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Algorithm Definition:

• An algorithm is a finite set of instructions that, if 
followed, accomplishes a particular task. In addition, 
all algorithms must satisfy the following criteria:



• Input. Zero or more quantities are externally 
supplied.

• Output. At least one quantity is produced.

• Definiteness. Each instruction is clear and 
unambiguous.

• Finiteness. The algorithm terminates after a finite 
number of steps.

• Effectiveness. Every instruction must be very basic 
enough and must be feasible.

• An algorithm is a sequence of unambiguous 
instructions for solving a problem, i.e., for obtaining 
a required output for any legitimate input in a finite 
amount of time.



Efficiency of Algorithms:

· The performances of algorithms can be measured 
on the scales of time and space. 



· The performance of a program is the amount of 
computer memory and time needed to run a 
program. We use two approaches to determine 
the performance of a program. One is analytical 
and the other is experimental.

· In performance analysis we use analytical 
methods, while in performance measurement we 
conduct experiments.

Time Complexity: The time complexity of an 
algorithm or a program is a function of the running 
time of the algorithm or a program. In other words, it 
is the amount of computer time it needs to run to 
completion.

Space Complexity: The space complexity of an 
algorithm or program is a function of the space 
needed by the algorithm or program to run to 
completion.

· The  time  complexity  of  an  algorithm  can  be 
computed  either  by  an  empirical  or  theoretical 
approach.



· The empirical or posteriori testing approach calls 
for implementing the complete algorithms and 
executing them on a computer for various 
instances of the problem. 

· The time taken by the execution of the programs 
for various instances of the problem are noted 
and compared. 

· The algorithm whose implementation yields the 
least time is considered as the best among the 
candidate algorithmic solutions.

Analysis of Algorithms: 
· Our approach is based on the asymptotic 

complexity measure. This means that we don’t 
try to count the exact number of steps of a 
program, but how that number grows with the 
size of the input to the program. 

· That gives us a measure that will work for 
different operating systems, compilers and 
CPUs. 

· The asymptotic complexity is written using 
big-O notation. 

Rules for using big-O: 
The most important property is that big-O gives an 



upper bound only. If an algorithm is O(n2), it doesn’t 
have to take n2 steps (or a constant multiple of n2). 



take more than n2. So any algorithm that is O(n), is 
also an O(n2) algorithm.



· If this seems confusing, think of big-O as being 
like "<". Any number that is < n is also < n2. 

1. Ignoring constant factors: O(c f(n)) = O(f(n)), 
where c is a constant; e.g. O(20 n3) = O(n3) 

2. Ignoring smaller terms: If a<b then O(a+b) = O(b), 
for example O(n2+n) 

= O(n2) 
3. Upper bound only: If a<b then an O(a) algorithm 
is also an O(b) algorithm. For example, an O(n) 
algorithm is also an O(n2) algorithm (but not vice 
versa). 

4. n and log n are "bigger" than any constant, from an 
asymptotic view (that means for large enough n). So 
if k is a constant, an O(n + k) algorithm is also O(n), 
by ignoring smaller terms. Similarly, an O(log n + k) 
algorithm is also O(log n). 

5. Another consequence of the last item is that an 
O(n log n + n) algorithm, which is O(n(log n + 1)), 
can b 



Suppose M is an algorithm, and suppose n is the size 
of the input data. Clearly the complexity f(n) of M 
increases as n increases.

 It is usually the rate of increase of f(n) with some 
standard functions. The mostcommon computing 
times are O(1), O(log2 n), O(n), O(n log2 n), O(n2), 
O(n3), O(2n).

Asymptotic Notations:

· It is often used to describe how the size of the 
input data affects an algorithm’s usage of 
computational resources.

·  Running time of an algorithm is described as a 
function of input size n for large n.

Big oh(O): Definition: f(n) = O(g(n)) (read as f of n 
is big oh of g of n) if there exist a positive integer n0 
and a positive number c such that |f(n)| ≤ c|g(n)| for 
all n ≥ n0 . Here g(n) is the upper bound of the 
function f(n).



Omega(Ω): Definition: f(n) = Ω(g(n)) ( read as f of n 
is omega of g of n), if there exists a positive integer 
n0 and a positive number c such that |f(n)| ≥ c |g(n)| 
for all n ≥ n0. Here g(n) is the lower bound of the 
function f(n).

Theta(Θ): Definition: f(n) = Θ(g(n)) (read as f of n 
is theta of g of n), if there exists a positive integer n0 
and two positive constants c1 and c2 such that c1 
|g(n)| ≤ |f(n)| ≤ c2 |g(n)| for all n ≥ n0. The function 
g(n) is both an upper bound and a lower bound for 
the function f(n) for all values of n, n ≥ n0 .

Data Structure:

ØLinear data structure

ØNon Linear Data Structure

Stack

· Stack is an Abstract data structure works on the 
principle Last In First Out Last In.



· The last element add to the stack is the first 
element to be delete.

· Insertion and deletion can be takes place at one 
end called TOP.

· It looks like one side closed tube.

Stack operation:

Push( )

       Add operation of the stack is called push 
operation.

Pop( )

       Delete operation is called as pop operation.



Queues:

· A queue is a data structure that is best described 
as "first in, first out".

· A queue is another special kind of list, where 
items are inserted at one end called the rear and 
deleted at the other end called the front. 

· A real world example of a queue is people 
waiting in line at the bank. 



· As each person enters the bank, he or she is 
"enqueued" at the back of the line. When a teller 
becomes available, they are "dequeued" at the 
front of the linear. 

Queue operations using array:

· In order to create a queue we require a one 
dimensional array Q(1:n) and two variables front 
and rear.



· The conventions we shall adopt for these two 
variables are that front is always 1 less than the 
actual front of the queue and rear always points 
to the last element in the queue front = rear if 
and only if there are no elements in the queue. 

· The initial condition then is front = rear = 0.

· The various queue operations to perform 
creation, deletion and display the elements in a 
queue are as

follows:

1. insert Q( ): inserts an element at the end of queue 
Q.

2. delete Q( ): deletes the first element of Q.

3. display Q( ): displays the elements in the queue.





Priority queue:

üPriority Queue is more specialized data structure 
than Queue. 

üLike ordinary queue, priority queue has same 
method but with a major difference. 

üIn Priority queue items are ordered by key value 
so that item with the lowest value of key is at 
front and item with the highest value of key is at 
rear or vice versa. So we're assigned priority to 
item based on its key value. 

üLower the value, higher the priority. Following 
are the principal methods of a Priority Queue.

Basic Operations

üinsert / enqueue − add an item to the rear of the 
queue.

üremove / dequeue − remove an item from the 
front of the queue.



Priority Queue Representation

üWe're going to implement Queue using array in 
this article. 

üThere is few more operations supported by 
queue which are following.

ØPeek − get the element at front of the queue.

ØisFull − check if queue is full.

ØisEmpty − check if queue is empty.

Insert / Enqueue Operation

· Whenever an element is inserted into queue, 
priority queue inserts the item according to its 
order.

· Here we're assuming that data with high value 
has low priority.

Remove / Dequeue Operation



· Whenever an element is to be removed from 
queue, queue get the element using item count.

· Once element is removed. Item count is reduced 
by one.

Non Linear Data Structures:

· The data structure where data items are not 
organized sequentially is called non linear data 
structure.

· A data elements of the non linear data structure 
could be connected to more than one elements to 
reflect a special relationship among them.

· All the data elements in non linear data structure 
can not be traversed intraversed in single run.

Examples of non linear data structures 
are Trees and Graphs.

Tree

https://theknowshares.com/computerscience/datastructure/nonlinear-data-structures/
https://theknowshares.com/computerscience/datastructure/nonlinear-data-structures/
https://theknowshares.com/computerscience/datastructure/nonlinear-data-structures/
https://theknowshares.com/computerscience/datastructure/nonlinear-data-structures/
https://theknowshares.com/computerscience/datastructure/tree/
https://theknowshares.com/computerscience/datastructure/graph/


· A tree is a hierarchical data structure composed 
of nodes.

· Root: the top-most node (unlike real trees, trees 
in computer science grow downward!). Every 
(non-empty) tree has one.

· Parent: the node connected directly above the 
current one   Everychild(except for the root) has 
one.

· Child: a node connected below the current one. 
Each node can have 0 or more.

· Leaf: a node that has no children.

· Depth/Level: the length of the path (edges) from 
the root to a node(depth/level of the root is 0).

· Tree Height: the maximum depth from of any 
node in the tree.



· A tree commonly used in computing is a binary 
tree.

· A binary tree consists of nodes that have at most 
2 children.

GRAPH

üA graph is a data structure that contains of a set 
of vertices and a set of edges which connect 
pairs of the vertices.

üA vertex (or node) can be connected to any 
number of other vertices using edges.

üAn edge may be bidirectional or directed 
(one-way).

ü An edge may have a weight on it that indicates a 
cost for traveling over that edge in the graph.

üUnlike trees, graphs can contain cycles

üIn fact, a tree is an acyclic graph



Graph Implementation

üWe usually represent graphs using a table (2d 
list) where each column and row is associated 
with a specific vertex. 

üThis is called an adjacency matrix.

üA separate list of vertices shows which vertex 
name (city,person, etc.) is associated with each 
index.

üThe values of the 2d list are the weights of the 
edges between the row vertices and column 
vertices.

üIf there is not an edge between the two vertices, 
we use infinity, or None.

Disjoint Sets Data Structure

üA disjoint-set is a collection ã={S1, S2,…, Sk} of 
distinct dynamic sets.

üEach set is identified by a member of the set, 
called representative.



Disjoint set operations:

üMAKE-SET(x): create a new set with only x. 
assume x is not already in some other set.

üUNION(x,y): combine the two sets containing x 
and y into one new set. A new representative is 
selected.

üFIND-SET(x): return the representative of the 
set containing x.

 

An Application of Disjoint-Set

üDetermine the connected components of an 
undirected graph.

CONNECTED-COMPONENTS(G)

for each vertex v ÎV[G]

do MAKE-SET(v)

for each edge (u,v) ÎE[G]



do if FIND-SET(u) ¹ FIND-SET(v)

then UNION(u,v)

SAME-COMPONENT(u,v)

if FIND-SET(u)=FIND-SET(v)

then return TRUE

UNIT - II

Divide and Conquer: The General Method – 
Defective  Chessboard  –  Binary  Search  – 
Finding the Maximum and Minimum – Merge 
Sort  –  Quick  Sort  –  Selection  -  Stassen’s 
Matrix Multiplication.

General Method:

In divide and conquer method, a given problem 
is,



i) Divided into smaller subproblems.
ii) These subproblems are solved independently.
iii) Combining all the solutions of subproblems 

into a solution of the whole.

If the subproblems are large 
enough then divide and 
conquer is reapplied. The 
generated subproblems are 
usually of some type as the 
original problem.

Hence recurssive algorithms are used in divide 
and conquer strategy.



Subprogram of size

Problem of size N

Pseudo code Representation of Divide and conquer rule for problem “P”
Solution to Solution to

Solution to the original problem of

Subprogram of size



T(n) = T(1) if n=1

aT(n/b)+f(n) if n>1
Time Complexity of DAndC algorithm:
a,b� contants.

This is called the general divide and-conquer 
recurrence.
Example for GENERAL METHOD:

As an example, let us consider the problem of computing the sum of n numbers a0, ... an-1.
If n > 1, we can divide the problem into 
two instances of the same problem. 
They are sum of the first | n/2|numbers

Compute the sum of the 1st [n/2] 
numbers, and then compute the sum of 
another n/2 numbers. Combine the 

Algorithm DAndC(P)

{

if small(P) then return S(P) 
else{

divide P into smaller instances P1,P2,P3…Pk;

apply DAndC to each of these subprograms; // means DAndC(P1), DAndC(P2)….. 
DAndC(Pk)

return combine(DAndC(P1), DAndC(P2)….. DAndC(Pk));

}



answers of two n/2 numbers sum.

i.e.,

a0 + . . . + an-1 =( a0 + ....+ an/2) + (a n/2 +  + an-1)

Assuming that size n is a power of 
b, to simplify our analysis, we get 
the following recurrence for the 
running time T(n).

T(n)=aT(n/b)+f(n)

This is called the general divide and-conquer 
recurrence.

f(n)� is a function that accounts for the 
time spent on dividing the problem into 
smaller ones and on combining their 
solutions. (For the summation example, 
a = b = 2 and f (n) = 1.



Advantages of DAndC:
The time spent on executing the 
problem using DAndC is smaller 
than other method. This technique 
is ideally suited for parallel 
computation.

This approach provides an efficient 
algorithm in computer science.

Defective Chess Board  Problem using Divide and 
Conquer algorithm:
Given a n by n board where n is of form 2k where k 

>= 1 (Basically n is a power of 2 with minimum 
value as 2). The board has one missing cell (of size 1 
x 1). Fill the board using L shaped tiles. A L shaped 

tile is a 2 x 2 square with one cell of size 1×1 
missing. 

 



The below diagrams show working of above 
algorithm

 

After placing first tile

Figure 3: Recurring for first subsquare. 
  



Shows first step in all four sub 
squares:

Examples: 

Input :  size = 2 and mark coordinates = (0, 0)

Output : 

-1      1

1       1

Coordinate (0, 0) is marked. So, no tile is there. In 
the remaining three positions, 

a tile is placed with its number as 1.

Input : size = 4 and mark coordinates = (0, 0)



Output :

-1      3       2       2

3       3       1       2

4       1       1       5

4       4       5       5

Binary Search: 

Search a sorted array by repeatedly dividing the 
search interval in half. Begin with an interval 
covering the whole array. If the value of the search 
key is less than the item in the middle of the interval, 
narrow the interval to the lower half. Otherwise, 
narrow it to the upper half. Repeatedly check until 
the value is found or the interval is empty.

Example :



We basically ignore half of the elements just after 
one comparison.

1.Compare x with the middle element.

2. If x matches with the middle element, we return 
the mid index.

3.Else If x is greater than the mid element, then x 
can only lie in the right half subarray after the mid 
element. So we recur for the right half.

4.Else (x is smaller) recur for the left half.

Finding the maximum and minimum:

METHOD 1 (Simple Linear 
Search):

 



Initialize  values  of  min  and  max  as 
minimum  and  maximum  of  the  first 
two  elements  respectively.  Starting 
from 3rd,  compare each element with 
max and min, and change max and min 
accordingly  (i.e.,  if  the  element  is 
smaller than min then change min, else 
if the element is greater than max then 
change max, else ignore the element).

Time Complexity: O(n)
In this method, the total number of comparisons is 1 
+ 2(n-2) in the worst case and 1 + n – 2 in the best 
case.  
In the above implementation, the worst case occurs 
when elements are sorted in descending order and 
the best case occurs when elements are sorted in 
ascending order.

METHOD 2 (Tournament Method):  
Divide the array into two parts and compare the 
maximums and minimums of the two parts to get the 
maximum and the minimum of the whole array.
METHOD  3(Compare in

 Pairs): 
If n is odd then initialize min and max 



as  first  element.  
If n is even then initialize min and max 
as minimum and maximum of the first 
two  elements  respectively.  
For rest of the elements, pick them in 
pairs  and  compare  their  
maximum and minimum with max and 
min respectively. 



Merge Sort:
The merge sort splits the list to be sorted 
into two equal halves, and places them 
in separate arrays.  This sorting method 
is  an  example  of  the 
DIVIDE-AND-CONQUER  paradigm 
i.e. it breaks the data into two halves and 
then  sorts  the  two  half  data  sets 
recursively, and finally merges them to 
obtain  the  complete  sorted  list.  The 
merge sort is a comparison sort and has 
an  algorithmic complexity of  O (n log 
n).  Elementary  implementations  of  the 
merge sort make use of two arrays - one 
for  each  half  of  the  data  set.  The 
following  image  depicts  the  complete 
procedure of merge sort.

 



Advantages of Merge Sort:

1.Marginally  faster  than  the  heap  sort  for 
larger sets

2.Merge  Sort  always  does  lesser 
number  of  comparisons  than 
Quick Sort. Worst case for merge 
sort  does  about  39%  less 
comparisons  against  quick  sort’s 
average case.

3.Merge sort is often the best choice 
for sorting a linked list because the 
slow  random- access  performance 
of a linked list  makes some other 



6, 7

algorithms  (such  as  quick  sort) 
perform poorly, and others (such as 
heap sort) completely impossible.

Tree call of Merge sort
Consider a 
example: (From 
text book) 
A[1:10]={310,285
,179,652,351,423,
861,254,450,520}

 2, 21, 1
c



4, 4

4, 5

3 , 3

1, 3

1, 10

6, 7 8, 8

6, 8

Computing Time for Merge sort:

The time for the merging operation in 
proportional to n, then computing time 
for merge sort is described by using 

7,76.6

1, 2

1, 5

1, 1
c

2, 2

9,9

9, 10

6, 10



T(n)=  a  if n=1; 
2T(n/2)+ cn   if n>1

recurrence relation.

Quick Sort
Quick Sort is an algorithm based on the 
DIVIDE-AND-CONQUER paradigm 
that selects a pivot element and reorders 
the given list in such a way that all 
elements smaller to it are on one side 
and those bigger than it are on the other. 
Then the sub lists are recursively sorted 
until the list gets completely sorted. The 
time complexity of this algorithm is O (n 
log n).

Ø Auxiliary space used in the average 
case  for  implementing  recursive 
function calls is O (log n) and hence 
proves  to  be  a  bit  space  costly, 
especially  when it  comes  to  large 
data sets.



ØIts worst case has a time complexity of 
O (n ) which can prove very fatal for 
large data sets. Competitive sorting 
algorithms.

Name

Time Complexity

Space 
Comple
xity

Best 
case

Aver
age 
Cas
e

Wo
rst 
Cas
e

Bubble O(n) - O(n2) O(n)

Insertion O(n) O(n2) O(n2) O(n)

Selection O(n2) O(n2) O(n2) O(n)

Quick O(log n) O(n log n)

O(n2) O(n + log n)

Merge O(n log n) O(n log n)

O(n log n) O(2n)

Heap O(n log n) O(n log n)

O(n log n) O(n)

Comparison between Merge and Quick Sort:
Ø Both follows Divide and Conquer rule.
Ø Statistically both merge sort and 

quick sort have the same average 



case time i.e., O(n log n).
Ø Merge Sort Requires additional 

memory. The pros of merge sort are: 
it is a stable sort, and there is no 
worst case (means average case and 
worst case time complexity is 
same).

Ø Quick sort is often implemented in 
place thus saving the performance 
and memory by not creating extra 
storage space.

Ø But in Quick sort, the 
performance falls on already 
sorted/almost sorted list if the 
pivot is not randomized. Thus 
why the worst case time is O(n2).

Randomized Sorting Algorithm: (Random quick sort)

Ø While sorting the array a[p:q] 
instead of picking a[m], pick a 
random element (from among a[p], 
a[p+1], a[p+2]---a[q]) as the 
partition elements.

Ø The resultant randomized 
algorithm works on any input and 



runs in an expected O(n log n) 
times.

 



Selection Sort:

The selection sort algorithm sorts an array by 
repeatedly finding the minimum element 
(considering ascending order) from unsorted part 
and putting it at the beginning. The algorithm 
maintains two subarrays in a given array. 
1) The subarray which is already sorted.  
2) Remaining subarray which is unsorted. 
In every iteration of selection sort, the minimum 
element (considering ascending order) from the 
unsorted subarray is picked and moved to the sorted 
subarray. 
Strassen’s Matrix Multiplication:
Let A and B be two n×n Matrices. The 
product matrix C=AB is also a n×n matrix 
whose i, jth element is formed by taking 
elements in the ith row of A and jth column 
of B and multiplying them to get

C(i, j)=∑1≤𝑘≤𝑛 𝐴(i, 𝑘)𝐵(𝑘, j)
Here 1≤  i & j ≤ n  means i and j are in between 
1 and n.

To compute C(i, j) using this formula, we need n 



multiplications.

The divide and conquer strategy suggests 
another way to compute the product of 
two n×n matrices.

For Simplicity 
assume n is a 
power of 2 that 
is n=2k Here k� 
any nonnegative 
integer.

If n is not power of two then enough rows 
and columns of zeros can be added to both 
A and B, so that resulting dimensions are a 
power of two.

Let A and B be two n×n Matrices. Imagine 
that A & B are each partitioned into four 
square sub matrices. Each sub matrix 
having dimensions n/2×n/2.

The product of AB can be 
computed by using 



T(n)=  b if n≤2;
8T(n/2)+ cn2  if n>2

previous formula. If AB is  
product of 2×2 matrices 
then

 

 

UNIT-3

UNIT - III

The  Greedy  Method:  General  Method  - 
Container Loading - Knapsack Problem - Tree 
Vertex  Splitting  –  Job  Sequencing  With 
Deadlines - Minimum Cost Spanning Trees – 
Optimal  Storage  on  Tapes–Optimal  Merge 
Patterns-Single Source Shortest Paths.

GREEDY METHOD

T(n)=  b if n≤2;
7T(n/2)+ cn2  if n>2



Greedy Method:
The greedy method is perhaps (maybe 
or possible) the most straight forward 
design technique, used to determine a 
feasible solution that may or may not 
be optimal.

Feasible solution:-

 Most problems have n inputs and its 
solution contains a subset of inputs that 
satisfies a given constraint(condition). Any 
subset that satisfies the constraint is called 
feasible solution.

Optimal solution: 

To find a feasible solution that either 
maximizes or minimizes a given objective 
function. A feasible solution that does this 
is called optimal solution.

The greedy method suggests that an 
algorithm works in stages, considering one 



input at a time. At each stage, a decision is 
made regarding whether a particular input 
is in an optimal solution.

Greedy algorithms neither postpone nor 
revise the decisions (ie., no back tracking). 
Example: Kruskal’s minimal spanning tree. 
Select an edge from a sorted list, check, 
decide, and never visit it again.
Application of Greedy Method:

ØJob sequencing with deadline
Ø0/1 knapsack problem
ØMinimum cost spanning trees
ØSingle source shortest path problem

.
Algorithm for Greedy method
Algorithm Greedy(a,n)
//a[1:n] contains the n inputs.

{

Soluti
on 



:=0; 
For 
i=1 to 
n do

{

X:=select(a);

If 
Feasible(soluti
on, x) then 
Solution 
:=Union(soluti
on,x);

}

Return solution;
}

Selection � Function, that selects an 
input from a[] and removes it. The 
selected input’s value is assigned to x.

Feasible � Boolean-valued function that 
determines whether x can be included 
into the solution vector.



Union � function that combines x with solution and 
updates the objective function.

Container Loading:

Large ship to be loaded with cargo . • All containers 
are of the same size but may be of different weights. 
• Container i has weight wi . • The capacity of the 
ship is C. • Load the ship with maximum number of 
containers without exceeding the cargo weight 
capacity. • Find values xi Î {0, 1} such that • And 
the optimum function is maximized. • Every set of xi 
’s that satisfy the constraints is a feasible solution. • 
Every feasible solution that maximizes is an optimal 
solution.

• Ship may be loaded in stages. • Greedy criterion: 
From the remaining containers, select the one with 
least weight.

Example: 

n = 8 [w1 , w2 , w3 , w4 , w5 , w6 , w7 , w8 ] = [100, 
200, 50, 90, 150, 50, 20, 80] C = 400 [x1 , x2 , x3 , 
x4 , x5 , x6 , x7 , x8 ] = [1, 0, 1, 1, 0, 1, 1, 1] 

 



Algorithm

 ContainerLoading(c, capacity, numberofContainers, 
x) // set x[i] = 1 if and only if container c[i], i ≥ 1 is 
loaded. { // sort into increasing order of weights. 
Sort(C, numberofContainers); n = 
numberofContainers; for i = 1 to n do x[i] = 0; i = 1; 
while ((i £ n) && (c[i].weight £ capacity)) { 
x[c[i].id] = 1; capacity = capacity – c[i].weight; i++; 
} }

Knapsack Problem:

• Given a set of items, each with a weight and a 
profit, determine the number of each item to include 
in a collection so that the total weight is less than or 

equal to a given limit and the total profit is as large 
as possible. • Items are divisible; you can take any 



fraction of an item. • And it is solved using greedy 
method.

 



• Given n objects and a knapsack or bag. • wi → 
weight of object i. • m → knapsack capacity. • If a 
fraction xi , 0 ≤ xi ≤1 of object i is placed into the 
knapsack, then a profit of pixi is earned. • Objective 
is to fill the knapsack that maximizes the total profit 
earned. • Problem can be stated as • A feasible 
solution is any set (x1 …. xn ) satisfying equations 
②and ③. • An optimal solution is a feasible solution 

for which equation ① is maximized. 6 subject to 

wixi ≤ m − − − − − ② 1≤i ≤n 0 ≤ xi ≤ 1, 1 ≤ i ≤ n − − 

− − −③ maximize pi 1 ≤i ≤n xi − − − − − ①.

Example: 

n = 3, m = 20 (x1 , x2 , x3 ) Σwixi Σpixi 1. (1/2, 1/3, 
1/4) 16.5 24.25 2. (1, 2/15, 0) 20 28.2 3. (0, 2/3, 1) 
20 31 4. (0, 1, 1/2) 20 31.5 5. (2/3, 8/15, 0) 20 29.5 6. 
(5/6, 1/3, 0) 20 28.8 Among all the feasible 
solutions yields the maximum profit Weight wi 18 
15 10 Profits pi 25 24 15

The greedy algorithm:

Step 1: Sort pi /wi into nonincreasing order.

 Step 2: Put the objects into the knapsack according 



to the sorted sequence as possible as we can.

e. g. n = 3, M = 20 (w1 , w2 , w3 ) = (18, 15, 10) (p1 
, p2 , p3 ) = (25, 24, 15) Sol: p1 /w1 = 25/18 = 1.39 
p2 /w2 = 24/15 = 1.6 p3 /w3 = 15/10 = 1.5 Optimal 
solution: x1 = 0, x2 = 1, x3 = 1/2 Weight wi 15 10 
18 Profits pi 24 15 25

Tree Vertex Splitting:

• A vertex with in-degree zero is called a source 
vertex • A vertex with out-degree zero is called a 
sink vertex • Let T/X be the forest that results when 
each vertex u is split into two nodes u i and u o such 
that all the edges áu, jñ Î E (áj, uñ Î E) are replaced 
by the edges of the form áu o , jñ (áj, u i ñ) • A greedy 
approach to solve this problem is to compute for each 
node u Î V, the maximum delay d(u) from u to any 
other node in its subtree. • If u has a parent v such 
that d(u) + w(v, u) > d, then the node u gets split and 
d(u) is set to 0. where C(u) is the set of all children of 
u. d u = max 𝑣∈𝐶(𝑢 ) { 𝑑 𝑣 + 𝑊(𝑢, 𝑣)

Algorithm:

 TVS(T, d)

 { if (T ¹ 0) then



 { d[T] = 0; for each child v to T do

 { TVS(v, d); d[T] = max{d[T], d[v]+w[T,v]};
 } 
if ((T is not the root) and (d[T] + w(parent(t), T) > 
d)) then
 { write(T); d[T] = 0; } } }
Job sequencing with deadlines:
There are n jobs to be processed on a machine. • 
Each job i has a deadline di ≥ 0 and profit pi ≥0 . • Pi 
is earned if and only if the job is completed by its 
deadline. • The job is completed if it is processed on 
a machine for unit time. • Only one machine is 
available for processing jobs. • Only one job is 
processed at a time on the machine. • A feasible 
solution is a subset of jobs J such that each job is 
completed by its deadline. • An optimal solution is a 
feasible solution with maximum profit value
General method of job sequencing algorithm:
Algorithm GreedyJob(d, J, n)
 { J := {1}; for i := 2 to n 

do { if (all jobs in J È {i} can be completed by their 
deadlines) then J := J È {i};
 } }



Example 1: Let n = 4, maximum deadline dmax = 2 
(p1 , p2 , p3 , p4 ) = (100,10,15,27) (d1 , d2 , d3 , d4 
) = (2,1,2,1) 
 27 + 100 = 127

Minimum Cost Spanning Trees:
Given an undirected and connected graph G = (V, E), 
a spanning tree of the graph G is a subset of graph G, 
which has all the vertices connected by minimum 
number of edges. • The cost of the spanning tree is 
the sum of the weights of all the edges in the tree. 
There can be many spanning trees. • A Minimum 
Spanning Tree (MST) is a subset of edges of a 
connected weighted undirected graph that connects 
all the vertices together with the minimum possible 
total edge weight. • There also can be many 
minimum spanning trees. • There are two famous 
algorithms for finding the Minimum Spanning Tree:

 Ø Prim’s Algorithm 

Ø Kruskal’s Algorithm
MST – Prim’s Algorithm:
Prim's Algorithm is used to find the minimum 



spanning tree from a graph. • Prim's algorithm finds 
the subset of edges that includes every vertex of the 
graph such that the sum of the weights of the edges 
can be minimized. • Prim's algorithm starts with the 
single node and explore all the adjacent nodes with 
all the connecting edges at every step. • The edges 
with the minimal weights causing no cycles in the 
graph are selected. 
• Algorithm steps: Step 1: Select a starting vertex. 
Step 2: Repeat Steps 3 and 4 until there are vertices 
not in the tree. Step 3: Select an edge e connecting 
the tree vertex and the vertex that is not in the tree 
has minimum weight. Step 4: Add the selected edge 
and the vertex to the minimum spanning tree T Step 
5: Exit
Optimal Storage on tapes:
• n programs are to be stored on a computer tape of 
length l. • Associated with each program i is a length 
l i , 1 £ i £ n. • If the programs are stored in the order 
I = i1 , i2 , ….. in , the time t j needed to retrieve the 
program i j is • If all the programs are retrieved 
equally often, then the Mean Retrieval Time (MRT) 
is • Minimizing the MRT is equivalent to minimizing 
Example: n = 3, (l1 , l2 , l3 ) = (5, 10, 3) n! = 6 
possible ordering Ordering I 
d(I) 1, 2, 3  5+5+10+5+10+3 = 38



 1, 3, 2  5+5+3+5+3+5+10 = 31
 2, 1, 3 10+10+5+10+5+3 = 43 
2, 3, 1 10+10+3+10+3+5 = 41 
3, 1, 2 3+3+5+3+5+10 = 29 
3, 2, 1 3+3+10+3+10+5 = 34 Optimal ordering is 3, 
1, 2 Thus the greedy method implies to store the 
programs in nondecreasing order of their length.

Optimal Merge patterns:
Merge a set of sorted files of different length into a 
single sorted file.
 • We need to find an optimal solution, where the 
resultant file will be generated in minimum time. 
• If the number of sorted files are given, there are 
many ways to merge them into a single sorted file. 
This merge can be performed pair wise. Hence, this 
type of merging is called as 2-way merge patterns.
 • As, different pairings require different amounts of 
time, in this strategy we want to determine an 
optimal way of merging many files together. At each 
step, two shortest sequences are merged.
 • To merge a m-record file and a n-record file 
requires possibly m + n record moves



 • Merge the two smallest files together at each step. 
• Two-way merge patterns can be represented by 
binary merge trees.
 • Initially, each element is considered as a single 
node binary tree.
• The algorithm has as input a list list of n trees.
 • Each node in a tree has three fields, lchild, rchild 
and weight.
 • Initially, each tree in list has exactly one node and 
has lchild and rchild fields zero whereas weight is the 
length of one of the n files to be merged.
 Algorithm 
Tree(n) { for i = 1 to n-1 do 

{ pt = new treenode; pt®lchild = Least(list); 

pt®rchild = Least(list);

 pt®weight = pt®lchild®weight + 
pt®lchild®weight; insert(list,pt); }
 return Least(list); }
 treenode = record 
{ treenode *lchild;
 treenode *rchild; 
integer weight; }



Function Tree uses two functions:
 Least(list) and Insert(list, t). 
• Least(list) finds a tree in list whose root has least 
weight and returns a pointer to the tree. This tree is 
removed from list. 
• Insert(list, t) inserts the tree with root t into list
Single-source shortest path :
 • Given a edge-weighted graph G = (V, E) and a 
vertex v Î V, find the shortest weighted path from v 
to every other vertex in V. 
• Dijkstra’s Algorithm is a greedy algorithm for 
solving the single-source shortest-path problem on an 
edge-weighted graph in which all the weights are 
non-negative.
 • It finds the shortest paths from some initial vertex, 
say v, to all the other vertices one-by-one. 
• The paths are discovered in the order of their 
weighted lengths, starting with the shortest, and 
proceeding to the longest. 
• For each vertex v, Dijkstra’s algorithm keeps track 
of three pieces of information, kv , dv and pv . 
• The Boolean valued flag kv indicates that the 
shortest path to vertex v. Initially, kv = false for all v 
Î V.



 • The quantity dv is the length of the shortest known 
path from v0 to v. When the algorithm begins, no 
shortest paths are known. The distance dv , is a 
tentative distance

• During the course of the algorithm candidate paths 
are examined and the tentative distances are 
modified. 

• Initially dv = ¥ for all v Î V such that v ≠ v0 , 
while dv0 = 0. • The predecessor of the vertex v on 
the shortest path from v0 to v is pv . Initially, pv is 
unknown for all v Î V. 
• The following steps are performed in each pass: 1. 
From the set of vertices for with kv = false, select the 
vertex v having the smallest tentative distance dv . 2. 
Set kv ¬ true. 3. For each vertex w adjacent to v for 
which kv ≠ true, test whether the tentative distance 
dv is greater than dv + C(v,w). If it is, set dw ¬ dv + 
C(v,w) and set pw ¬ v.
 • In each pass exactly one vertex has its kv set to 
true. The algorithm terminates after |V| passes are 
completed at which time all the shortest paths are 
known.
Initially: 
S = {1}; 



D[2] = 10; 

D[3] = ¥; D[4] = 30; D[5] = 100
 Iteration 1
 Select w = 2, 
so that S = {1, 2}

 D[3] = min(¥, D[2] + C[2, 3]) = 60
 D[4] = min(30, D[2] + C[2, 4]) = 30
 D[5] = min(100, D[2] + C[2, 5]) = 100
 Iteration 2
 Select w = 4, so that S = {1, 2, 4}
 D[3] = min(60, D[4] + C[4, 3]) = 50 
D[5] = min(100, D[4] + C[4, 5]) = 90 
Iteration 3
 Select w = 3, so that S = {1, 2, 4, 3}
 D[5] = min(90, D[3] + C[3, 5]) = 60
 Iteration 4
 Select w = 5, so that S = {1, 2, 4, 3, 5} 
D[2] = 10; D[3] = 50; D[4] = 30; D[5] = 6
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DYNAMIC PROGRAMMING:-

THE GENERAL METHOD:

Dynamic programming is an algorithm design 
method that can be used when the solution of a 
problem can be viewed as the result of a sequence of 
decisions.

An optimal sequence of decisions can be found by 
making the decisions one at a time and never making 
an erroneous decision.



This is true for all problems solvable by the greedy 
method.

The steps in a dynamic programming solution are:

· Verify that the principle of optimality holds.
· Set up the dynamic-programming recurrence 

equations.
· Solve the dynamic-programming recurrence 

equations for the value of the optimal solution.
· Perform a trace back step in which the solution 

itself is constructed.

MULTI STAGE GRAPHS:

A multistage graph G=(V,E)is a directed graph in 
which the vertices are partitioned into K>=2 disjoint 
sets Vi,1<=i<=k.

In addition,if<u,v>is an edge in E,then u E Vi and v 
E Vi+1 for some i,1<=i<k.

The multistage graph problem can also be solved 
using the backward approach.

A dynamic programming formulation for a k-stage 
graph problem is obtained by first noticing that  
every s to t path is the result of a sequence of k-2 



decisions. 
ALGORITHM:

Algorithm Fgraph(G,k,n,p)

Cost of(i,j).p[1:k]is a minimum cost path

{

Cost[n]:=0.0;

For j:n-1 to step-1 do

{

Let r be a vertex such that(j,r)is an edge of G

c[j,r]+cost[r]is minimum;

cost[j]:=c[j,r]+cost[r];

d[j]:r:

}

p[1]:=1;

p[k]:=n;

for j:=2 to k-1 do p[j]:d[p[j-1]];

}

Algorithm Bgraph(G,k,n,p)



Fgraph

{

Bcost[1]:=0.0;

for j:=2 to n do

{

Bcost [j].

Let r be such that(r,j)is an edge of G

Bcost[r]+c[r,j]is minimum;

Bcost[j]:=Bcost[r]+c[r,j];

D[j]:=r;

}

p[1]:=1;

p[k]:=n;

for j:=k-1 to 2 do p[j]:=d[p[j+1]];

}

ALL –PAIRS SHORTEST PATHS:

In the all pairs of shortest path problem,we are to 
find a shortest path between every pair of vertices in 
a directed graph G.



The two paths are the same when G is undirected.

When no edge as a negative length,the all-pairs 
shortest path problem may be solved by using 
Dijkstra’s greedy single source algorithm n 
times,once with each of the n vertices as the source 
vertex.

AK(i,j)={min{Ak-1(i,k)+Ak-1(k,j)},c(i,j)}

Algorithm All Paths(Cost,A,n)

cost[i,j]=0.0,for 1<=i<=n

{

for i:=1 to n do

for j:=1 to n do

A[i,j]:=cost[i,j];

for k:=1 to n do

for i:=1 to n do

for j:=1 to n do

A[i,j]:=min(A[i,j],A[i,k]+A[k,j]);

}

SINGLE-SOURCE SHORTEST PATHS:



When there are no cycles of negative length ,there is  
shortest path between any two vertices of an n-vertex 
graph that has at most n-1 edges on it.

The maximum number of edges on a cycle-free 
shortest path algorithm from source vertex to all 
remaining vertices in the graph. 

When some of all of the edges of the directed graph 
G may have negative length.

When negative edge lengths are permitted,we require 
that the graph have no cycles of negative length.

distk[u]=min{distk-1[u],min{distk-1[i]+cost[I,u]}}

Algorithm BellmanFord(v,cost,dist,n)

{

for i:=1 to n do

dist[i]:=cost[v,i];

for k:=2 to n-1 do

for each you such that u/v and u has at last one 
incoming edge do

for each(i,u)in the graph do

if dist[u]>dist[i]+cost[i,u]then



dist[u]:=dist[i]+cost[i,u];

}

OPTIMAL BINARY SEARCH TREES:

Huffman coding tree solved by a greedy algorithm 
has a limitation of having the data only at the leaves 
and it must not preserve the property that all nodes to 
the left of the root have keys,which are less etc.

Construction of an optimal binary search tree is 
harder,because the data is not constrained to appear 
only at the leaves,and also because the tree must 
satisify the binary search tree property and it must 
preserve the property that all nodes to the left of the 
root have keys,which are less.

A dynamic programming solution to the problem of 
obtaining an optimal binary search tree can be 
viewed by constructing a tree as a result of sequence 
of decisions by holding the principle of optimality.

~nPi(1+di)
    i~1

The expected contribution for the internal node for 
‘ai’ is:

p(i)*level(ai).



Unsuccessful search terminate with I=0.Hence the 
cost contribution for this node is:

Q(i)*level(Ei)-1)

The expected cost of binary search tree is:
n~P(i)*level(ai)+n~Q(i)*level((Ei)-1)

The total time to evaluate all the c(i,j)’s and r(i,j)’s is 
therefore:

~(nm-m2)=0(n3)1<m<n

Given a fixed set of identifiers,we wish to create a 
binary search tree organization.

We may expect different binary search trees for the 
same identifier set to have different performance 
characteristics.

cost(L)=k.P(i)*level(ai)+k.Q(i)*level(Ei)-1,

              i-1                       i-0

cost(ft)=n.P(i)*level(ai)+n.Q(i)*level(Ei)-1,

               i-k                      i-k

STRING EDITING:

We are given two strings X=x1,x2,…,xn and 
Y=y1,y2,…,ym,where x;,1<=i<n,and 



yj,1<=j<=m,are members of a finite set of symbols 
known as the alphabet.

The cost of a sequence of operation is the sum of the 
costs of the individual operation in the sequence.

The problem of string editing is to identify a 
minimum-cost sequence of edit operations that will 
transform X and Y.

A solution to the string editing problem consists of a 
sequence of decisions,one for each edit operation.

Let  D(x1)be the cost of deleting the symbol xi from 
X,I(y3)be the cost of inserting the symbol yj into 
X,and C(xi,yj)be the cost of changing the symbol xi 
of X into yj.

  
cost(1,1)=min{cost(0,1)+D(x1),cost(0,0)+C(x1,y2),c
ost(1,0)+I(y1)}

                  =min{2,2,2}=2

Next is computed cost(1,2)

Cost(1,2)=min{cost(0,2)+D(x1),cost(0,1)+C(x1,y2),c
ost(1,1)+I(y2)}

                 =min{3,1,3}=1



O/I KNAPSACK: 

We are given n objects and a knapsack.

Each object i has a positive weight wi and a positive 
value vi.

The knapsack can carry a weight not exceeding W.

A solution to the knapsack problem can be obtained 
by making a sequence of decisions on the variables 
x1,x2,…xn.

A decision on variables xi involves determining 
which of the values 0 or 1 is to be assigined to it.

Fn(m)=max{fn-1(m),fn-1(m-wn)+pn}

For arbitrary fi(y),i>0,this equation generalizes to:

Fi(y)=max{fi-1(y),fi-1(y-wi)+pi}

Si1={(P,W)/(P-pi,W-wi)eSi}

The strategy we have come up with can also be 
derived by attempting  to solve the knapsack problem 
via a systematic examination of the up to 2n 
possibilities for x1,x2,…xn.

Algorithm DKP(p,w,n,m)

{



S0:={(0,0)};

For i:=1 to n-1 do

{

Si-1:={(P,W)\(P-pi,W-wi)cSi-1 and W<=m};

S1:=MergePurge(Si-1,S1i-1);

}

(PX,WX):=last pair in Sn-1);

(PY,WY):=(p’+pn,W’+wn)where W’ is the largest W 
in any pair in Sn-1 such that W+wn<=m;

If(PX>PY) then xn:=0;

Else xn:=1;

TraceBackFor(xn-1,…,x1);

}

RELIABILITY DESIGN:

The problem is to design a system that is compsed of 
several devices connected in series.

Let ri be the reliability of device Di then the 
reliability of the entire system is fT ri.

Even if the individual devices are very reliable,the 



reliability of the system may not be very good.

If stage i contains mi copies of device Di.Then the 
probability that all mi have a malfunction 
is(1-ri)mi.Hence the reliability of stage i becomes 
1-(1-r)mi.i

Our problem is to use device duplication.This 
maximization is to be carried out under a cost 
constraint.

Solve:

Maximize~qi(mi~1-<-i<n

Subject to~Ci mi<C 1-<-i<n

mi>=1 and integer,1<=i<=n

The optimal solution m1,m2……mn is the result of a 
sequence of decisions,one decision for each mi.

Subject of the constraints:

Cj mj~x and 1<=mj<=uj,1<=j<=i

1<=i<=i

The last decision made requires one to choose mn 
from{1,2,3,….un}.once a value of mn has been 
chosen,the remaining decisions must be such as to 
use the remaining funds C-Cn mn in an optimal way.



The principles of optimality holds on

fn~C~~max{0n(mn)fn_1(C-Cn mn)}1<mn<un

The general equation

fn(x)=max{ci(mi)fi-1(x-Ci mi)}1<mi<ui

clearly,f0(x)=1 for all x,0<=x<=C and f(x)=-00 for 
all x<0.Let Si consist of tuples of the form(f,x),where 
f=fi(x).

There is atmost one tuple for each different ‘x’,that 
result from a sequence of decisions on 
m1,m2,…..mn.The dominance 
rule(f1,x1)dominate(f2,x2)if f1>=f2 and 
x1>=x2.Hence,dominated tuples can be discarded 
from Si.

THE TRAVELING SALESPERSON PROBLEM:

Let G=(V,E) be a directed graph with edge costs 
Cij.The variable cij is defined such that cij>0 for all I 
and j and cij=a if<i,j>oE.

A tour of G is a directed simple cycle that includes 
every vertex in V.The cost of tour is the sum of the 
cost of edges on the tour.

The traveling sales person problem is to find a tour 



of minimum cost.The tour is to be a simple path that 
starts and ends at vertex 1.

Hence,this problem can be regarded as a traveling 
salesperson problem on an n vertex graph with edge 
cost cij’s being the changeover cost from commodity 
i to commodity j.

Principles of optimality

g(1,V-{1})=2~k~n~c1k~g~k,V~~1,k~~

Generalizing equation1

g(i,s)=min{cij jEs

The equation can be solved for g(1,V-1})if we know 
g(k,V-{1,k})for all choices of k.

Complexity Analysis:

For each value of [S] there + g,i,s-,j are n-1 choices 
for i.The number of distinct sets S of size K not 
including 1 and I is I k~~n-2~

The most serious drawback of this dynamic 
programming solution is the space needed,which is 
O(n 2n).This is too large even for modest values of n.

 FLOW SHOP SCHEDULING:

Hence,it suffices to generate any schedule for which 



holds for every pair of adjacent jobs.

If min{a1,a2,…,an,b1,b2,…,bn} is bj,then job j 
should be the last job in an optimal schedule.This 
enables us to make a decision as to the positioning of 
one of the n jobs.

1.Sort all the ai’s and bj’s into nondecreasing 
order.

2. If the next number in the sequence is aj and job j 
hasn’t yet been scheduled,schedule job j at the 
leftmost available spot.

3. If the next number is bj and job j hasn’t yet been 
scheduled,schedule job j at the rightmost 
available spot.If j has already been scheduled,go 
to the next number in the sequence.

BASIC TRAVERSAL AND SEARCH 
TECHNIQUES:-

TECHNIQUES FOR BINARY TREES:

The solution to many problems involves the 
manipulation of binary trees,trees,or graphs.Often 
this manipulation requires us to determine a 
vertex(node)or a subset of vertices in the given data 
object that satisfies a given property.

This algorithm is not a traversal algorithm as it does 



not examine every vertex in the search tree.There are 
many operations that we want to perform on binary 
trees.

A traversal produces a linear order for the 
information in a tree.This linear order may be 
familiar and useful.

Six combination of traversal

LDR,LRD,DLR,DRL,RDL, and RLD

Inorder,preorder and postorder.

Algorithm InOrder(t)

{

If t / 0 then

{

InOrder(t->l child);

Visit(t);

InOrder(t->r child);

}

}

Algorithm preorder



{

if t/0 then

{

Visit(t);

PreOrder(t->t child);

PreOrder(t->r child);

}

}

Algorithm PostOrder(t)

{

If t/0 then

{

PostOrder(t->t child);

PostOrder(t->r child);

Visit(t);

}

}

TECHNIQUES FOR GRAPHS:



A fundamental problem concerning graphs is the 
reachability problem.

In its simplest form it requires us to determine 
whether there exists a path in the given graph 
G=(V,E) such that this path starts at vertex v and 
ends at vertex u.

BREADTH FIRST SEARCH AND TRAVERSAL:

In breadth first search we start at a vertex v and mark 
it as having been reached.The vertex v is at this time 
said to be unexplored.

The list of unexplored vertices operates as a queue 
and can be represented using any of the standard 
queues representation.

Algorithm BFS(e)

{

U:=v;

Visited[v]:=1;

repeat

{

For all vertices w adjacent from u do

{



If(visited[w]=0)then

{

Add w to q;

visited[w]:=1;

}

}

If q is empty then return;

Delete the next element,u,from q;

}

until(false);

}

DEPTH FIRST SEARCH AND TRAVERSAL:

A depth first search of a graph differs from a breadth 
first search in that the exploration of a vertex v is 
suspended as soon as a new vertex u begins.

When this new vertex has been explored,the 
exploration of v continuous.The search terminates 
when all reached vertices have been fully explored.

Algorithm DFS(e)



{

Visited[v]:=1;

For each vertex w adjacent from v do

{

If(visited[w]=0)then DFS(w);

}

}   

CONNECTED AND SPANNING TREES:

If G is a connected undirected graph,then all vertices 
of G will get visited on the first call to BFS.If G is 
not connected,then at least two calls to BFS will be 
needed.

BFS can be used to determine whether G is 
connected.All newly visited vertices on a call to BFS 
from BFT represent the vertices in a connected of 
graph  can be obtained using BFT.

Then the subgraph formed by the vertices on this list 
make up a connected component.Hence,if adjacency 
lists are used,a breadth first traversal will obtain the 
connected components in o(n+e)time.

BFT can also be used to obtain the reflexive 



transitive closure matrix of an undirected graph G.If 
A*(i,j)=1 if either i=j or i/j and i and j are in the same 
connected components.

As a final application of breadth first search,consider 
the problem of obtaining a spanning tree for an 
undirected graph G.The graph G has a spanning tree 
if G is connected.

BFS easily determines the existence of a spanning 
tree.

Spanning trees obtained using a breadth first search 
are called breadth first spanning trees.

IICONNECTED COMPONENTS AND DFS:

The “graph” we always mean an undirected graph.

A vertex v in a connected graph G is an articulation 
point if and only if the deletion of vertex v together 
with all edges incident to v disconnects the graph 
into two or more nonempty components.

A graph G is biconnected if and only if it contains no 
articulation points.The graph of is not biconnected.

The presence of articulation points in a connected 
graph can be an undesirable feature in my cases.Once 
it has been termined that a connected graph G is not 



biconnected,it may be desired to determine a set of 
edges the graph is biconnected.

Depth first spanning trees have a property that is very 
useful in identifying articulation points and 
biconnected components.

define L[u],

L[u]=min{dfn[u],min{L[w]\w is a child of 
u},min{dfn[w]!(u,w)is a back edge}}

L[u] can be easily computed if the vertices of the 
depth first spanning tree are visited in postorder.

Thus,to  determine the articulation points,it is 
necessary to perform a depth first search of the graph 
G and visit the nodes in the resulting depth first 
spanning tree in postorder.

Algorithm

for each articulation point a do

{

Let B1,B2,….,Bk be the biconnected components 
containing vertex a;

Let vi,vi/a,be a vertex in Bi,1<=i<=k;

Add to G the edges(vi,vi+1),1<=i<k;



}
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Backtracking (General method) 

üMany problems are difficult to solve 
algorithmically. Backtracking makes it possible 
to solve at least some large instances of difficult 
combinatorial problems.
üSuppose you have to make a series of decisions 

among various choices, where 
üYou don’t have enough information to know 

what to choose 
üEach decision leads to a new set of choices. 
üSome sequence of choices ( more than one 

choices) may be a solution to your problem. 

Backtracking is a methodical (Logical) way of trying 
out various sequences of decisions, until you find one 
that “works” 
Example : Maze (a tour puzzle)



Given a maze, find a path from start to finish. 
· In maze, at each intersection, you have to decide 

between 3 or fewer choices: 
ØGo straight 
ØGo left 
ØGo right 
ØYou don’t have enough information to choose 

correctly 
ØEach choice leads to another set of choices. 
ØOne or more sequences of choices may or may 

not lead to a solution. 
ØMany types of maze problem can be solved with 

backtracking. 

Example: 
o Sorting the array of integers in a[1:n] is a 

problem whose solution is expressible by an 
n-tuple xi� is the index in ‘a’ of the it smallest 
element. 

o The criterion function ‘P’ is the inequality a[xi]≤ 
a[xi+1] for 1≤ i ≤ n Si is finite and includes the 
integers 1 through n.



o  Mi size of set Si m=m1m2m3---mn n tuples that 
possible candidates for satisfying the function P.

o With brute force approach would be to form all 
these n-tuples, evaluate (judge) each one with P 
and save those which yield the optimum. 

o By using backtrack algorithm; yield the same 
answer with far fewer than ‘m’ trails. 

o Many of the problems we solve using 
backtracking requires that all the solutions 
satisfy a complex set of constraints. 

o For any problem these constraints can be divided 
into two categories:

ØExplicit constraints. 
ØImplicit constraints. 

Explicit constraints: Explicit constraints are rules 
that restrict each xi to take on values only from a 
given set. 
Example: 
xi ≥ 0 or si={all non negative real numbers} 
Xi=0 or 1 or Si={0, 1} 
li ≤ xi ≤ ui or si={a: li ≤ a ≤ ui } 
· The explicit constraint depends on the particular 

instance I of the problem being solved.
·  All tuples that satisfy the explicit constraints 

define a possible solution space for I. 
Implicit Constraints: 
· The implicit constraints are rules that determine 



which of the tuples in the solution space of I 
satisfy the criterion function. 

· Thus implicit constraints describe the way in 
which the Xi must relate to each other. 

Applications of Backtracking: 
ØN Queens Problem 
ØSum of subsets problem 
ØGraph coloring 
ØHamiltonian cycles. 

N-Queens Problem: 
ØIt is a classic combinatorial problem. 
ØThe eight queen’s puzzle is the problem of 

placing eight queens puzzle is the problem of 
placing eight queens on an 8×8 chessboard so 
that no two queens attack each other. 
ØThat is so that no two of them are on the same 

row, column, or diagonal. 
ØThe 8-queens puzzle is an example of the more 

general n-queens problem of placing n queens on 
an n×n chessboard. 



Sum of Subsets Problem: 



Given positive numbers wi 1 ≤ i ≤ n, & m, here sum 
of subsets problem is finding all subsets of wi whose 
sums are m. 
Definition: Given n distinct +ve numbers (usually 
called weights), desire (want) to find all 
combinations of these numbers whose sums are m. 
this is called sum of subsets problem. To formulate 
this problem by using either fixed sized tuples or 
variable sized tuples. 
Backtracking solution uses the fixed size tuple 
strategy. 
For example: 
If n=4 (w1, w2, w3, w4)=(11,13,24,7) and m=31. 
Then desired subsets are (11, 13, 7) & (24, 7). 
The two solutions are described by the vectors (1, 2, 
4) and (3, 4). 
In general all solution are k-tuples (x1, x2, x3---xk) 1 
≤ k ≤ n, different solutions may have different sized 
tuples. 
 Explicit constraints requires xi ∈ {j / j is an integer 1 
≤ j ≤ n } 
Implicit constraints requires: 

No two be the same & that the sum of the 
corresponding wi’s be m i.e., (1, 2, 4) & (1, 4, 2) 
represents the same. Another constraint is xi<xi+1 
1 ≤ i ≤ k 
Wi weight of item i 





M Capacity of bag (subset) 
Xi the  element of the solution vector is either one or 
zero. 
Xi value depending on whether the weight wi is 
included or not. 
If Xi=1 then wi is chosen. 
If Xi=0 then wi is not chosen.

The above equation specify that x1, x2, x3, --- xk 
cannot lead to an answer node if this condition is not 
satisfied.

The equation cannot lead to solution.

Recursive backtracking algorithm for sum of 
subsets problem 
Algorithm SumOfSub(s, k, r) 
{ 



X[k]=1 
If(S+w[k]=m) then write(x[1: ]); // subset found. 
Else if (S+w[k] + w{k+1] ≤ M) 
Then SumOfSub(S+w[k], k+1, r-w[k]); 
if ((S+r - w{k] ≥ M) and (S+w[k+1] ≤M) ) then 
{ 
X[k]=0; 
SumOfSub(S, k+1, r-w[]
}
Graph Coloring:
· Let G be a undirected graph and ‘m’ be a given 

+ve integer. 
· The graph coloring problem is assigning colors 

to the vertices of an undirected graph with the 
restriction that no two adjacent vertices are 
assigned the same color yet only ‘m’ colors are 
used. 

· The optimization version calls for coloring a 
graph using the minimum number of coloring.

· The decision version, known as K-coloring asks 
whether a graph is colourable using at most 
k-colors. 

Note that, if ‘d’ is the degree of the given graph then 
it can be colored with ‘d+1’ colors. 
The m- colorability optimization problem asks for 



the smallest integer ‘m’ for which the graph G can be 
colored. This integer is referred as “Chromatic 
number” of the graph. 
Example

ØAbove graph can be colored with 3 colors 1, 2, 
& 3. 
ØThe color of each node is indicated next to it. 
Ø3-colors are needed to color this graph and 

hence this graph’ Chromatic Number is 3. 
ØA graph is said to be planar iff it can be drawn 

in a plane (flat) in such a way that no two edges 
cross each other. 
ØM-Colorability decision problem is the 4-color 

problem for planar graphs. 
ØGiven any map, can the regions be colored in 

such a way that no two adjacent regions have 
the same color yet only 4-colors are needed? 
ØTo solve this problem, graphs are very useful, 



because a map can easily be transformed into a 
graph. 
ØEach region of the map becomes a node, and if 

two regions are adjacent, then the corresponding 
nodes are joined by an edge. 

o Example: 

The above map requires 4 colors. 
ØMany years, it was known that 5-colors were 

required to color this map.
ØAfter several hundred years, this problem was 

solved by a group of mathematicians with the 
help of a computer. They show that 4-colors are 
sufficient. 

ØSuppose we represent a graph by its adjacency 
matrix G[1:n, 1:n] 



Ex:

ØHere G[i, j]=1 if (i, j) is an edge of G, and G[i, 
j]=0 otherwise. 
ØColors are represented by the integers 1, 2,---m 

and the solutions are given by the n-tuple (x1, 
x2,---xn) 

xiColor of node i. 
State Space Tree for 
n=3nodes 
m=3colors

1st node coloured in 3-ways 
2nd node coloured in 3-ways 
3rd node coloured in 3-ways 



So we can colour in the graph in 27 possibilities of 
colouring. 

Hamiltonian Cycles: 
ØDef: Let G=(V, E) be a connected graph with n 

vertices. A Hamiltonian cycle is a round trip path 
along n-edges of G that visits every vertex once 
& returns to its starting position. 
ØIt is also called the Hamiltonian circuit. 
ØHamiltonian circuit is a graph cycle (i.e., closed 

loop) through a graph that visits each node 
exactly once. 
ØA graph possessing a Hamiltonian cycle is said 

to be Hamiltonian graph. 

Example:

ØIn graph G, Hamiltonian cycle begins at some 
vertiex v1 ∈ G and the vertices of G are visited 
in the order v1,v2,---vn+1, then the edges (vi, 
vi+1) are in E, 1 ≤ i ≤ n. 



ØThe above graph contains Hamiltonian cycle: 
1,2,8,7,6,5,4,3,1

The above graph contains no Hamiltonian cycles.

ØThere is no known easy way to determine 
whether a given graph contains a Hamiltonian 
cycle. 
ØBy using backtracking method, it can be possible 
ØBacktracking algorithm, that finds all the 

Hamiltonian cycles in a graph. 
ØThe graph may be directed or undirected. Only 

distinct cycles are output. 
ØFrom graph g1 backtracking solution vector= {1, 

2, 8, 7, 6, 5, 4, 3, 1} 
ØThe backtracking solution vector (x1, x2, --- xn) 

        xi� ith visited vertex of proposed cycle. 





ØBy using backtracking we need to determine 
how to compute the set of possible vertices for 
xk if x1,x2,x3---xk-1 have already been chosen. 
ØIf k=1 then x1 can be any of the n-vertices. 
ØBy using “NextValue” algorithm the recursive 

backtracking scheme to find all Hamiltoman 
cycles.
ØThis algorithm is started by 1st initializing the 

adjacency matrix G[1:n, 1:n] then setting x[2:n] 
to zero & x[1] to 1, and then executing 
Hamiltonian (2)

Branch & Bound 
Branch & Bound (B & B) is general algorithm 
(or Systematic method) for finding optimal 
solution of various optimization problems, 
especially in discrete and combinatorial 
optimization. 
ØThe B&B strategy is very similar to backtracking 

in that a state space tree is used to solve a 
problem. 
ØThe differences are that the B&B method 
ØDoes not limit us to any particular way of 

traversing the tree. 
ØIt is used only for optimization problem 
ØIt is applicable to a wide variety of discrete 

combinatorial problem. 
ØB&B is rather general optimization technique 



that applies where the greedy method & dynamic 
programming fail. 
Ø It is much slower, indeed (truly), it often 

(rapidly) leads to exponential time complexities 
in the worst case. 
Ø The term B&B refers to all state space search 

methods in which all children of the “E-node” 
are generated before any other “live node” can 
become the “E-node” 
Ø Live node is a node that has been generated but 

whose children have not yet been generated. 
ØE-node is a live node whose children are 

currently being explored. 



ØDead node is a generated node that is not to be 
expanded or explored any further. 
ØAll children of a dead node have already been 

expanded. 

ØTwo graph search strategies, BFS & D-search 
(DFS) in which the exploration of a new node 
cannot begin until the node currently being 
explored is fully explored. 
ØBoth BFS & D-search (DFS) generalized to 

B&B strategies. 
ØBFS like state space search will be called FIFO 

(First In First Out) search as the list of live nodes 
is “First-in-first-out” list (or queue). 
ØD-search (DFS) Like state space search will be 

called LIFO (Last In First Out) search as the list 
of live nodes is a “last-in-first-out” list (or stack). 
Ø In backtracking, bounding function are used to 

help avoid the generation of sub-trees that do not 
contain an answer node. 
ØWe will use 3-types of search strategies in 

branch and bound 



1) FIFO (First In First Out) search 
2) LIFO (Last In First Out) search 
3) LC (Least Count) search 
FIFO B&B: 
FIFO Branch & Bound is a BFS. 
In this, children of E-Node (or Live nodes) are 
inserted in a queue. 
Implementation of list of live nodes as a queue 
ØLeast()� Removes the head of the Queue 
ØAdd()� Adds the node to the end of the Queue 

Assume that node ‘12’ is an answer node in FIFO 
search, 1st we take E-node has ‘1’ 



LIFO B&B: 
LIFO Brach & Bound is a D-search (or DFS). 
In this children of E-node (live nodes) are inserted in 
a stack 
Implementation of List of live nodes as a stack 
ØLeast() Removes the top of the stack 
ØADD()Adds the node to the top of the stack. 

Least Cost (LC) Search: 
ØThe selection rule for the next E-node in FIFO or 

LIFO branch and bound is sometimes “blind”. 
i.e., the selection rule does not give any 
preference to a node that has a very good chance 
of getting the search to an answer node quickly. 
ØThe search for an answer node can often be 

speeded by using an “intelligent” ranking 
function. It is also called an approximate cost 
function “Ĉ”. 
ØExpended node (E-node) is the live node with 

the best Ĉ value. 
Branching: 
ØA set of solutions, which is represented by a 

node, can be partitioned into mutually (jointly or 
commonly) exclusive (special) sets. 
ØEach subset in the partition is represented by a 



child of the original node. 
Lower bounding: 
ØAn algorithm is available for calculating a lower 

bound on the cost of any solution in a given 
subset. 
ØEach node X in the search tree is associated with 

a cost: Ĉ(X) C=cost of reaching the current 
node, X(E-node) form the root + The cost of 
reaching an answer node form X. 
ØĈ=g(X)+H(X). 

Example: 
8-puzzle 
Cost function: Ĉ = g(x) +h(x) 
where h(x) = the number of misplaced tiles 
and g(x) = the number of moves so far 
Assumption: move one tile in any direction cost 1.
O/1 Knapsack Problem 
What is Knapsack Problem: 
ØKnapsack problem is a problem in combinatorial 

optimization, Given a set of items, each with a 
mass & a value, determine the number of each 
item to include in a collection so that the total 
weight is less than or equal to a given limit & the 
total value is as large as possible. 

O-1 Knapsack Problem can formulate as. 
ØLet there be n items, Z1 to Zn where Zi has 

value Pi & weight wi. The maximum weight that 
can carry in the bag is m. 



ØAll values and weights are non negative. 
ØMaximize the sum of the values of the items in 

the knapsack, so that sum of the weights must be 
less than the knapsack’s capacity m. 
ØThe formula can be stated as

Xi=0 or 1 1 ≤ i ≤ n 
To solve o/1 knapsack problem using B&B: 
ØKnapsack is a maximization problem 
ØReplace the objective function by the function to 

make it into a minimization problem 
ØThe modified knapsack problem is stated as 

Fixed tuple size solution space: 
o Every leaf node in state space tree represents an 
answer for which 

is an answer node; other leaf nodes are infeasible 
o For optimal solution, define 

for every answer node x 
o For infeasible leaf nodes, 



o For non leaf nodes 

c(x) = min{c(lchild(x)), c(rchild(x))} 
o Define two functions cˆ(x) and u(x) such that 

for every node x, 

cˆ(x) ≤ c(x) ≤ u(x) 



ØComputing cˆ(·) and u(·) 

Algorithm ubound ( cp, cw, k, m ) 
{ 
// Input: cp: Current profit total 
// Input: cw: Current weight total 
// Input: k: Index of last removed item 
// Input: m: Knapsack capacity 
b=cp; c=cw; 
for i:=k+1 to n do{ 
if(c+w[i] ≤ m) then { 
c:=c+w[i]; b=b-p[i]; 
} 
} 
return b; 
} 


