for each branch”.

SQL> select branch_name, count (distinct customer_name) from depositor. account where
depositor.accoun