
SEMESTER- I

Core Course-I-DESIGN AND ANALYSIS OF
ALGORITHMS

UNIT - I

Introduction: Algorithm Definition – Algorithm
Specification – Performance Analysis - Asymptotic
Notations. Elementary Data Structures: Stacks and
Queues – Trees – Dictionaries – Priority
Queues–Sets and Disjoint Set Union – Graphs .

Algorithm Definition:

• An algorithm is a finite set of instructions that, if
followed, accomplishes a particular task. In addition,
all algorithms must satisfy the following criteria:

• Input. Zero or more quantities are externally
supplied.

• Output. At least one quantity is produced.

• Definiteness. Each instruction is clear and
unambiguous.

• Finiteness. The algorithm terminates after a finite
number of steps.

• Effectiveness. Every instruction must be very basic
enough and must be feasible.

• An algorithm is a sequence of unambiguous
instructions for solving a problem, i.e., for obtaining
a required output for any legitimate input in a finite
amount of time.

Efficiency of Algorithms:

· The performances of algorithms can be measured
on the scales of time and space.

· The performance of a program is the amount of
computer memory and time needed to run a
program. We use two approaches to determine
the performance of a program. One is analytical
and the other is experimental.

· In performance analysis we use analytical
methods, while in performance measurement we
conduct experiments.

Time Complexity: The time complexity of an
algorithm or a program is a function of the running
time of the algorithm or a program. In other words, it
is the amount of computer time it needs to run to
completion.

Space Complexity: The space complexity of an
algorithm or program is a function of the space
needed by the algorithm or program to run to
completion.

· The time complexity of an algorithm can be
computed either by an empirical or theoretical
approach.

· The empirical or posteriori testing approach calls
for implementing the complete algorithms and
executing them on a computer for various
instances of the problem.

· The time taken by the execution of the programs
for various instances of the problem are noted
and compared.

· The algorithm whose implementation yields the
least time is considered as the best among the
candidate algorithmic solutions.

Analysis of Algorithms:
· Our approach is based on the asymptotic

complexity measure. This means that we don’t
try to count the exact number of steps of a
program, but how that number grows with the
size of the input to the program.

· That gives us a measure that will work for
different operating systems, compilers and
CPUs.

· The asymptotic complexity is written using
big-O notation.

Rules for using big-O:
The most important property is that big-O gives an

upper bound only. If an algorithm is O(n2), it doesn’t
have to take n2 steps (or a constant multiple of n2).

take more than n2. So any algorithm that is O(n), is
also an O(n2) algorithm.

· If this seems confusing, think of big-O as being
like "<". Any number that is < n is also < n2.

1. Ignoring constant factors: O(c f(n)) = O(f(n)),
where c is a constant; e.g. O(20 n3) = O(n3)

2. Ignoring smaller terms: If a<b then O(a+b) = O(b),
for example O(n2+n)

= O(n2)
3. Upper bound only: If a<b then an O(a) algorithm
is also an O(b) algorithm. For example, an O(n)
algorithm is also an O(n2) algorithm (but not vice
versa).

4. n and log n are "bigger" than any constant, from an
asymptotic view (that means for large enough n). So
if k is a constant, an O(n + k) algorithm is also O(n),
by ignoring smaller terms. Similarly, an O(log n + k)
algorithm is also O(log n).

5. Another consequence of the last item is that an
O(n log n + n) algorithm, which is O(n(log n + 1)),
can b

Suppose M is an algorithm, and suppose n is the size
of the input data. Clearly the complexity f(n) of M
increases as n increases.

 It is usually the rate of increase of f(n) with some
standard functions. The mostcommon computing
times are O(1), O(log2 n), O(n), O(n log2 n), O(n2),
O(n3), O(2n).

Asymptotic Notations:

· It is often used to describe how the size of the
input data affects an algorithm’s usage of
computational resources.

· Running time of an algorithm is described as a
function of input size n for large n.

Big oh(O): Definition: f(n) = O(g(n)) (read as f of n
is big oh of g of n) if there exist a positive integer n0
and a positive number c such that |f(n)| ≤ c|g(n)| for
all n ≥ n0 . Here g(n) is the upper bound of the
function f(n).

Omega(Ω): Definition: f(n) = Ω(g(n)) (read as f of n
is omega of g of n), if there exists a positive integer
n0 and a positive number c such that |f(n)| ≥ c |g(n)|
for all n ≥ n0. Here g(n) is the lower bound of the
function f(n).

Theta(Θ): Definition: f(n) = Θ(g(n)) (read as f of n
is theta of g of n), if there exists a positive integer n0
and two positive constants c1 and c2 such that c1
|g(n)| ≤ |f(n)| ≤ c2 |g(n)| for all n ≥ n0. The function
g(n) is both an upper bound and a lower bound for
the function f(n) for all values of n, n ≥ n0 .

Data Structure:

ØLinear data structure

ØNon Linear Data Structure

Stack

· Stack is an Abstract data structure works on the
principle Last In First Out Last In.

· The last element add to the stack is the first
element to be delete.

· Insertion and deletion can be takes place at one
end called TOP.

· It looks like one side closed tube.

Stack operation:

Push()

 Add operation of the stack is called push
operation.

Pop()

 Delete operation is called as pop operation.

Queues:

· A queue is a data structure that is best described
as "first in, first out".

· A queue is another special kind of list, where
items are inserted at one end called the rear and
deleted at the other end called the front.

· A real world example of a queue is people
waiting in line at the bank.

· As each person enters the bank, he or she is
"enqueued" at the back of the line. When a teller
becomes available, they are "dequeued" at the
front of the linear.

Queue operations using array:

· In order to create a queue we require a one
dimensional array Q(1:n) and two variables front
and rear.

· The conventions we shall adopt for these two
variables are that front is always 1 less than the
actual front of the queue and rear always points
to the last element in the queue front = rear if
and only if there are no elements in the queue.

· The initial condition then is front = rear = 0.

· The various queue operations to perform
creation, deletion and display the elements in a
queue are as

follows:

1. insert Q(): inserts an element at the end of queue
Q.

2. delete Q(): deletes the first element of Q.

3. display Q(): displays the elements in the queue.

Priority queue:

üPriority Queue is more specialized data structure
than Queue.

üLike ordinary queue, priority queue has same
method but with a major difference.

üIn Priority queue items are ordered by key value
so that item with the lowest value of key is at
front and item with the highest value of key is at
rear or vice versa. So we're assigned priority to
item based on its key value.

üLower the value, higher the priority. Following
are the principal methods of a Priority Queue.

Basic Operations

üinsert / enqueue − add an item to the rear of the
queue.

üremove / dequeue − remove an item from the
front of the queue.

Priority Queue Representation

üWe're going to implement Queue using array in
this article.

üThere is few more operations supported by
queue which are following.

ØPeek − get the element at front of the queue.

ØisFull − check if queue is full.

ØisEmpty − check if queue is empty.

Insert / Enqueue Operation

· Whenever an element is inserted into queue,
priority queue inserts the item according to its
order.

· Here we're assuming that data with high value
has low priority.

Remove / Dequeue Operation

· Whenever an element is to be removed from
queue, queue get the element using item count.

· Once element is removed. Item count is reduced
by one.

Non Linear Data Structures:

· The data structure where data items are not
organized sequentially is called non linear data
structure.

· A data elements of the non linear data structure
could be connected to more than one elements to
reflect a special relationship among them.

· All the data elements in non linear data structure
can not be traversed intraversed in single run.

Examples of non linear data structures
are Trees and Graphs.

Tree

https://theknowshares.com/computerscience/datastructure/nonlinear-data-structures/
https://theknowshares.com/computerscience/datastructure/nonlinear-data-structures/
https://theknowshares.com/computerscience/datastructure/nonlinear-data-structures/
https://theknowshares.com/computerscience/datastructure/nonlinear-data-structures/
https://theknowshares.com/computerscience/datastructure/tree/
https://theknowshares.com/computerscience/datastructure/graph/

· A tree is a hierarchical data structure composed
of nodes.

· Root: the top-most node (unlike real trees, trees
in computer science grow downward!). Every
(non-empty) tree has one.

· Parent: the node connected directly above the
current one Everychild(except for the root) has
one.

· Child: a node connected below the current one.
Each node can have 0 or more.

· Leaf: a node that has no children.

· Depth/Level: the length of the path (edges) from
the root to a node(depth/level of the root is 0).

· Tree Height: the maximum depth from of any
node in the tree.

· A tree commonly used in computing is a binary
tree.

· A binary tree consists of nodes that have at most
2 children.

GRAPH

üA graph is a data structure that contains of a set
of vertices and a set of edges which connect
pairs of the vertices.

üA vertex (or node) can be connected to any
number of other vertices using edges.

üAn edge may be bidirectional or directed
(one-way).

ü An edge may have a weight on it that indicates a
cost for traveling over that edge in the graph.

üUnlike trees, graphs can contain cycles

üIn fact, a tree is an acyclic graph

Graph Implementation

üWe usually represent graphs using a table (2d
list) where each column and row is associated
with a specific vertex.

üThis is called an adjacency matrix.

üA separate list of vertices shows which vertex
name (city,person, etc.) is associated with each
index.

üThe values of the 2d list are the weights of the
edges between the row vertices and column
vertices.

üIf there is not an edge between the two vertices,
we use infinity, or None.

Disjoint Sets Data Structure

üA disjoint-set is a collection ã={S1, S2,…, Sk} of
distinct dynamic sets.

üEach set is identified by a member of the set,
called representative.

Disjoint set operations:

üMAKE-SET(x): create a new set with only x.
assume x is not already in some other set.

üUNION(x,y): combine the two sets containing x
and y into one new set. A new representative is
selected.

üFIND-SET(x): return the representative of the
set containing x.

An Application of Disjoint-Set

üDetermine the connected components of an
undirected graph.

CONNECTED-COMPONENTS(G)

for each vertex v ÎV[G]

do MAKE-SET(v)

for each edge (u,v) ÎE[G]

do if FIND-SET(u) ¹ FIND-SET(v)

then UNION(u,v)

SAME-COMPONENT(u,v)

if FIND-SET(u)=FIND-SET(v)

then return TRUE

UNIT - II

Divide and Conquer: The General Method –
Defective Chessboard – Binary Search –
Finding the Maximum and Minimum – Merge
Sort – Quick Sort – Selection - Stassen’s
Matrix Multiplication.

General Method:

In divide and conquer method, a given problem
is,

i) Divided into smaller subproblems.
ii) These subproblems are solved independently.
iii) Combining all the solutions of subproblems

into a solution of the whole.

If the subproblems are large
enough then divide and
conquer is reapplied. The
generated subproblems are
usually of some type as the
original problem.

Hence recurssive algorithms are used in divide
and conquer strategy.

Subprogram of size

Problem of size N

Pseudo code Representation of Divide and conquer rule for problem “P”
Solution to Solution to

Solution to the original problem of

Subprogram of size

T(n) = T(1) if n=1

aT(n/b)+f(n) if n>1
Time Complexity of DAndC algorithm:
a,b� contants.

This is called the general divide and-conquer
recurrence.
Example for GENERAL METHOD:

As an example, let us consider the problem of computing the sum of n numbers a0, ... an-1.
If n > 1, we can divide the problem into
two instances of the same problem.
They are sum of the first | n/2|numbers

Compute the sum of the 1st [n/2]
numbers, and then compute the sum of
another n/2 numbers. Combine the

Algorithm DAndC(P)

{

if small(P) then return S(P)
else{

divide P into smaller instances P1,P2,P3…Pk;

apply DAndC to each of these subprograms; // means DAndC(P1), DAndC(P2)…..
DAndC(Pk)

return combine(DAndC(P1), DAndC(P2)….. DAndC(Pk));

}

answers of two n/2 numbers sum.

i.e.,

a0 + . . . + an-1 =(a0 ++ an/2) + (a n/2 + + an-1)

Assuming that size n is a power of
b, to simplify our analysis, we get
the following recurrence for the
running time T(n).

T(n)=aT(n/b)+f(n)

This is called the general divide and-conquer
recurrence.

f(n)� is a function that accounts for the
time spent on dividing the problem into
smaller ones and on combining their
solutions. (For the summation example,
a = b = 2 and f (n) = 1.

Advantages of DAndC:
The time spent on executing the
problem using DAndC is smaller
than other method. This technique
is ideally suited for parallel
computation.

This approach provides an efficient
algorithm in computer science.

Defective Chess Board Problem using Divide and
Conquer algorithm:
Given a n by n board where n is of form 2k where k

>= 1 (Basically n is a power of 2 with minimum
value as 2). The board has one missing cell (of size 1
x 1). Fill the board using L shaped tiles. A L shaped

tile is a 2 x 2 square with one cell of size 1×1
missing.

The below diagrams show working of above
algorithm

After placing first tile

Figure 3: Recurring for first subsquare.

Shows first step in all four sub
squares:

Examples:

Input : size = 2 and mark coordinates = (0, 0)

Output :

-1 1

1 1

Coordinate (0, 0) is marked. So, no tile is there. In
the remaining three positions,

a tile is placed with its number as 1.

Input : size = 4 and mark coordinates = (0, 0)

Output :

-1 3 2 2

3 3 1 2

4 1 1 5

4 4 5 5

Binary Search:

Search a sorted array by repeatedly dividing the
search interval in half. Begin with an interval
covering the whole array. If the value of the search
key is less than the item in the middle of the interval,
narrow the interval to the lower half. Otherwise,
narrow it to the upper half. Repeatedly check until
the value is found or the interval is empty.

Example :

We basically ignore half of the elements just after
one comparison.

1.Compare x with the middle element.

2. If x matches with the middle element, we return
the mid index.

3.Else If x is greater than the mid element, then x
can only lie in the right half subarray after the mid
element. So we recur for the right half.

4.Else (x is smaller) recur for the left half.

Finding the maximum and minimum:

METHOD 1 (Simple Linear
Search):

Initialize values of min and max as
minimum and maximum of the first
two elements respectively. Starting
from 3rd, compare each element with
max and min, and change max and min
accordingly (i.e., if the element is
smaller than min then change min, else
if the element is greater than max then
change max, else ignore the element).

Time Complexity: O(n)
In this method, the total number of comparisons is 1
+ 2(n-2) in the worst case and 1 + n – 2 in the best
case.
In the above implementation, the worst case occurs
when elements are sorted in descending order and
the best case occurs when elements are sorted in
ascending order.

METHOD 2 (Tournament Method):
Divide the array into two parts and compare the
maximums and minimums of the two parts to get the
maximum and the minimum of the whole array.
METHOD 3(Compare in

 Pairs):
If n is odd then initialize min and max

as first element.
If n is even then initialize min and max
as minimum and maximum of the first
two elements respectively.
For rest of the elements, pick them in
pairs and compare their
maximum and minimum with max and
min respectively.

Merge Sort:
The merge sort splits the list to be sorted
into two equal halves, and places them
in separate arrays. This sorting method
is an example of the
DIVIDE-AND-CONQUER paradigm
i.e. it breaks the data into two halves and
then sorts the two half data sets
recursively, and finally merges them to
obtain the complete sorted list. The
merge sort is a comparison sort and has
an algorithmic complexity of O (n log
n). Elementary implementations of the
merge sort make use of two arrays - one
for each half of the data set. The
following image depicts the complete
procedure of merge sort.

Advantages of Merge Sort:

1.Marginally faster than the heap sort for
larger sets

2.Merge Sort always does lesser
number of comparisons than
Quick Sort. Worst case for merge
sort does about 39% less
comparisons against quick sort’s
average case.

3.Merge sort is often the best choice
for sorting a linked list because the
slow random- access performance
of a linked list makes some other

6, 7

algorithms (such as quick sort)
perform poorly, and others (such as
heap sort) completely impossible.

Tree call of Merge sort
Consider a
example: (From
text book)
A[1:10]={310,285
,179,652,351,423,
861,254,450,520}

 2, 21, 1
c

4, 4

4, 5

3 , 3

1, 3

1, 10

6, 7 8, 8

6, 8

Computing Time for Merge sort:

The time for the merging operation in
proportional to n, then computing time
for merge sort is described by using

7,76.6

1, 2

1, 5

1, 1
c

2, 2

9,9

9, 10

6, 10

T(n)= a if n=1;
2T(n/2)+ cn if n>1

recurrence relation.

Quick Sort
Quick Sort is an algorithm based on the
DIVIDE-AND-CONQUER paradigm
that selects a pivot element and reorders
the given list in such a way that all
elements smaller to it are on one side
and those bigger than it are on the other.
Then the sub lists are recursively sorted
until the list gets completely sorted. The
time complexity of this algorithm is O (n
log n).

Ø Auxiliary space used in the average
case for implementing recursive
function calls is O (log n) and hence
proves to be a bit space costly,
especially when it comes to large
data sets.

ØIts worst case has a time complexity of
O (n) which can prove very fatal for
large data sets. Competitive sorting
algorithms.

Name

Time Complexity

Space
Comple
xity

Best
case

Aver
age
Cas
e

Wo
rst
Cas
e

Bubble O(n) - O(n2) O(n)

Insertion O(n) O(n2) O(n2) O(n)

Selection O(n2) O(n2) O(n2) O(n)

Quick O(log n) O(n log n)

O(n2) O(n + log n)

Merge O(n log n) O(n log n)

O(n log n) O(2n)

Heap O(n log n) O(n log n)

O(n log n) O(n)

Comparison between Merge and Quick Sort:
Ø Both follows Divide and Conquer rule.
Ø Statistically both merge sort and

quick sort have the same average

case time i.e., O(n log n).
Ø Merge Sort Requires additional

memory. The pros of merge sort are:
it is a stable sort, and there is no
worst case (means average case and
worst case time complexity is
same).

Ø Quick sort is often implemented in
place thus saving the performance
and memory by not creating extra
storage space.

Ø But in Quick sort, the
performance falls on already
sorted/almost sorted list if the
pivot is not randomized. Thus
why the worst case time is O(n2).

Randomized Sorting Algorithm: (Random quick sort)

Ø While sorting the array a[p:q]
instead of picking a[m], pick a
random element (from among a[p],
a[p+1], a[p+2]---a[q]) as the
partition elements.

Ø The resultant randomized
algorithm works on any input and

runs in an expected O(n log n)
times.

Selection Sort:

The selection sort algorithm sorts an array by
repeatedly finding the minimum element
(considering ascending order) from unsorted part
and putting it at the beginning. The algorithm
maintains two subarrays in a given array.
1) The subarray which is already sorted.
2) Remaining subarray which is unsorted.
In every iteration of selection sort, the minimum
element (considering ascending order) from the
unsorted subarray is picked and moved to the sorted
subarray.
Strassen’s Matrix Multiplication:
Let A and B be two n×n Matrices. The
product matrix C=AB is also a n×n matrix
whose i, jth element is formed by taking
elements in the ith row of A and jth column
of B and multiplying them to get

C(i, j)=∑1≤𝑘≤𝑛 𝐴(i, 𝑘)𝐵(𝑘, j)
Here 1≤ i & j ≤ n means i and j are in between
1 and n.

To compute C(i, j) using this formula, we need n

multiplications.

The divide and conquer strategy suggests
another way to compute the product of
two n×n matrices.

For Simplicity
assume n is a
power of 2 that
is n=2k Here k�
any nonnegative
integer.

If n is not power of two then enough rows
and columns of zeros can be added to both
A and B, so that resulting dimensions are a
power of two.

Let A and B be two n×n Matrices. Imagine
that A & B are each partitioned into four
square sub matrices. Each sub matrix
having dimensions n/2×n/2.

The product of AB can be
computed by using

T(n)= b if n≤2;
8T(n/2)+ cn2 if n>2

previous formula. If AB is
product of 2×2 matrices
then

UNIT-3

UNIT - III

The Greedy Method: General Method -
Container Loading - Knapsack Problem - Tree
Vertex Splitting – Job Sequencing With
Deadlines - Minimum Cost Spanning Trees –
Optimal Storage on Tapes–Optimal Merge
Patterns-Single Source Shortest Paths.

GREEDY METHOD

T(n)= b if n≤2;
7T(n/2)+ cn2 if n>2

Greedy Method:
The greedy method is perhaps (maybe
or possible) the most straight forward
design technique, used to determine a
feasible solution that may or may not
be optimal.

Feasible solution:-

 Most problems have n inputs and its
solution contains a subset of inputs that
satisfies a given constraint(condition). Any
subset that satisfies the constraint is called
feasible solution.

Optimal solution:

To find a feasible solution that either
maximizes or minimizes a given objective
function. A feasible solution that does this
is called optimal solution.

The greedy method suggests that an
algorithm works in stages, considering one

input at a time. At each stage, a decision is
made regarding whether a particular input
is in an optimal solution.

Greedy algorithms neither postpone nor
revise the decisions (ie., no back tracking).
Example: Kruskal’s minimal spanning tree.
Select an edge from a sorted list, check,
decide, and never visit it again.
Application of Greedy Method:

ØJob sequencing with deadline
Ø0/1 knapsack problem
ØMinimum cost spanning trees
ØSingle source shortest path problem

.
Algorithm for Greedy method
Algorithm Greedy(a,n)
//a[1:n] contains the n inputs.

{

Soluti
on

:=0;
For
i=1 to
n do

{

X:=select(a);

If
Feasible(soluti
on, x) then
Solution
:=Union(soluti
on,x);

}

Return solution;
}

Selection � Function, that selects an
input from a[] and removes it. The
selected input’s value is assigned to x.

Feasible � Boolean-valued function that
determines whether x can be included
into the solution vector.

Union � function that combines x with solution and
updates the objective function.

Container Loading:

Large ship to be loaded with cargo . • All containers
are of the same size but may be of different weights.
• Container i has weight wi . • The capacity of the
ship is C. • Load the ship with maximum number of
containers without exceeding the cargo weight
capacity. • Find values xi Î {0, 1} such that • And
the optimum function is maximized. • Every set of xi
’s that satisfy the constraints is a feasible solution. •
Every feasible solution that maximizes is an optimal
solution.

• Ship may be loaded in stages. • Greedy criterion:
From the remaining containers, select the one with
least weight.

Example:

n = 8 [w1 , w2 , w3 , w4 , w5 , w6 , w7 , w8] = [100,
200, 50, 90, 150, 50, 20, 80] C = 400 [x1 , x2 , x3 ,
x4 , x5 , x6 , x7 , x8] = [1, 0, 1, 1, 0, 1, 1, 1]

Algorithm

 ContainerLoading(c, capacity, numberofContainers,
x) // set x[i] = 1 if and only if container c[i], i ≥ 1 is
loaded. { // sort into increasing order of weights.
Sort(C, numberofContainers); n =
numberofContainers; for i = 1 to n do x[i] = 0; i = 1;
while ((i £ n) && (c[i].weight £ capacity)) {
x[c[i].id] = 1; capacity = capacity – c[i].weight; i++;
} }

Knapsack Problem:

• Given a set of items, each with a weight and a
profit, determine the number of each item to include
in a collection so that the total weight is less than or

equal to a given limit and the total profit is as large
as possible. • Items are divisible; you can take any

fraction of an item. • And it is solved using greedy
method.

• Given n objects and a knapsack or bag. • wi →
weight of object i. • m → knapsack capacity. • If a
fraction xi , 0 ≤ xi ≤1 of object i is placed into the
knapsack, then a profit of pixi is earned. • Objective
is to fill the knapsack that maximizes the total profit
earned. • Problem can be stated as • A feasible
solution is any set (x1 …. xn) satisfying equations
②and ③. • An optimal solution is a feasible solution

for which equation ① is maximized. 6 subject to

wixi ≤ m − − − − − ② 1≤i ≤n 0 ≤ xi ≤ 1, 1 ≤ i ≤ n − −

− − −③ maximize pi 1 ≤i ≤n xi − − − − − ①.

Example:

n = 3, m = 20 (x1 , x2 , x3) Σwixi Σpixi 1. (1/2, 1/3,
1/4) 16.5 24.25 2. (1, 2/15, 0) 20 28.2 3. (0, 2/3, 1)
20 31 4. (0, 1, 1/2) 20 31.5 5. (2/3, 8/15, 0) 20 29.5 6.
(5/6, 1/3, 0) 20 28.8 Among all the feasible
solutions yields the maximum profit Weight wi 18
15 10 Profits pi 25 24 15

The greedy algorithm:

Step 1: Sort pi /wi into nonincreasing order.

 Step 2: Put the objects into the knapsack according

to the sorted sequence as possible as we can.

e. g. n = 3, M = 20 (w1 , w2 , w3) = (18, 15, 10) (p1
, p2 , p3) = (25, 24, 15) Sol: p1 /w1 = 25/18 = 1.39
p2 /w2 = 24/15 = 1.6 p3 /w3 = 15/10 = 1.5 Optimal
solution: x1 = 0, x2 = 1, x3 = 1/2 Weight wi 15 10
18 Profits pi 24 15 25

Tree Vertex Splitting:

• A vertex with in-degree zero is called a source
vertex • A vertex with out-degree zero is called a
sink vertex • Let T/X be the forest that results when
each vertex u is split into two nodes u i and u o such
that all the edges áu, jñ Î E (áj, uñ Î E) are replaced
by the edges of the form áu o , jñ (áj, u i ñ) • A greedy
approach to solve this problem is to compute for each
node u Î V, the maximum delay d(u) from u to any
other node in its subtree. • If u has a parent v such
that d(u) + w(v, u) > d, then the node u gets split and
d(u) is set to 0. where C(u) is the set of all children of
u. d u = max 𝑣∈𝐶(𝑢) { 𝑑 𝑣 + 𝑊(𝑢, 𝑣)

Algorithm:

 TVS(T, d)

 { if (T ¹ 0) then

 { d[T] = 0; for each child v to T do

 { TVS(v, d); d[T] = max{d[T], d[v]+w[T,v]};
 }
if ((T is not the root) and (d[T] + w(parent(t), T) >
d)) then
 { write(T); d[T] = 0; } } }
Job sequencing with deadlines:
There are n jobs to be processed on a machine. •
Each job i has a deadline di ≥ 0 and profit pi ≥0 . • Pi
is earned if and only if the job is completed by its
deadline. • The job is completed if it is processed on
a machine for unit time. • Only one machine is
available for processing jobs. • Only one job is
processed at a time on the machine. • A feasible
solution is a subset of jobs J such that each job is
completed by its deadline. • An optimal solution is a
feasible solution with maximum profit value
General method of job sequencing algorithm:
Algorithm GreedyJob(d, J, n)
 { J := {1}; for i := 2 to n

do { if (all jobs in J È {i} can be completed by their
deadlines) then J := J È {i};
 } }

Example 1: Let n = 4, maximum deadline dmax = 2
(p1 , p2 , p3 , p4) = (100,10,15,27) (d1 , d2 , d3 , d4
) = (2,1,2,1)
 27 + 100 = 127

Minimum Cost Spanning Trees:
Given an undirected and connected graph G = (V, E),
a spanning tree of the graph G is a subset of graph G,
which has all the vertices connected by minimum
number of edges. • The cost of the spanning tree is
the sum of the weights of all the edges in the tree.
There can be many spanning trees. • A Minimum
Spanning Tree (MST) is a subset of edges of a
connected weighted undirected graph that connects
all the vertices together with the minimum possible
total edge weight. • There also can be many
minimum spanning trees. • There are two famous
algorithms for finding the Minimum Spanning Tree:

 Ø Prim’s Algorithm

Ø Kruskal’s Algorithm
MST – Prim’s Algorithm:
Prim's Algorithm is used to find the minimum

spanning tree from a graph. • Prim's algorithm finds
the subset of edges that includes every vertex of the
graph such that the sum of the weights of the edges
can be minimized. • Prim's algorithm starts with the
single node and explore all the adjacent nodes with
all the connecting edges at every step. • The edges
with the minimal weights causing no cycles in the
graph are selected.
• Algorithm steps: Step 1: Select a starting vertex.
Step 2: Repeat Steps 3 and 4 until there are vertices
not in the tree. Step 3: Select an edge e connecting
the tree vertex and the vertex that is not in the tree
has minimum weight. Step 4: Add the selected edge
and the vertex to the minimum spanning tree T Step
5: Exit
Optimal Storage on tapes:
• n programs are to be stored on a computer tape of
length l. • Associated with each program i is a length
l i , 1 £ i £ n. • If the programs are stored in the order
I = i1 , i2 , ….. in , the time t j needed to retrieve the
program i j is • If all the programs are retrieved
equally often, then the Mean Retrieval Time (MRT)
is • Minimizing the MRT is equivalent to minimizing
Example: n = 3, (l1 , l2 , l3) = (5, 10, 3) n! = 6
possible ordering Ordering I
d(I) 1, 2, 3 5+5+10+5+10+3 = 38

 1, 3, 2 5+5+3+5+3+5+10 = 31
 2, 1, 3 10+10+5+10+5+3 = 43
2, 3, 1 10+10+3+10+3+5 = 41
3, 1, 2 3+3+5+3+5+10 = 29
3, 2, 1 3+3+10+3+10+5 = 34 Optimal ordering is 3,
1, 2 Thus the greedy method implies to store the
programs in nondecreasing order of their length.

Optimal Merge patterns:
Merge a set of sorted files of different length into a
single sorted file.
 • We need to find an optimal solution, where the
resultant file will be generated in minimum time.
• If the number of sorted files are given, there are
many ways to merge them into a single sorted file.
This merge can be performed pair wise. Hence, this
type of merging is called as 2-way merge patterns.
 • As, different pairings require different amounts of
time, in this strategy we want to determine an
optimal way of merging many files together. At each
step, two shortest sequences are merged.
 • To merge a m-record file and a n-record file
requires possibly m + n record moves

 • Merge the two smallest files together at each step.
• Two-way merge patterns can be represented by
binary merge trees.
 • Initially, each element is considered as a single
node binary tree.
• The algorithm has as input a list list of n trees.
 • Each node in a tree has three fields, lchild, rchild
and weight.
 • Initially, each tree in list has exactly one node and
has lchild and rchild fields zero whereas weight is the
length of one of the n files to be merged.
 Algorithm
Tree(n) { for i = 1 to n-1 do

{ pt = new treenode; pt®lchild = Least(list);

pt®rchild = Least(list);

 pt®weight = pt®lchild®weight +
pt®lchild®weight; insert(list,pt); }
 return Least(list); }
 treenode = record
{ treenode *lchild;
 treenode *rchild;
integer weight; }

Function Tree uses two functions:
 Least(list) and Insert(list, t).
• Least(list) finds a tree in list whose root has least
weight and returns a pointer to the tree. This tree is
removed from list.
• Insert(list, t) inserts the tree with root t into list
Single-source shortest path :
 • Given a edge-weighted graph G = (V, E) and a
vertex v Î V, find the shortest weighted path from v
to every other vertex in V.
• Dijkstra’s Algorithm is a greedy algorithm for
solving the single-source shortest-path problem on an
edge-weighted graph in which all the weights are
non-negative.
 • It finds the shortest paths from some initial vertex,
say v, to all the other vertices one-by-one.
• The paths are discovered in the order of their
weighted lengths, starting with the shortest, and
proceeding to the longest.
• For each vertex v, Dijkstra’s algorithm keeps track
of three pieces of information, kv , dv and pv .
• The Boolean valued flag kv indicates that the
shortest path to vertex v. Initially, kv = false for all v
Î V.

 • The quantity dv is the length of the shortest known
path from v0 to v. When the algorithm begins, no
shortest paths are known. The distance dv , is a
tentative distance

• During the course of the algorithm candidate paths
are examined and the tentative distances are
modified.

• Initially dv = ¥ for all v Î V such that v ≠ v0 ,
while dv0 = 0. • The predecessor of the vertex v on
the shortest path from v0 to v is pv . Initially, pv is
unknown for all v Î V.
• The following steps are performed in each pass: 1.
From the set of vertices for with kv = false, select the
vertex v having the smallest tentative distance dv . 2.
Set kv ¬ true. 3. For each vertex w adjacent to v for
which kv ≠ true, test whether the tentative distance
dv is greater than dv + C(v,w). If it is, set dw ¬ dv +
C(v,w) and set pw ¬ v.
 • In each pass exactly one vertex has its kv set to
true. The algorithm terminates after |V| passes are
completed at which time all the shortest paths are
known.
Initially:
S = {1};

D[2] = 10;

D[3] = ¥; D[4] = 30; D[5] = 100
 Iteration 1
 Select w = 2,
so that S = {1, 2}

 D[3] = min(¥, D[2] + C[2, 3]) = 60
 D[4] = min(30, D[2] + C[2, 4]) = 30
 D[5] = min(100, D[2] + C[2, 5]) = 100
 Iteration 2
 Select w = 4, so that S = {1, 2, 4}
 D[3] = min(60, D[4] + C[4, 3]) = 50
D[5] = min(100, D[4] + C[4, 5]) = 90
Iteration 3
 Select w = 3, so that S = {1, 2, 4, 3}
 D[5] = min(90, D[3] + C[3, 5]) = 60
 Iteration 4
 Select w = 5, so that S = {1, 2, 4, 3, 5}
D[2] = 10; D[3] = 50; D[4] = 30; D[5] = 6

UNIT - IV

Dynamic Programming: The General Method
– Multistage Graphs – All-Pairs Shortest Paths
– Single-Source Shortest Paths -
OptimalBinary Search Trees - String Editing -
0/1 Knapsack - Reliability Design - The
Traveling Salesperson Problem - Flow Shop
Scheduling. Basic Traversal and Search
Techniques: Techniques for Binary Trees –
Techniques for Graphs–Connected
Components and Spanning Trees–
Bi-connected Components and DFS.

DYNAMIC PROGRAMMING:-

THE GENERAL METHOD:

Dynamic programming is an algorithm design
method that can be used when the solution of a
problem can be viewed as the result of a sequence of
decisions.

An optimal sequence of decisions can be found by
making the decisions one at a time and never making
an erroneous decision.

This is true for all problems solvable by the greedy
method.

The steps in a dynamic programming solution are:

· Verify that the principle of optimality holds.
· Set up the dynamic-programming recurrence

equations.
· Solve the dynamic-programming recurrence

equations for the value of the optimal solution.
· Perform a trace back step in which the solution

itself is constructed.

MULTI STAGE GRAPHS:

A multistage graph G=(V,E)is a directed graph in
which the vertices are partitioned into K>=2 disjoint
sets Vi,1<=i<=k.

In addition,if<u,v>is an edge in E,then u E Vi and v
E Vi+1 for some i,1<=i<k.

The multistage graph problem can also be solved
using the backward approach.

A dynamic programming formulation for a k-stage
graph problem is obtained by first noticing that
every s to t path is the result of a sequence of k-2

decisions.
ALGORITHM:

Algorithm Fgraph(G,k,n,p)

Cost of(i,j).p[1:k]is a minimum cost path

{

Cost[n]:=0.0;

For j:n-1 to step-1 do

{

Let r be a vertex such that(j,r)is an edge of G

c[j,r]+cost[r]is minimum;

cost[j]:=c[j,r]+cost[r];

d[j]:r:

}

p[1]:=1;

p[k]:=n;

for j:=2 to k-1 do p[j]:d[p[j-1]];

}

Algorithm Bgraph(G,k,n,p)

Fgraph

{

Bcost[1]:=0.0;

for j:=2 to n do

{

Bcost [j].

Let r be such that(r,j)is an edge of G

Bcost[r]+c[r,j]is minimum;

Bcost[j]:=Bcost[r]+c[r,j];

D[j]:=r;

}

p[1]:=1;

p[k]:=n;

for j:=k-1 to 2 do p[j]:=d[p[j+1]];

}

ALL –PAIRS SHORTEST PATHS:

In the all pairs of shortest path problem,we are to
find a shortest path between every pair of vertices in
a directed graph G.

The two paths are the same when G is undirected.

When no edge as a negative length,the all-pairs
shortest path problem may be solved by using
Dijkstra’s greedy single source algorithm n
times,once with each of the n vertices as the source
vertex.

AK(i,j)={min{Ak-1(i,k)+Ak-1(k,j)},c(i,j)}

Algorithm All Paths(Cost,A,n)

cost[i,j]=0.0,for 1<=i<=n

{

for i:=1 to n do

for j:=1 to n do

A[i,j]:=cost[i,j];

for k:=1 to n do

for i:=1 to n do

for j:=1 to n do

A[i,j]:=min(A[i,j],A[i,k]+A[k,j]);

}

SINGLE-SOURCE SHORTEST PATHS:

When there are no cycles of negative length ,there is
shortest path between any two vertices of an n-vertex
graph that has at most n-1 edges on it.

The maximum number of edges on a cycle-free
shortest path algorithm from source vertex to all
remaining vertices in the graph.

When some of all of the edges of the directed graph
G may have negative length.

When negative edge lengths are permitted,we require
that the graph have no cycles of negative length.

distk[u]=min{distk-1[u],min{distk-1[i]+cost[I,u]}}

Algorithm BellmanFord(v,cost,dist,n)

{

for i:=1 to n do

dist[i]:=cost[v,i];

for k:=2 to n-1 do

for each you such that u/v and u has at last one
incoming edge do

for each(i,u)in the graph do

if dist[u]>dist[i]+cost[i,u]then

dist[u]:=dist[i]+cost[i,u];

}

OPTIMAL BINARY SEARCH TREES:

Huffman coding tree solved by a greedy algorithm
has a limitation of having the data only at the leaves
and it must not preserve the property that all nodes to
the left of the root have keys,which are less etc.

Construction of an optimal binary search tree is
harder,because the data is not constrained to appear
only at the leaves,and also because the tree must
satisify the binary search tree property and it must
preserve the property that all nodes to the left of the
root have keys,which are less.

A dynamic programming solution to the problem of
obtaining an optimal binary search tree can be
viewed by constructing a tree as a result of sequence
of decisions by holding the principle of optimality.

~nPi(1+di)
 i~1

The expected contribution for the internal node for
‘ai’ is:

p(i)*level(ai).

Unsuccessful search terminate with I=0.Hence the
cost contribution for this node is:

Q(i)*level(Ei)-1)

The expected cost of binary search tree is:
n~P(i)*level(ai)+n~Q(i)*level((Ei)-1)

The total time to evaluate all the c(i,j)’s and r(i,j)’s is
therefore:

~(nm-m2)=0(n3)1<m<n

Given a fixed set of identifiers,we wish to create a
binary search tree organization.

We may expect different binary search trees for the
same identifier set to have different performance
characteristics.

cost(L)=k.P(i)*level(ai)+k.Q(i)*level(Ei)-1,

 i-1 i-0

cost(ft)=n.P(i)*level(ai)+n.Q(i)*level(Ei)-1,

 i-k i-k

STRING EDITING:

We are given two strings X=x1,x2,…,xn and
Y=y1,y2,…,ym,where x;,1<=i<n,and

yj,1<=j<=m,are members of a finite set of symbols
known as the alphabet.

The cost of a sequence of operation is the sum of the
costs of the individual operation in the sequence.

The problem of string editing is to identify a
minimum-cost sequence of edit operations that will
transform X and Y.

A solution to the string editing problem consists of a
sequence of decisions,one for each edit operation.

Let D(x1)be the cost of deleting the symbol xi from
X,I(y3)be the cost of inserting the symbol yj into
X,and C(xi,yj)be the cost of changing the symbol xi
of X into yj.

cost(1,1)=min{cost(0,1)+D(x1),cost(0,0)+C(x1,y2),c
ost(1,0)+I(y1)}

 =min{2,2,2}=2

Next is computed cost(1,2)

Cost(1,2)=min{cost(0,2)+D(x1),cost(0,1)+C(x1,y2),c
ost(1,1)+I(y2)}

 =min{3,1,3}=1

O/I KNAPSACK:

We are given n objects and a knapsack.

Each object i has a positive weight wi and a positive
value vi.

The knapsack can carry a weight not exceeding W.

A solution to the knapsack problem can be obtained
by making a sequence of decisions on the variables
x1,x2,…xn.

A decision on variables xi involves determining
which of the values 0 or 1 is to be assigined to it.

Fn(m)=max{fn-1(m),fn-1(m-wn)+pn}

For arbitrary fi(y),i>0,this equation generalizes to:

Fi(y)=max{fi-1(y),fi-1(y-wi)+pi}

Si1={(P,W)/(P-pi,W-wi)eSi}

The strategy we have come up with can also be
derived by attempting to solve the knapsack problem
via a systematic examination of the up to 2n
possibilities for x1,x2,…xn.

Algorithm DKP(p,w,n,m)

{

S0:={(0,0)};

For i:=1 to n-1 do

{

Si-1:={(P,W)\(P-pi,W-wi)cSi-1 and W<=m};

S1:=MergePurge(Si-1,S1i-1);

}

(PX,WX):=last pair in Sn-1);

(PY,WY):=(p’+pn,W’+wn)where W’ is the largest W
in any pair in Sn-1 such that W+wn<=m;

If(PX>PY) then xn:=0;

Else xn:=1;

TraceBackFor(xn-1,…,x1);

}

RELIABILITY DESIGN:

The problem is to design a system that is compsed of
several devices connected in series.

Let ri be the reliability of device Di then the
reliability of the entire system is fT ri.

Even if the individual devices are very reliable,the

reliability of the system may not be very good.

If stage i contains mi copies of device Di.Then the
probability that all mi have a malfunction
is(1-ri)mi.Hence the reliability of stage i becomes
1-(1-r)mi.i

Our problem is to use device duplication.This
maximization is to be carried out under a cost
constraint.

Solve:

Maximize~qi(mi~1-<-i<n

Subject to~Ci mi<C 1-<-i<n

mi>=1 and integer,1<=i<=n

The optimal solution m1,m2……mn is the result of a
sequence of decisions,one decision for each mi.

Subject of the constraints:

Cj mj~x and 1<=mj<=uj,1<=j<=i

1<=i<=i

The last decision made requires one to choose mn
from{1,2,3,….un}.once a value of mn has been
chosen,the remaining decisions must be such as to
use the remaining funds C-Cn mn in an optimal way.

The principles of optimality holds on

fn~C~~max{0n(mn)fn_1(C-Cn mn)}1<mn<un

The general equation

fn(x)=max{ci(mi)fi-1(x-Ci mi)}1<mi<ui

clearly,f0(x)=1 for all x,0<=x<=C and f(x)=-00 for
all x<0.Let Si consist of tuples of the form(f,x),where
f=fi(x).

There is atmost one tuple for each different ‘x’,that
result from a sequence of decisions on
m1,m2,…..mn.The dominance
rule(f1,x1)dominate(f2,x2)if f1>=f2 and
x1>=x2.Hence,dominated tuples can be discarded
from Si.

THE TRAVELING SALESPERSON PROBLEM:

Let G=(V,E) be a directed graph with edge costs
Cij.The variable cij is defined such that cij>0 for all I
and j and cij=a if<i,j>oE.

A tour of G is a directed simple cycle that includes
every vertex in V.The cost of tour is the sum of the
cost of edges on the tour.

The traveling sales person problem is to find a tour

of minimum cost.The tour is to be a simple path that
starts and ends at vertex 1.

Hence,this problem can be regarded as a traveling
salesperson problem on an n vertex graph with edge
cost cij’s being the changeover cost from commodity
i to commodity j.

Principles of optimality

g(1,V-{1})=2~k~n~c1k~g~k,V~~1,k~~

Generalizing equation1

g(i,s)=min{cij jEs

The equation can be solved for g(1,V-1})if we know
g(k,V-{1,k})for all choices of k.

Complexity Analysis:

For each value of [S] there + g,i,s-,j are n-1 choices
for i.The number of distinct sets S of size K not
including 1 and I is I k~~n-2~

The most serious drawback of this dynamic
programming solution is the space needed,which is
O(n 2n).This is too large even for modest values of n.

 FLOW SHOP SCHEDULING:

Hence,it suffices to generate any schedule for which

holds for every pair of adjacent jobs.

If min{a1,a2,…,an,b1,b2,…,bn} is bj,then job j
should be the last job in an optimal schedule.This
enables us to make a decision as to the positioning of
one of the n jobs.

1.Sort all the ai’s and bj’s into nondecreasing
order.

2. If the next number in the sequence is aj and job j
hasn’t yet been scheduled,schedule job j at the
leftmost available spot.

3. If the next number is bj and job j hasn’t yet been
scheduled,schedule job j at the rightmost
available spot.If j has already been scheduled,go
to the next number in the sequence.

BASIC TRAVERSAL AND SEARCH
TECHNIQUES:-

TECHNIQUES FOR BINARY TREES:

The solution to many problems involves the
manipulation of binary trees,trees,or graphs.Often
this manipulation requires us to determine a
vertex(node)or a subset of vertices in the given data
object that satisfies a given property.

This algorithm is not a traversal algorithm as it does

not examine every vertex in the search tree.There are
many operations that we want to perform on binary
trees.

A traversal produces a linear order for the
information in a tree.This linear order may be
familiar and useful.

Six combination of traversal

LDR,LRD,DLR,DRL,RDL, and RLD

Inorder,preorder and postorder.

Algorithm InOrder(t)

{

If t / 0 then

{

InOrder(t->l child);

Visit(t);

InOrder(t->r child);

}

}

Algorithm preorder

{

if t/0 then

{

Visit(t);

PreOrder(t->t child);

PreOrder(t->r child);

}

}

Algorithm PostOrder(t)

{

If t/0 then

{

PostOrder(t->t child);

PostOrder(t->r child);

Visit(t);

}

}

TECHNIQUES FOR GRAPHS:

A fundamental problem concerning graphs is the
reachability problem.

In its simplest form it requires us to determine
whether there exists a path in the given graph
G=(V,E) such that this path starts at vertex v and
ends at vertex u.

BREADTH FIRST SEARCH AND TRAVERSAL:

In breadth first search we start at a vertex v and mark
it as having been reached.The vertex v is at this time
said to be unexplored.

The list of unexplored vertices operates as a queue
and can be represented using any of the standard
queues representation.

Algorithm BFS(e)

{

U:=v;

Visited[v]:=1;

repeat

{

For all vertices w adjacent from u do

{

If(visited[w]=0)then

{

Add w to q;

visited[w]:=1;

}

}

If q is empty then return;

Delete the next element,u,from q;

}

until(false);

}

DEPTH FIRST SEARCH AND TRAVERSAL:

A depth first search of a graph differs from a breadth
first search in that the exploration of a vertex v is
suspended as soon as a new vertex u begins.

When this new vertex has been explored,the
exploration of v continuous.The search terminates
when all reached vertices have been fully explored.

Algorithm DFS(e)

{

Visited[v]:=1;

For each vertex w adjacent from v do

{

If(visited[w]=0)then DFS(w);

}

}

CONNECTED AND SPANNING TREES:

If G is a connected undirected graph,then all vertices
of G will get visited on the first call to BFS.If G is
not connected,then at least two calls to BFS will be
needed.

BFS can be used to determine whether G is
connected.All newly visited vertices on a call to BFS
from BFT represent the vertices in a connected of
graph can be obtained using BFT.

Then the subgraph formed by the vertices on this list
make up a connected component.Hence,if adjacency
lists are used,a breadth first traversal will obtain the
connected components in o(n+e)time.

BFT can also be used to obtain the reflexive

transitive closure matrix of an undirected graph G.If
A*(i,j)=1 if either i=j or i/j and i and j are in the same
connected components.

As a final application of breadth first search,consider
the problem of obtaining a spanning tree for an
undirected graph G.The graph G has a spanning tree
if G is connected.

BFS easily determines the existence of a spanning
tree.

Spanning trees obtained using a breadth first search
are called breadth first spanning trees.

IICONNECTED COMPONENTS AND DFS:

The “graph” we always mean an undirected graph.

A vertex v in a connected graph G is an articulation
point if and only if the deletion of vertex v together
with all edges incident to v disconnects the graph
into two or more nonempty components.

A graph G is biconnected if and only if it contains no
articulation points.The graph of is not biconnected.

The presence of articulation points in a connected
graph can be an undesirable feature in my cases.Once
it has been termined that a connected graph G is not

biconnected,it may be desired to determine a set of
edges the graph is biconnected.

Depth first spanning trees have a property that is very
useful in identifying articulation points and
biconnected components.

define L[u],

L[u]=min{dfn[u],min{L[w]\w is a child of
u},min{dfn[w]!(u,w)is a back edge}}

L[u] can be easily computed if the vertices of the
depth first spanning tree are visited in postorder.

Thus,to determine the articulation points,it is
necessary to perform a depth first search of the graph
G and visit the nodes in the resulting depth first
spanning tree in postorder.

Algorithm

for each articulation point a do

{

Let B1,B2,….,Bk be the biconnected components
containing vertex a;

Let vi,vi/a,be a vertex in Bi,1<=i<=k;

Add to G the edges(vi,vi+1),1<=i<k;

}

 UNIT - V

Backtracking: The General Method – The
8-Queens Problem – Sum of Subsets– Graph
Coloring – Hamiltonian Cycles – Knapsack
Problem Branch and Bound: Least Cost search -
0/1 Knapsack Problem

Backtracking (General method)

üMany problems are difficult to solve
algorithmically. Backtracking makes it possible
to solve at least some large instances of difficult
combinatorial problems.
üSuppose you have to make a series of decisions

among various choices, where
üYou don’t have enough information to know

what to choose
üEach decision leads to a new set of choices.
üSome sequence of choices (more than one

choices) may be a solution to your problem.

Backtracking is a methodical (Logical) way of trying
out various sequences of decisions, until you find one
that “works”
Example : Maze (a tour puzzle)

Given a maze, find a path from start to finish.
· In maze, at each intersection, you have to decide

between 3 or fewer choices:
ØGo straight
ØGo left
ØGo right
ØYou don’t have enough information to choose

correctly
ØEach choice leads to another set of choices.
ØOne or more sequences of choices may or may

not lead to a solution.
ØMany types of maze problem can be solved with

backtracking.

Example:
o Sorting the array of integers in a[1:n] is a

problem whose solution is expressible by an
n-tuple xi� is the index in ‘a’ of the it smallest
element.

o The criterion function ‘P’ is the inequality a[xi]≤
a[xi+1] for 1≤ i ≤ n Si is finite and includes the
integers 1 through n.

o Mi size of set Si m=m1m2m3---mn n tuples that
possible candidates for satisfying the function P.

o With brute force approach would be to form all
these n-tuples, evaluate (judge) each one with P
and save those which yield the optimum.

o By using backtrack algorithm; yield the same
answer with far fewer than ‘m’ trails.

o Many of the problems we solve using
backtracking requires that all the solutions
satisfy a complex set of constraints.

o For any problem these constraints can be divided
into two categories:

ØExplicit constraints.
ØImplicit constraints.

Explicit constraints: Explicit constraints are rules
that restrict each xi to take on values only from a
given set.
Example:
xi ≥ 0 or si={all non negative real numbers}
Xi=0 or 1 or Si={0, 1}
li ≤ xi ≤ ui or si={a: li ≤ a ≤ ui }
· The explicit constraint depends on the particular

instance I of the problem being solved.
· All tuples that satisfy the explicit constraints

define a possible solution space for I.
Implicit Constraints:
· The implicit constraints are rules that determine

which of the tuples in the solution space of I
satisfy the criterion function.

· Thus implicit constraints describe the way in
which the Xi must relate to each other.

Applications of Backtracking:
ØN Queens Problem
ØSum of subsets problem
ØGraph coloring
ØHamiltonian cycles.

N-Queens Problem:
ØIt is a classic combinatorial problem.
ØThe eight queen’s puzzle is the problem of

placing eight queens puzzle is the problem of
placing eight queens on an 8×8 chessboard so
that no two queens attack each other.
ØThat is so that no two of them are on the same

row, column, or diagonal.
ØThe 8-queens puzzle is an example of the more

general n-queens problem of placing n queens on
an n×n chessboard.

Sum of Subsets Problem:

Given positive numbers wi 1 ≤ i ≤ n, & m, here sum
of subsets problem is finding all subsets of wi whose
sums are m.
Definition: Given n distinct +ve numbers (usually
called weights), desire (want) to find all
combinations of these numbers whose sums are m.
this is called sum of subsets problem. To formulate
this problem by using either fixed sized tuples or
variable sized tuples.
Backtracking solution uses the fixed size tuple
strategy.
For example:
If n=4 (w1, w2, w3, w4)=(11,13,24,7) and m=31.
Then desired subsets are (11, 13, 7) & (24, 7).
The two solutions are described by the vectors (1, 2,
4) and (3, 4).
In general all solution are k-tuples (x1, x2, x3---xk) 1
≤ k ≤ n, different solutions may have different sized
tuples.
 Explicit constraints requires xi ∈ {j / j is an integer 1
≤ j ≤ n }
Implicit constraints requires:

No two be the same & that the sum of the
corresponding wi’s be m i.e., (1, 2, 4) & (1, 4, 2)
represents the same. Another constraint is xi<xi+1
1 ≤ i ≤ k
Wi weight of item i

M Capacity of bag (subset)
Xi the element of the solution vector is either one or
zero.
Xi value depending on whether the weight wi is
included or not.
If Xi=1 then wi is chosen.
If Xi=0 then wi is not chosen.

The above equation specify that x1, x2, x3, --- xk
cannot lead to an answer node if this condition is not
satisfied.

The equation cannot lead to solution.

Recursive backtracking algorithm for sum of
subsets problem
Algorithm SumOfSub(s, k, r)
{

X[k]=1
If(S+w[k]=m) then write(x[1:]); // subset found.
Else if (S+w[k] + w{k+1] ≤ M)
Then SumOfSub(S+w[k], k+1, r-w[k]);
if ((S+r - w{k] ≥ M) and (S+w[k+1] ≤M)) then
{
X[k]=0;
SumOfSub(S, k+1, r-w[]
}
Graph Coloring:
· Let G be a undirected graph and ‘m’ be a given

+ve integer.
· The graph coloring problem is assigning colors

to the vertices of an undirected graph with the
restriction that no two adjacent vertices are
assigned the same color yet only ‘m’ colors are
used.

· The optimization version calls for coloring a
graph using the minimum number of coloring.

· The decision version, known as K-coloring asks
whether a graph is colourable using at most
k-colors.

Note that, if ‘d’ is the degree of the given graph then
it can be colored with ‘d+1’ colors.
The m- colorability optimization problem asks for

the smallest integer ‘m’ for which the graph G can be
colored. This integer is referred as “Chromatic
number” of the graph.
Example

ØAbove graph can be colored with 3 colors 1, 2,
& 3.
ØThe color of each node is indicated next to it.
Ø3-colors are needed to color this graph and

hence this graph’ Chromatic Number is 3.
ØA graph is said to be planar iff it can be drawn

in a plane (flat) in such a way that no two edges
cross each other.
ØM-Colorability decision problem is the 4-color

problem for planar graphs.
ØGiven any map, can the regions be colored in

such a way that no two adjacent regions have
the same color yet only 4-colors are needed?
ØTo solve this problem, graphs are very useful,

because a map can easily be transformed into a
graph.
ØEach region of the map becomes a node, and if

two regions are adjacent, then the corresponding
nodes are joined by an edge.

o Example:

The above map requires 4 colors.
ØMany years, it was known that 5-colors were

required to color this map.
ØAfter several hundred years, this problem was

solved by a group of mathematicians with the
help of a computer. They show that 4-colors are
sufficient.

ØSuppose we represent a graph by its adjacency
matrix G[1:n, 1:n]

Ex:

ØHere G[i, j]=1 if (i, j) is an edge of G, and G[i,
j]=0 otherwise.
ØColors are represented by the integers 1, 2,---m

and the solutions are given by the n-tuple (x1,
x2,---xn)

xiColor of node i.
State Space Tree for
n=3nodes
m=3colors

1st node coloured in 3-ways
2nd node coloured in 3-ways
3rd node coloured in 3-ways

So we can colour in the graph in 27 possibilities of
colouring.

Hamiltonian Cycles:
ØDef: Let G=(V, E) be a connected graph with n

vertices. A Hamiltonian cycle is a round trip path
along n-edges of G that visits every vertex once
& returns to its starting position.
ØIt is also called the Hamiltonian circuit.
ØHamiltonian circuit is a graph cycle (i.e., closed

loop) through a graph that visits each node
exactly once.
ØA graph possessing a Hamiltonian cycle is said

to be Hamiltonian graph.

Example:

ØIn graph G, Hamiltonian cycle begins at some
vertiex v1 ∈ G and the vertices of G are visited
in the order v1,v2,---vn+1, then the edges (vi,
vi+1) are in E, 1 ≤ i ≤ n.

ØThe above graph contains Hamiltonian cycle:
1,2,8,7,6,5,4,3,1

The above graph contains no Hamiltonian cycles.

ØThere is no known easy way to determine
whether a given graph contains a Hamiltonian
cycle.
ØBy using backtracking method, it can be possible
ØBacktracking algorithm, that finds all the

Hamiltonian cycles in a graph.
ØThe graph may be directed or undirected. Only

distinct cycles are output.
ØFrom graph g1 backtracking solution vector= {1,

2, 8, 7, 6, 5, 4, 3, 1}
ØThe backtracking solution vector (x1, x2, --- xn)

 xi� ith visited vertex of proposed cycle.

ØBy using backtracking we need to determine
how to compute the set of possible vertices for
xk if x1,x2,x3---xk-1 have already been chosen.
ØIf k=1 then x1 can be any of the n-vertices.
ØBy using “NextValue” algorithm the recursive

backtracking scheme to find all Hamiltoman
cycles.
ØThis algorithm is started by 1st initializing the

adjacency matrix G[1:n, 1:n] then setting x[2:n]
to zero & x[1] to 1, and then executing
Hamiltonian (2)

Branch & Bound
Branch & Bound (B & B) is general algorithm
(or Systematic method) for finding optimal
solution of various optimization problems,
especially in discrete and combinatorial
optimization.
ØThe B&B strategy is very similar to backtracking

in that a state space tree is used to solve a
problem.
ØThe differences are that the B&B method
ØDoes not limit us to any particular way of

traversing the tree.
ØIt is used only for optimization problem
ØIt is applicable to a wide variety of discrete

combinatorial problem.
ØB&B is rather general optimization technique

that applies where the greedy method & dynamic
programming fail.
Ø It is much slower, indeed (truly), it often

(rapidly) leads to exponential time complexities
in the worst case.
Ø The term B&B refers to all state space search

methods in which all children of the “E-node”
are generated before any other “live node” can
become the “E-node”
Ø Live node is a node that has been generated but

whose children have not yet been generated.
ØE-node is a live node whose children are

currently being explored.

ØDead node is a generated node that is not to be
expanded or explored any further.
ØAll children of a dead node have already been

expanded.

ØTwo graph search strategies, BFS & D-search
(DFS) in which the exploration of a new node
cannot begin until the node currently being
explored is fully explored.
ØBoth BFS & D-search (DFS) generalized to

B&B strategies.
ØBFS like state space search will be called FIFO

(First In First Out) search as the list of live nodes
is “First-in-first-out” list (or queue).
ØD-search (DFS) Like state space search will be

called LIFO (Last In First Out) search as the list
of live nodes is a “last-in-first-out” list (or stack).
Ø In backtracking, bounding function are used to

help avoid the generation of sub-trees that do not
contain an answer node.
ØWe will use 3-types of search strategies in

branch and bound

1) FIFO (First In First Out) search
2) LIFO (Last In First Out) search
3) LC (Least Count) search
FIFO B&B:
FIFO Branch & Bound is a BFS.
In this, children of E-Node (or Live nodes) are
inserted in a queue.
Implementation of list of live nodes as a queue
ØLeast()� Removes the head of the Queue
ØAdd()� Adds the node to the end of the Queue

Assume that node ‘12’ is an answer node in FIFO
search, 1st we take E-node has ‘1’

LIFO B&B:
LIFO Brach & Bound is a D-search (or DFS).
In this children of E-node (live nodes) are inserted in
a stack
Implementation of List of live nodes as a stack
ØLeast() Removes the top of the stack
ØADD()Adds the node to the top of the stack.

Least Cost (LC) Search:
ØThe selection rule for the next E-node in FIFO or

LIFO branch and bound is sometimes “blind”.
i.e., the selection rule does not give any
preference to a node that has a very good chance
of getting the search to an answer node quickly.
ØThe search for an answer node can often be

speeded by using an “intelligent” ranking
function. It is also called an approximate cost
function “Ĉ”.
ØExpended node (E-node) is the live node with

the best Ĉ value.
Branching:
ØA set of solutions, which is represented by a

node, can be partitioned into mutually (jointly or
commonly) exclusive (special) sets.
ØEach subset in the partition is represented by a

child of the original node.
Lower bounding:
ØAn algorithm is available for calculating a lower

bound on the cost of any solution in a given
subset.
ØEach node X in the search tree is associated with

a cost: Ĉ(X) C=cost of reaching the current
node, X(E-node) form the root + The cost of
reaching an answer node form X.
ØĈ=g(X)+H(X).

Example:
8-puzzle
Cost function: Ĉ = g(x) +h(x)
where h(x) = the number of misplaced tiles
and g(x) = the number of moves so far
Assumption: move one tile in any direction cost 1.
O/1 Knapsack Problem
What is Knapsack Problem:
ØKnapsack problem is a problem in combinatorial

optimization, Given a set of items, each with a
mass & a value, determine the number of each
item to include in a collection so that the total
weight is less than or equal to a given limit & the
total value is as large as possible.

O-1 Knapsack Problem can formulate as.
ØLet there be n items, Z1 to Zn where Zi has

value Pi & weight wi. The maximum weight that
can carry in the bag is m.

ØAll values and weights are non negative.
ØMaximize the sum of the values of the items in

the knapsack, so that sum of the weights must be
less than the knapsack’s capacity m.
ØThe formula can be stated as

Xi=0 or 1 1 ≤ i ≤ n
To solve o/1 knapsack problem using B&B:
ØKnapsack is a maximization problem
ØReplace the objective function by the function to

make it into a minimization problem
ØThe modified knapsack problem is stated as

Fixed tuple size solution space:
o Every leaf node in state space tree represents an
answer for which

is an answer node; other leaf nodes are infeasible
o For optimal solution, define

for every answer node x
o For infeasible leaf nodes,

o For non leaf nodes

c(x) = min{c(lchild(x)), c(rchild(x))}
o Define two functions cˆ(x) and u(x) such that

for every node x,

cˆ(x) ≤ c(x) ≤ u(x)

ØComputing cˆ(·) and u(·)

Algorithm ubound (cp, cw, k, m)
{
// Input: cp: Current profit total
// Input: cw: Current weight total
// Input: k: Index of last removed item
// Input: m: Knapsack capacity
b=cp; c=cw;
for i:=k+1 to n do{
if(c+w[i] ≤ m) then {
c:=c+w[i]; b=b-p[i];
}
}
return b;
}

