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Unit -1
PROJECTILE
Range up and down an inclined plane maximum range

Projectile range on an inclined plane:

A Particle is projected with a velocity ‘u’ at an angle « to the horizontal from a
point O on an inclined plane, inclined at an angle 3 to the horizontal. The direction of projection lies
in the vertical plane through OA the line of greatest slope. Of the plane. Let the particle strike
inclined plane at A Then OA (=R) is the range of the inclined plane Fig (1.1)

Let OX and OA be respectively the horizontal and inclined plane through the point of projection O.
OB is a line perpendicular to OA.

Component of initial velocity u along OA = u cos (a- B)
Component of initial Velocity u along OB = u sin (o- )
The Projectile moves with a vertical retardation g.
Acceleration along OA = - g sin
Acceleration along OB = - g cos B
Now, Let T be the time taken the particle to go from O to A. when the particle reaches A after time

T, the distance moved perpendicular to the plane is zero.

Hence,

0=usin(a-B). T-1/2 gcos b.T?  (since S= ut+1/2 at?)




T = 2u sin (a-p)
gcos
When the particle strikes A after time, T, the distance OA (=R) moved is the range on the inclined
plane.

Therefore, R = u cos(a-B).T-1/2 g sin p. T?

=1 cos(a-P).2u sin (a-B)-1/2 g — sin B 4u’sin’*(0-B)

gcos f3 g’cos’B
= 2u? sin(a-B) [cos(a-B) cos B-sin (0-B) sin B ]
gcos [
= 2u sin (0-f) cos a
gcos f

Range and Time of flight down an inclined plane or Range down an inclined Plane

The particle is projected own the plane from O at an elevation a Fig. 1-2.
Initial velocities along and perpendicular to OA are u cos (at+f) and u sin (a+p). Acceleration along
and perpendicular to OA are g sin B and — g cos B. When the particle reaches A after time T, the
distance moved perpendicular to the inclined plane is zero. Therefore,

0 = u sin (a-B). Ti- 1/2 .g cos B. Ts*or T1 = 2u sin (a+B)

gcosf
Range = OA = Ri=u cos (o). T1 + 2 g sin B T+?

=2u’ sin (a+p)
g cos’P




Note: 1. Result down the plane can be obtained by putting — for B in the results of the previous
article.

Note: 2. In some problems, the elevation relative to the inclined plane may be given. In such cases
we must calculate the elevation relative to the horizontal.

Problem: A particle is projected with a velocity of 32 ms™ at an angle of 60° to the horizontal. Find
the range on a plane inclined at 30° to the horizontal when projected (i) up the plane and
(ii) down the plane.

(1) when the particle is projected up the plane, range on inclined plane is given by
R = 2u” sin (0-B) cos o

g cos’ B
Here ,u=32ms";a=60°;B=30°;g=9.8 ms’

Therefore , R =2 x 32 x 32 x sin 30° x cos 60°
9.8 cos® 30°

=69.66m.

(it) When the particle is projected down the plane at an angle a with the
horizontal, the range down the plane is given by

R =2u” sin (0-B) cos @ = 139.3m
g cos’ B
==2x 32 x 32 x sin 90° x cos 60°
9.8 cos” 30°
Range up an inclined plane or Maximum Range :
To find the direction of projection for the maximum range on the inclined plane.

2u” sin (0-B) cos a
g cos” B
u? [sin (2a - B) — sin ]
g cos’ B
The value or R depends on a, for given values of u and . Hence R is maximum when sin(2a - ) =1
;1e., when 20 - =90°0or o= (45 + o —p/2)°:

** The maximum range we on the inclined plane

Ru= u’ [1- sin B]
g cos’ B




u? [1-sin B]
g [1-sin’ B]

u>[1- sin B]
g [1+ sin B][1 — sin ]

u2

g [1+ sin B]

Note : a =45° + /2. then o — f =45 — f/2 and 90°— a. = 45° — /2
This shows that the direction giving the maximum range bisects the angle
between the vertical and the inclined plane.

Now, R = u? _ [sin(2a —B) —sin B]
g cos’ B
The range R and the values of u and B are given.
Hence sin (20-p) is constant. There are two values (2a - B), each less than 180°
which satisfy the above equation. Let the corresponding values of a be a1 and 02 Then
201—-P=180—2az-B)orar—p/2=90—(a2—p/2)
o —(45+B/2)=(45+P/2)-a>

(45 + B/2) is the angle of projection giving the maximum range. Therefore it follows
that the direction giving maximum range bisects the angle between the two angles of projection that
can given particular range (Fig 1-3)

45+ B2

2

Fig 1-3

Problem: Prove that for a given velocity of projection the ratio between the maximum ranges up and
down an inclined plane inclined at an angle

B to the horizon is 1— sin B
1+ sin B
We have already up the in proved that,
Maximum range up the inclined plane = Ry, = u’

g [1+ sin B]




Range down inclined plane = R; = 2u’sin (0+f) cos a
g cos’ P
24 [sin(2a + B) + sin B]
g cos’ B
This range is maximum when sin (2a + ) = 1.

Maximum Rangbe down inclined plane = Ry = u?[1+ sin f]
2
gcos B

5
u?

g [1-sin B

He!‘lCE‘, Rm - ll2

Rmi g [1+ sin B]

=1-sinp

1+ sin B

Impulse:
The impulse 1 of a constant force F acting for a time t is defined as F x t.

1=Fxt
By Newton’s second law, F = ma.

If u and v are the initial and final velocities of the paticle,
a=(v—u)it

I = Ft mal:rn[u ﬂ:m(v-u)
t

Thus the impulse of a force is equal to the change in momentum produced.

Impulsive Force: Definition. An impulsive force is an infinitely great force acting for a very short
interval of time, such that their product is finite.

The force and the time cannot be measured because one is too great and the better is too
small. Nevertheless, their product, which is definite, is capable of measurement. This we have seen,
id the impulse of the impulsive force and is equal to the change in momentum produced. Hence an
impulsive force is always measured by the change in momentum produced. In practice, the
conditions of an impulsive force are never realized. Some approximate examples of impulsive force
are: (1) the blow of a hammer on a pie and (2) the force exerted by the bat on a cricket ball.




Laws of Impact:

1. Newton’s law of impact — coefficient of restitution.
When two bodies imping directly, their relative velocity after impact is in a constant
ratio to their relative velocity before impact and is in the opposite direction. This
constant ratio depends only on the material of the bodies and not on their masses of
velocities. It is called the coefficient of restitution and is denoted by the letter e. If uy,
u2 be velocities of two bodies before the impact and vi, vz the velocities after impact.

Vi=V2 = =eorvi-v2=-e (u-u)
up- uz

Where (u;- u2) and (vi- v2) are their relative velocities, before after the impact,
e lies between 0 and 1. If e = 0, the bodies are called perfectly Plastic bodies. If e =1,
the bodies are called perfectly elastic bodies. For two glass balls, e = 0.94; For two
lead balls, e = 0.2.

Definition of coefficient of restitution
The ratio, with a negative sign, of the relative velocity of two bodies after
impact to their relative velocity before impact is called the coefficient of restitution.

2. Motion of two smooth bodies perpendicular to the line of impact.
When two smooth bodies impinge, there is no tangential action between them.
Hence there is no change of velocity for either body along the tangent. In other words, there is no
change in the velocity of a body in a direction perpendicular to the normal due to impact.

Direct impact between two spheres:

Fig 1-4

A smooth sphere of mass m: moving with a velocity w1 impinges on another
smooth mass my moving in the same direction with velocity us. If e is the coefficient of restitution
between them, find the velocities of the spheres after impact.




Sphere after impact:

Since the spheres are smooth, there is no impulsive force on either along the
common tangent. Hence in this direction their velocities after impact are the same as their original
velocities i.e., zeroes. Let vi and vz be the velocities of the two spheres along the common normal
after impact

By the principle of conservation of momentum,
mp v+ e V2 = my U+ meuz

By Newton’s experimental law.
vi-vz =e(u- u2)

Multiplying (2) by m; and adding to (1)

vi(my + ma ) = mauz (1+€) +ui(mp- emy)

- v = mows (1+€) +ug (Ij- emn)
mp + me
Multiplying (2) by mz and subtracting to (1)

Vo (my + mz ) = myu; (1+€) +u (my- emy)
“ vo = mu (14+€) +uy (m;- emy) 4)
mp + ma

Equations (3) and (4) give the velocities of the two spheres after impact.

Cor.1. This impulse of the blow on the sphere of mass m; = change of momentum produced in it =
myvi- up) =mumoe (1+e)(ux —uy ) this is equal and opposite to the impulse on the sphere of mass mo.
mi + mo

Cor.2. If e = 1 and m; = mp then, v - w2 and v - u; . Thus, if two equal perfectly, elastic spheres
impinge directly, they interchange their velocities.

Loss of K.E. due to direct impact of two smooth spheres
Let m; mo be the masses, u; and uz v and vz their velocities before and after and e the
coefficient of restitution. Then, by the principle of conservation of linear momentum,

mivi+ mevz = mu + meue » (1)
By Newton’s experimental law,

vi- va=-e (u;- up) > (2)
Square both equations , multiply square of the second by m;m; and add the results. Then,




(mi? + my mo) vi? +
= (muup + mouz)? + e m; ma (u- uz) 2
(m2? + my my) vo?

“omy( my+ m2) viZ+ me( mp+ m) v’ =
(myug + maua2)® + myp mz (ug- u2) 2 + e my ma(ur- u2) >- my - ma(up- uz) 2

o (my+ me) (my viZ4+ mav2?) = (my + ma) muur? + mous? - my ma (ug- uz2) 2 (1-e?)

Cmvie+Ymv =Yamull+Ymu? -% mpme (ui- uw2) 2 (1-e?)
mp + mo

Now, %2 m; vi? + % ma v2> = K.E after impact.

Yo my vi* + Y2 ma v2* = K.E before impact.

The lossin KE=% m;mpy  (u;- u2)%(1-e?)
mj + maz
Note: When e =1, the loss of K.E is zero. In general e<I so that (1-¢%) is positive. (uj- uz) % is
always positive. Hence, there is always a loss of K.E due to impact. The K.E lost during impact
is covered into (i) sound, (i1) heat or (ii1) vibration or rotation of the colliding bodies.
When e = 0, the loss in K.E = %2 my mo (u;- up) ?
mj + mg

i.e., there is maximum loss of K.E on impact of plastic bodies.




Unit —I1

CENTRE OF GRAVITY

Definition: The centre of gravity of a body is the point at which the resultant of the weights of all
the particles of the body acts,whatever may be the orientation of the body.The total weight of the
body may be supposed to act at its centre of gravity.

Suppose the particles A,B,C, of a body have masses mj,mp,ms,..... Let their
coordinates in a rectangular caetesian coordinate system be(X1,y1,21),(X2,y2,22),...(Xn,¥n.Zn).

A

X

S
g

/

e
/

X
Then, the coordinates of the centre of gravity G of the body are
=3 MnYn;
2~ my
Y= Iy 7= MaZn
2 my 2 my
Suppose an element P of the body has a mass dm (Fig. 3.1) and is co ordinate are x.y,z. Then,

X —[xdm=1Jx dm;_y =l_fy dm;_z =1Jzdm
Jdm M M M
Here,the integrals extend over all elements of the body,and M=|dm=Total mass of the body.




Centre of Gravity of a rigid solid cone:

Let ABC represent a solid cone of height h and semi-vertical angle a.The cone
may be considered to be made up of a large number of circular discs parallel to the base.The centre
of gravity ofb each disc lies at its centre. Therefore,the C.G., of the cone should lie along the axis AD

of the cone.
A

Bi/~

o >

Consider a disc BIC1 of thickness dy at a distance y below the vertex A. If r is the radius of the
disc, than
r=ytan o
Volume of the cone =nr’h  where h=dy
Volume of the disc = Area x thickness = 11 y* tan® a dy
Mass of the disc= dm=ny* p tan’ o dy.
Where p = density of the cone.
The distance of the C.G., of the cone from the vertex is given by

y =lydm = J" ny’ ptan® ady =" v} dy=3/4 h.
[dm " ay’ ptanfady o" y*dy
Therefore, the C.G., of the cone is along its at a distance of 3/4h from the vertex.

Centre of Gravity of a solid hemisphere:

L et ABC represent a solid hemisphere of radius r, centre 0 and density p.Consider an
elementary slice of the hemisphere with radius y and thickness dx,at a distance x from 0.

Tt
)\

C




Volume of the slice = ny*dx = n (r>-x*) dx.
Mass of the slice = dm = pn (r*- x? ) dx.
The distance of the C.G of the hemisphere from O is given by

X =[xdm =[x pn(r*-x?) dx = of'(r? x —x*)dx

[dm  of pa(r*-x?) dx o i —x?)dx

x=3/8T.
Hence, the C.G., of the solid hemisphere is on its axis at a distance 3/8 r. from the centre.
Centre of gravity of a hollow hemisphere
Let ACB be a section of a hemisphere of radius r, centre O and surface density p (Fig.

3.5). Imagine the surface of the hemisphere to be divided into slices like PQQ; P; by planes parallel
to AB. If - POC =0 and - POQ = d60, then

>
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Radius of the ring = r sin 0
Width of the ring = r d
Area of the ring = 2nr sinf.rd6

Therefore, mass of the ring = dm = 2 nr?p sin 0 d.
The C.G., of this ring is at the centre of the ring at a distance r cos 0 from O.
The distance of the C.G., of the hollow hemisphere from O is given by

X =[xdm = " (rcosf)2n?psin®dd = of"%sin 0 cos O dO
[ dm o2 2r? p sin6.do ol sinB.d6

;: ]‘f?

The C.G., of ahollow hemisphere is on its axis at a distance 1/2 from the centre. i.e., the ravity is at
the mid point of the radius OC.




Centre of gravity of a solid tetrahedron

Let ABCD be the tetrahedron and G, the centre of gravity of the base BCD. Let h
be the altitude of the tetrahedron and p its density. Suppose the tetrahedron is divided into thin slices
by planes parallel to the base BCD. Consider one such slice BiC,D; of thickness dx at a depth x
below A. let s be the area of the triangular base BCD. Then we have,

C
If a; and a are the altitudes of triangles B1CiD; and BCD respectively.

d =X

a h
Now, area of AB{CiDi =% BCi x aj
Area of A BCD=%BCxa=35S

Hence, Area of A Bi,CiD;  =BiCi x a; =x2
S BC a h?

Therefore, Area of A B,CD; = Sx*/h?

Volume of the slice BiCiD; = Sx?dx/h?
Mass of the slice = dm = p Sx*dx/h?

The distance of the centre of gravity of the tetrahedron from A is given by

X =[xdm= nfhxp SxZdx/h’=/"x’dx =3%h
[dm of"p Sx%dx/h?  o["x2dx
Hence, the C.G., of a uniform tetrahedron lies at a point G on the line AH such that AG : GH = 3:1.




Friction:
Laws of static Friction

The direction of the frictional force is always opposite to the direction in which one body
tends to slide over another.
The magnitude of the force of friction when there is equilibrium between two bodies is just

sufficient to prevent the motion of one body over the other. The frictional force attains a
maximum value when one body is just on the point of sliding over the other. The maximum
value of the force of friction is called limiting friction.

The magnitude of the force of limiting friction bears a constant ratio to the normal between
the two bodies. This ratio is called coefficient of friction and is denoted by p. If F is the
limiting friction and R the normal reaction between the two bodies, then p = F/R . depends
only on the nature of surface in contact.

The limiting friction is independent of the extent and shape of the surfaces in contact,
provided the normal reaction is unaltered.

When a body is in motion, the direction of friction is still opposite to the direction of
motion of the body and is independent of the velocity. But the ratio of the force of friction
to the normal reaction is slightly less than that when the body is just on the point of motion.

Angle of Friction:

Let F be the force of limiting friction and R, the normal reaction. Let S be the
resultant of these two forces. Then the angle which this resultant force makes with the normal
reaction is called the angle of friction. It is denoted by A.

Then, tanA=F =pR =p [ Since = F;’R]

R R

Cone of Friction:
Consider a cone with the point of contact of two bodies as the vertex, the normal
reaction as axis and semi- vertical angle A. Then the resultant reaction (S) may lie any where within

or on the surface of the cone. This imaginary cone is called the cone of friction.




Equilibrium of a body on a Rough inclined Plane Acted upon by an External Force
Proposition:

A body of weight w is in equilibrium on a rough inclined plane of angle o > A under
the action of an external force inclined upwards at an angle 0 with the plane. Find the value of P for
limiting equilibrium.

Case 1: Let the body be just on the point of sliding down the plane. Let P be the magnitude of the
external force, applied at an angle 6 with the plane. The forces acting on the body are : ( 1) the
weight of the body (w) acting vertically acting on the body are: (1) the weight of the body(w) acting
vertically down, (ii)The normal reaction (R)acting perpendicular to the plane ( iii ) The force of
limiting friction(uR) acting up the plane and ( iv ) The external force (effort) P making an angle 6
with the line of greatest slope of bthe inclined plane.Resolving the forced parallel and perpendicular
to the plane.

P cos 0+ pR=w sin a
P sin 6+ uR=w cos a
Multiplying(2) by p and substracting from(1)
P( cos B-p sin 6)= w( sin a- p cos o ).
P=w (sino-pcosa).
( cos O-p sin B)
But p =tan A, where A is the angle of friction.
Hence P=w (sing-tanAcoso). =w(Sinocosi-sinicosa).
( cos B-tan A sin 0)_ ( cos O_cos A - sin A sin 8)
P=wsin(a- 1)
cos (6+ )

Case 2: Let the body be just on the point of sliding up the plane. Let P, be the magnitude of the
external force.In this case,the force of limiting friction(uR) acts down the plane.Resolving the forces
parallel and perpendicular to the plane,

Picos 6 = w sina+ pR 4

Pi sin 0+R=w cosa 5
Simplifying, we get,P1= w sin(o+ A) 6

cos(6- )

Corollary 1: Py is a maximum when cos(6- X) is maximum i.e., when cos(8- A)=1 i.e., when 6=
AL.Hence force required to move the body up the plane will be least when it is applied in a direction
making with inclined plane an angle equal to the angle of friction.
Corollary 2: Let a body be at rest on a rough inclined plane whose inclination to the horizontal a>

A.Let it be acted upon by an external force applied parallel to the plane.Here 6=0.From (3) and (6)
P=w sin(a- A) 3z

CcoS A

Pi1= w sin(a+\)

cos A




Unit —I1T

SIMPLE HORMONIC MOTION

Introduction:

A simple type of motion which occurs frequently in nature is the motion of a particle
with its acceleration always directed towards a fixed point in the path and varying as the distance of
the particle from the fixed point. Such a motion is known as simple harmonic motion. The oscillation
of a mass suspended by an pendulum, the vertical oscillations of mass suspended by an elastic string
for a small oscillations, the oscillations of charge in an ideal LC circuit, the Helmholtz resonator, the
oscillations of liquid in U-tube are few examples of simple harmonic motion or harmonic oscillations.

Definition of Simple Harmonic Motion:
If a particle be constrained to move in such a way that its acceleration is always
directed towards a fixed point in the line of motion and is directly proportional to the distance of
the particle is said to be simple harmonic.

~

Fig 2.1

Let O be the midpoint of straight lint AOA,. Let a particle P move along this straight line
such that its acceleration at any instant of time t is directed towards O, and is proportional to the
distance of the particle from O. Let OP = x. Then the acceleration of P at the instant is d*x /dt* and
the displacement is X. When the motion of P is simple harmonic

Where o” = acceleration per unit displacement which is a constant

= Force constant = k
Mass m

The negative sign implies that the acceleration is in a direction opposite to the direction along which
X increases.




Composition of two simple harmonic motions in a straight line of the same period but different

amplitudes and phase:

Let the displacement for the motions of the particle be

X1 = a sin ot
X2 = b sin (ot + €)
Where a and b are the amplitude and & the phase difference.

If x be the resultant displacement

x =a sin ot + b sin (ot + )
=asin ot + b sin ot cos € + b cos mt sin €
=(a+bcos €) sin ot + b sin £ cos wt

Leta+bcose=A cosd (3)
bsing=Asin 4)
then x = A sin ot cos 6 + A cos ot sin &
= A sin (ot + 3) - (5)
The resultant motion is also simple harmonic of the same period of different amplitude and phase.

Squaring equation (3) and (4) and adding

A’= a’+b*+2abcos e
Or A=+ (a’+b*+2ab)cos e

Dividing equation (4) by (3)

tand =bsin e
atbcose
Equation (6) and (7) gives the amplitude and phase of the resultant motion.

Corollary 1. Ife=0 A=n+banddo=0
Corollary 2. Ife=n A=a-bandd=0
Corollary 3. Ife =% 1 A=V (a’+b*)and dtan'b /a

Composition of two simple harmonic motions in a straight line of the same period but different
amplitudes and phase along two perpendicular directions:

Taking the two perpendicular directions as X and Y axis, the displacement of the particles
may be written as
X =asin ot
And Y =bsin (ot +¢)
Where a and b are the amplitudes and ¢ the phase difference.




From the equation (2)
y =sin ot cos £+ cos ot sin €

b
But from equation (1)
Sin ot = x/a
Therefore cos ot =V 1- x*/a?
Substituting the values of sin ot and cos ot in equation (3) we have
x=xcos g+ 1-x2sing
o2

cose+V1-x%sing
d

Squaring both sides of equation (4)

2 ) 2 2 o ity 2 o
Y —2XY COSET X" COS"E=SIN"E-X"SINE
G a e

ab a- a
Re — arranging y”>—2xy cose+x”=sin’ g

b* ab a’
This is a general equation for an ellipses whose major and minor axes are inclined x and y co
ordinate axes.

Corollary 1. Ife =0, y=x or y=Db/a (x)
b a
The resultant motion is along the straight line AB inclined at an angle 0 = tan ' %, with the X
— axis. The resultant motion is therefore rectilinear. (Fig. 2.4)

Y
Y




Corollary 2. Ife=n

y=- bfu X
This equation is represented by the straight line CD inclined at an angle 0 = tan ™!
The resultant motion is rectilinear with a negative slope

-b

Corollary 3.
Ife=%n

P+ =1

b2 a?
This equation represents an ellipse whose major and minor axes coincide with the X and Y axes. The
resultant vibration is elliptical (fig 2.3)

Corollary 4. Ife =2 mand a=b.

x>+ y*=a’
This equation represents a circle and so the resultant motion is circular.
¥

Lissajous Figure:

When a particle is influenced simultaneously two SHM at right angles to each other, the
resultant motion of a particle takes a curve. These curves are called as Lissajous figures. The shape
of the curve depends on the time period and amplitude of the two constituent vibrations.




‘g’ using compound pendulum :

A compound pendulum consists of a heavy uniform metal bar about a meter long. It has
a number of holes drilled of regular intervals on either side of the center of mass G.

The horizontal knife edges are passed through the hole near the end A. The period of
oscillation is determined and the distance of the knife edge from the end A is measured. The
experiment is repeated and the bar is made to oscillate about the knife edge placed. Successively in
the different hole from A to B.In each case the period of oscillation and the distance of position of
knife edge from the same and are noted .

A graph is plotted between the period [on Y-axis] and distance from A [on X- axis].

A

B

Two curves as shown in figure are obtained . A horizontal line PQRS is drawn cutting both the
curves at the point P,Q,R and S. P,Q,R and S are then the four points on the bar collinear with of
mass having the same period

PR = QS =L, the length of the equivalent simple pendulum. Therefore, if T be its tme
period given by the of anyone of the points P,Q.R.,S.

We have T =21 l/g
T>=4n’1/g
G =4n’1/T?

Knowing 1 and T we can able to calculate the value of g at the given place

\




The compound pendulum:

A compound pendulum consists of a rigid body capable of rotation about a fixed horizontal
axis under gravity. Let the axis of rotation pass through the point O in a vertical section of the body
taken through the centre of gravity G of the body. In the equilibrium position OG will be vertical.
OG=h. If 8 is the small angular displacement of the body form the equilibrium position in time t
and M the mass of the body , the couple tending to restore the body to it’s equilibrium position is
Mgh sin 0. The couple will produce an angular acceleration d*6/dt>.If I be the moment of inertai of
the body about the axis of rotataion, the product of moment of inertia and the angular acceleration is
also equal to the couple acting.Therefore

I d?0= - Mgh sin 0
dt’
The significance of the negative sign is that the angular acceleration and the angular displacement
are oppositely directed.

When 0 is small sin 6 =0
Therefore I d*0=-Mgh @
dt?
or d*0= - Mgh .0
a> I
If k be the radius of gyration about the axis of rotation then I = Mk?
Therefore d?0 =- gh. 0
(i S '
This represent a simple harmonic oscillation of period
T =2a =21V k¥ gh
Vgh/k?
If K be the radius of gyration about an axis through G, parallel to the axis of rotation, then by
parallel axis theorem we have

k*= Mh? or k>=k* + h?

therefore T= 21V k2 + h?
hg
hence T=2a VK2 +h?
hg




Centre of suspension and centre of oscillation:

The point 0 where the axis of rotation meets the vertical plane through the centre of
gravity G of the rigid body is called the centre of suspension.
A simple pendulum which has the same period as the given component pendulum is
called the simple pendulum L=k’ /h or K* +h’
h
If OG is produced to a point C such that OC=L the length of the equivalent simple
pendulum,the point ¢ is called he centre of oscillation. The centr of oscillation is obviously a point at
which the mass of the body may be considered to be concentrated without any change in the periodic
time.
If the body is suspended about a parallel axis through C, we have CG=L-h.The length of
the equivalent simple pendulum will be
L; = K2 +(L-h?)
L-h
L=K? +h?
h
we have K? =Lh-h?
or Li=Lh-h? +L2-2Lh+h*=L(L-h) =L.
L-h L-h

Centre of Percussion:
Minimum periods of a compound pendulum: From the expression
T=2n V(k* + h*/hg) we find that the value of the period T depends on the length of the equivalent
simple pendulum namely K* +h’
h

If T is minimum,dT=0
dh
ie., d (K*/h+h)=0 i.e., 1-K* =0
dh h?

or K2=h* or K=+ h A compound pendulum will have its period a minimum when the
depth of the centre of gravity of the pendulum below the centre of suspension is equal in magnitude

to the radius of gyration about an axis through the centre of gravity parallel to the axis of rotation.




The Bifilar pendulum:
A Bifilar pendulum consists of a rigid body AB suspended by two eual non-parallel threads

CA and DB attached at eual distances on either side of the centre of gravity G of the body.Let
AB=2a,CD=2b.Let the body be given a small angular displacement about a vertical axis through G
and released.Let AiBi be the position of AB at any instant of time t,the angular displacement
2 AGA being a small angle 6. The strings AiC and BiD will now be included to the vertical at the
same angel as when the body was in its equilibrium position.Let CE be drawn perpendicular to AB
and let « ACE = ¢,which wil also be small. AE=GA-GE=a-b
CE*=CA’-AE*=I*-(a-b)?
<« AICE is also equal to ¢ .
If AC=BD=1 ;
sin ¢ =a-b and cos ¢ = VI>-(a-b)>
| 1
The tensions of the strings A;C and B;D are each inclined at angles equal to ¢ with the
vertical. The sum of the vertical component of the tensions at A; and B, is equal to 2T cos ¢.These
balance the weight Mg of the rigid body.
Therefore 2T cos $=Mg. 1
The components of the tensions analog A1E and B1F in a horizontal plane are each equal
to T sin ¢.These are unlike parallel and equal,and therefore constitute a couples the moment of
which tends to restore the displaced body to the equilibrium position. The moment of the
restoring couple.

=T sin p X 2GH 2

Where H is the foot of the perpendicular drawn from G on the component T sin ¢ acting
along AE.

Let . GAE= u ,then in the triangle GAE
__b=aborsina=bsin0
sina sin 0 a-b

In the right angled triangle GHA,




GH=oasina=absin 0
a-b
Substituting the value of GH in equation (2) the moment of the restoring couple.
T sin ¢ x 2ab sin 4
a-b

but T= Mg
2cos ¢
Substituting this value for T in equation (4).
Moment of the restoring couple
2= Mg Xsin ¢ X 2ab sin 0
2cos ¢ a-b
Substituting the values of cos ¢ and sin ¢.
Moment of the restoring couple
= Mgl X a-b X ab sin 0
[P(a-b)>’] 1  a-b
= Mgab sin 0 =
VIP~(a-b)” |

= Mgab .0 .since 0 is small.
VIP-(a-b)* ]
The angular acceleration of the body is d*  .If [ be the moment of inertia of the body about the
de*
vertical axis through G, the deflecting couple =1 d? 0 .Hence for equilibrium
de?
1d*>0=-Mgab .0
d?  V[P-(a-b)* ]
therefore d*0 = - Mgab .0
de? IV[PP-(a-b)? ]
now Mgab . 0 is a constant.
IN[P-(a-b) |
Hence the angularb acceleration of the body is directly proportional to the angular displacement.The
oscillations are therefore simple harmonic and periodic time is given by
T= 2n
v [Mgab/INP-(a-b)?]
=2 1V INP-(a-b)¥ Mgab
If a and b are nearly equal,a-b can be neglected.In this case,
t =2 mVI/Mgab

Special case:

If the strings are parallel,a=b and the periodic time reduces to
t =2 mI/Mga®




The Bifilar pendulum(parallel threads):

A Bifilar pendulum consists of a heavy uniform body suspended by two parallel
strings of equal length and symmetrically arranged so that the body executes small oscillations in a
horizontal plane under gravity.

Let the strings supporting the body be parallel.Let | be the length of each string
and 2a the distance between them.suppose the suspended system is given a small angular
displacement 0 about a central vertical axis so that the supporting threads are inclined at a small
angle to with the vertical.

Now are AA; =1 ¢=ab

Hence ¢=a 0

1

If T be the tension in each string,then for the vertical equilibrium of the rod,

2T cos p=Mg.

When ¢ is small cos =1
Hence 2T=Mg
T=1/2 Mg 2
The component of T at right angles to the axis of the body which tends to restore the body to
equilibrium position are each equal to Tsin ¢
Moment of the restoring couple
=Tsin ¢ X 2a=T ¢.2a,since the angle ¢ is small.
=1/2Mg.a 6.2a=Mga’ .0
1 1
If I be the moment of inertia of the body about a vertical axis through its centre of gravity,then the
equation of the body is given by
Id> 0 =-Mga®>0ord”0=-Mga’0
d 11 d? LI
The angular acceleration of the body is proportional to the angular displacement.The oscillations are
therefore simple harmonic.The period of oscillation of the bifilar pendulum is given by
T=2 mV(I/Mga?)

Putting I=Mk?
T=2 1 V(MK*/Mga®) =2 n.k/aN(l/g)
If the quantities T ,k,a and | are known,g may be determined.




UNIT -1V
HYDRO STATICS AND HYDRO DYNAMICS
Definition:
The Centre of pressure of a plane surface in contact with a fluid is the point on the surface

through which the line of action of the resultant of the thrusts on the various elements of the area
passes.

Centre of pressure of a rectangular lamina immersed vertically in a liquid with one edge in the
surface of the liquid:

Let ABCD be a plane rectangular lamina immersed vertically in a liquid of density p with
one edge AB in the surface XY of the liquid.Let AB=a and AD=b.Divide the rectangle into a number
of narrow strips parallel to AB. Consider one strip of width dx at a depth x below the surface of the
liquid.

The thrust acting on the strip

=(xpg)x(adx)=xpga dx
Moment of this thrust about AB
=( xpga dx)x x = x’pga dx
Sum of the moments of the thrusts on all the strips= of® x*pga dx

Resultant of the thrusts on all the strips =o/® xpga dx

Moment of the resultant thrust about AB=Ho/® xpga dx

Where H=depth of the centre of pressure below AB.
Hol® xpga dx=o/® xpga dx
Or Hpga b’ = pga b’ or H=2 b
2 3 3

T, B
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The thrust on every elementary strip acts through its midpoint.Hence the centre of pressure
will lie on EF where E and F are the midpoints of AB and DC.

Centre of pressure of a triangular lamina immersed vertically in a liquid with its vertex in the
surface of the liquid and its base horizontal.

Let ABC be a triangularlamina immersed vertically in a liquid with its vertex A in the surface
XY of the liquid and with its base BC horizontal. BC=a. Let the depth of the base of the lamina be b
from the free surface of the liquid.Divide the triangle into a number of elementary strips of width dx
parallel to the base BC.Consider one such strip B1C; of width dx at a depth x below the surface XY.
Area of the strip B1Ci= B,Cidx=(ax/b)dx
Thrust on the strip B:Ci= (xpg)x(ax/b)dx
Moment of this thrust about XY=[aX" pg dx/b]
Total moment due to all the strips= of® apg x* dx
Resultant Of The Thrusts on all the strips= o/® apg_x? dx
Moment of the resultant thrust about XY = H o/® apg x* dx
Here H=the depth of the centre of pressure below XY.
Since the two moments are equal,

ol* apg x* dx = H o[* apg_x* dx

b b
apg (b"/4)=H apg(b*/3)

The centre of pressure lies on the line joining the mid points of the strips.i.e., lies on the median AD
at adepth 3b/4 below the surface XY.




Centre of pressure of a triangular lamina immersed vertically in a liquid with one side in the
surface when there is no external pressure:

Let ABC a triangular lamina immersed in a liquid with its base BC=a in the surface XY of the
liquid.Let AD be a median of the triangle.Let b be the depth of the vertex A below the surface
XY.Divide the triangle into a number of elementary strips of width dx parallel to the base
BC.Consider one strip B1C; at a depth x beow BC.

Area of the strip B1Ci- BiCidx=a(b-x) dx

b
(since BiIC; =b-x )
a b
Thrust on the strip B1C; =xpg a(b-x) dx
b
Moment of this thrust about XY=x’pg_a(b-x) dx
b
Total moment due to all the strips=o|°® x*pg_a(b-x) dx
b
Resultant of the thrusts on all the strips= of* xpg_a(b-x) dx
b
Let H be the depth of the centre of pressure below XY
Moment of the resultant thrust about XY:Hgbepg a(b-x) dx
b

therefore of® x>pg a(b-x) dx = Ho/’xpg a(b-x) dx
b b
Hol"x(b-x)dx = of® x*(b-x)dx
H[b%/2-b%/3]= [b*/3-b*/4]
H=b/2

The centre of pressure is on the median AD at a depth b/2 below XY.

Hvdrodynamics:

The equation of continuity is an expression of the law of conservation of mass in fluid
mechanics.fig represents a tube of varying cross-section through which a non-viscous incompressible
fluid of density p flows.Let o) and a2 be the cross-sectional areas of the tube at the points A and
B.Let the velocity of the fluid atA and B be vi and v» respectively.Since the fluid is
incompressible,in the steady state,mass of fluid entering the tube per second through the section
A=mass of fluid leaving the tube per second through the section B.




Mass of fluid entering the tube per second across the section A=a; vip

Mass of fluid leaving the tube per second across the section B=az vap

Therefore a; vip=az vap or a; vi=az v2

Thua the product av is constant along any given flow tube.It follows that the speed of flow through a
tube is inversely proportional to the cross-sectional area of the tube.Ilt means that wherethe area of
cross-sectional area of the tube is large,the velocity is small and vice versa.

EXAMPLE: water flowing with a velocity of 3 m/s in a 4cm diameter pipe enters a narrow pipe
having a diameter of only 2cm. Calculate the velocity in the narrow pipe.

Here, a1=n1(0.02)% vi= 3mv/s; a2=11(0.01)?; vo=?

vo= a1 vi/ a2=(0.02)’x3/{ 1(0.01)*}=12m/s.

Bernoulli’s theorem

Statement The total energy of an incompressible non-viscous fluid flowing from one point to
another,without any friction remains consant throughtout the motion.

Explanation:

According to the theorem , the sum of knetic, potential and pressure energies of any
element of an incompressible fluid in streamline flow remains constant. Suppose the height of an
fluid of density p above
Ground level is h. Let it be moving with a velocity v. Let it have pressure p. then, its total energy per
unit volume is

E=pv? [24p gh + p.
Bernoulli’s theorem states that E is a constant.
If at two points in the fluid the velocity are vi, v2  the heights are hi, ho and the pressures
are p1, p2, then,

Pvi?/2+ p ghl+pl=pv2%/2+pgh+p>
The K.E per unit weights is called velocity head and is equal to v*/2g.
The P.E per unit weight is called the gravitational head and is equal to h.p/pg.Bernoulli eqation can
br written as

vZ/( 2g)+h+p/(pg)=constant




1.e., velocity head+gravitational head+pressure head=constant
In the case of liquid flowing along a horizontal pipe,the gravitational head h is a constant.

Therefore v/( 2g)+ p/(pg)= constant or v?/ 2+ p/p=constant.

Or p+p v*/ 2=constant.

Or static pressure+dynamic pressure=constant.

This expression shows that greater velocity corresponds to a decrease in pressure and vice versa.This
principle may be used to determine fluid speeds by means of pressure measurements.

Example. Venturimeter,pilot tube,etc
Proof.consider a fluid in stream line motion along a nonuniform tube.Let A and B be two transverse
sections of the tube at heights h; and h: from a reference plane(the surface of the earth).Let a; and az
be the areas of cross section an A and B.Let v; and v; be the velocities of the fluid at A and B.Let pi
be the pressure at A due to the driving pressure head.Let p2 be the pressure at B.Since ai>az,va>vi.
Hence the fluid accelerated as it flows from A and B.
Workdone per second on the liquid entering at A is
Wi=Force at AxDistance moved by the liquid in 1 second.
=Pp1aiXx vi=p1 a1 vi
Workdone per second by the liquid leaving the tube at B is
Wi=p2az vz
Therefore Network done by the fluid in passing from A to B
W=W;-W, =prarvi- ppaz vz
But a2v2 = av
Therefore W= (pi- p2) a1 vi
The workdone by the fluid is used in changing its potential and
Kinetic energies.
Decrease in P.E. = (a; vip)g(hi-h2)
Increase in KE =%( a1 vip) (v2*- vi? )
Hence,the total gain in the energy of the system when the liquid flows from A and B
=1/2 (a1 v1p) (v2%- vi? )- (an vipg) (hi-h2)
Therefore  (pi- p2) a1 vi= 1/2 (a1 vip) (v2>- vi? )- (a1 vipg) (hi-h2)
Or p1+1/2 pvi*+ pg hi= p2 +1/2 pv2*+ pg ha
Or p+ 1/2 pv*+hpg = constant
Or p/p +1/2 v*+ hg = constant
Or p/pg+v?/2g +h= constant.




Referance plane

p/(pg) is called the pressure head. v*/(2g) is called the velocity head and h is called the gravitational
head.Hence, Bernoulli theorem may be stated as follows.When an incompressible non-viscous fluid
flows in stream line motion,the sum of the pressure head,velocity head and gravitational head
remains constant throughout its motion.

Venturimetre:

[t is a device based on Bernoukki’s principle.It is used for measuring rate of flow of

liquids in pipes.It consists of two wide conical tubes C; and C; with a constriction T between them.T
is called throat.Let the are of cross-section of C; and Cz be A.Let a be the area of cross-section of the
throat.

When the flow is steady ,let V be the volume of water flowing per second through the venturimeter.
Then,V=Av;=av,
Hence Velocity of water in T is greater than the velocity in C; and C,.Consequently,the pressure in T
is smaller than the pressure in C; and C..This difference in pressure H is measured by the difference
of the water levels in the vertical glass tubes T and T> connected C; and T respectively.Let p1 and p2
be the pressure in the wider limb and throat respectively.
According to Bernoulli’s equation for the horizontal flow,

Ppi+vi? =pa+vs’®

pg 22 pg 2g
or pi-pz2 = Vi v

pg 2g

The difference in pressure in C; and T= p; - p2= Hpg.
Hence Hpg = 1/2g[v*- v?] = v¥/ g[A%- a°]

Pg a’? A’ a’A’
Therefore V=Aa V2gH./( A% &%)




Pilot tude:

It is an instrument used to measure the rate of flow of water through a pipe-line.It is based
on Bernoulli’s Principle.It consists of two vertical tubes PQ and RS with small apertures at their
lower ends.The plane of aperture of the tube PQ is parallel to the direction of flow of water.The
plane of aperture pf the tube RS faces the flow of water perpendicularly.The rise of the water column
in the tube RS therefore,measures the pressure at S.

Let pi and p2 be the pressures of water at Q and S respectively.Let v be the velocity of
water at Q.Since the water is stopped in the plane of the aperture S of the tube RS, its velocity at S
becomes Zero.Hence the pressure increases to p2 at S.Let H be difference of level in the two
tubes.Applying Bernoulli’s theorem to the ends Q and S.
Therefore 1 v+ pi = v>= 2(p2- p1)=2Hpg

2 p p p
Therefore v=\2gH

Where a=area of cross-section of the pipe.




LAGRANGIAN DYNAMICS

Conservation theorem for linear momentum:

The net linear momentum of a system of n-particles is
n n
P=Epi =X m; v;
=1 =1
From Newton’s second law,F*'=dP
dt
i.e., the rate of change of linear momentum of a system of particles is equal to the net external force
acting on the system.
If F**'=0, dP =0.Integrating ,P=constant.
dt
This gives the therome for conservation of kinear momentum of the system according to which "/f
the sum of external forces acting on the system of particles is zero,the total linear momentum of the
system is constant or conserved”

Conservation theorem for angular momentum:

The angular momentum of its particle of the system about any point 0.from
definition is given by
Ji=rixpi srerrmoemd
Where ri is the radius vector of ith particle from the point 0 and pi its linear momentum.
For a system of n particles,we have
J=2)i=Zrixp;
i1
(ﬂ_: Zr-._x Q_Qi_: 2ri xF; RN -
d I dt i
here, F; =d p;= net force acting on i particle
dt
Internal forces occur in equal and opposite pairs.Hence the net internal force acting on the system of
particles is zero.Thus,
dJ = Zl‘j Ficxt =1 ext
dt i
Here, ©'=2Xr; x F;“"is the torque arising due to external forces only.
i
If, ©=0,.dJ=0 or J=constant
dt

Thus,if external torque acting on a system of particles is zero,the angular momentum of the system

remains constant.This is the conservation theorem for angular momentum of a system of particles.




Conservation of energyv.If the workdone by a force is independent of path.the force is saud to
be conservative.

If the forces acting on the system of particles are conservative,the otal energy of the system of
particles which is the sum of the total kinetic energy and the total potentiel energy of the system is
conserved.

This the energy conservation theorem.

On the other hand if the forces are non-conservative,the total energy of universe (mechanical
energy+chemical energy+sound energy+light energy-+heat energy etc.)remains constant.

Constraints:

Constraints are restrictions imposed on the position or motion of a system,because of
geometrical conditions
Examples.
(1) The beads of an abacus are constrained to one dimensional motion by the supporting wires.

(2)Gas molecules within a container are constrained by the walls of the vessel to move only inside
the container.

(3) The motion of rigid bodies is always such that the distance between any two particles remains
unchanged.

(4) A particle placed on the surface of a solid sphere is restricted by the constraint so that it can only

move on the surface or in the region exterior to the sphere.

Holonomic and non-holonomic constraints

If the constraints can be expressed as equations connecting the coordinates of the particles
(and possibly time) in the form.

f (r1,r2,13. ...10,t)=0 —-——-——-----——-]
then the constraints are said to be holomonic.
Examples.
(1)The constraints involved in the motion of rigid bodies in which the distance between any two
particular points is always fixed,are holomonic since the conditions of constraints are expressed as.
(en)yai=0

(2) The constraints involved when a particle is rejected to move along a curve or surface are
holomonic.Here the equation defining the curve or surface is the equation of constraint.

If the constraints cannot be expressed in the form of Eq.(1),they are called non-holomonic
constraints.




Examples.

(1)The constraints involved in the motion of the particle placed on the surface of a solid sphere are

non-holomonic.The conditions constraints in this are expressed as

r#% gt %0,

where a is the radius of sphere.This is an inequality and hence not in the form of Eq.(1).

(2)The walls of the gas vessel constitute a nonholomonic constraint.

(3)An object rolling on a rough surface without slipping is also an example of non-holomonic
constraint.

Scleronomic and Rheonomic constraints:

If the constraints are independent of time,they are called Scleronomic. If the constraints are explicity
dependent on time ,they are called rheonomic.
The constraint in the case of rigid body motion is Scleronomous.A bead sliding on a moving
wire is an example of rheonomic constraint.
In the solution of mechanical problems,the constraints introduce two type of dofficulties:
(I) The co-ordinates r; are connected by the equations of constraints.therefore,they are not
independent.
(2) The forces of constraint are not a priori known.In fact,they cannot be estimated till a complete
solution of the problem is obtained.
The first problem can be soved by introducing generalized coordinates,whereas the second is
practically an insurmountable problem.We therefore reformulate the problem such that the forces
of constraint disappear.

Generalized co-ordinates:

A system consisting of N particles,fee from constraints,has 3N independent
coordinates or degrees of freedom.If the sum of the degrees of freedom of all the particles is k,then
the system may be regarded as a collection of free particles is subjected to (3N-k) independent

constraints. So only k coordinates are needed to describe the motion of the system.These new
coordinates qi,q2,qs....qx are called the generalized coordinates of Lagrange.Generalised
coordinates may be lengths or angles or any other set of independent quantities which define the
position of the system.

Definition:

The generalized coordinates of a material system are the independent parameters
q1,92,93. ...qx_ which completely specify the configuration of the system,i.e., the position of all its
particles with respect to the frame of reference.

Example.

Consider the simple pendulum of mass m; with fixed length ri.The single coordinate 0 will
determine uniquely the position of m; since the simple pendulum is a system of one degree of
freedom.Since the only variable involved is 01.it can be chosen as a generalized coordinate.Thus




g= 01. The two coordinates x; and y; could also be used to locate ml but would require the
inclusion of the equation of the constraint x,*+y=r;’
Since x; and y; are not independent,they are not generalized coordinates.
Generalised velocities:
The generalized velocities of a system are the total time derivatives of the generalized

coordinates of the system.
Thus gi=dqgi(i=1,2,3....k)
dt

Transformation equations:

The rectangular Cartesian coordinates can be expressed as the functions of generalized
coordinates.Let x;,y; and z; be the Cartesian coordinates can be expressed as functions of generalized
coordinates q1,42.93. ...k 1.€.,

Xi= Xi (q1,92....qx,")

yi= ¥i (Quq2....qk) g1

zi= zi(q1.q2. . ..qx,)

let ri be the position vector of ith particle,i.e.,ri=i Xi +j yi +K zi
Then ri= 1 (q1,q2. ...qx.), 2
Eq.2 is the vector form of eg.1
The equations like (1) and(2) are called transformation equations.The functions and thir derivatives
in the above two equations are supposed to be continuous.The equations also contain the constraints
explicitly.

Principle of virtual work:
Consider a system described by n generalized coordinates q;=(j=1,2,3,...,n).Suppose the

system undergoes a certain displacement in the configuration space in such a way that it does not
take any time and that it is consistent with the constraints on the system.Such displacements are
called virtual because they do not represent actual displacement of the system .Since there is no
actual motion of the system,the work done by the forces of constraint in such a virtual displacement

18 zero.




Let the virtual displacement of the ith particle of the given system be or;.If the given_system is in
equilibrium,the resultant force acting on the ith particle of the system must be zero.i.e., Fi=0.It is
,then,obvious that virual work Fi. ori= 0 for the ith particle and hence itb is also zero for all the
particles of the system.

Thus dW=Z Fi. Ari=0 |
i
The resultant force Fjacting on the ith particle is
F=F+ fi mmm——————
Here, Fi"is the applied force and fi is the force of constraint.
Eq.1 then becomes
X F* orit+ X f; .ori=0
i
We now consider systems for which the virtual workdone by the forces of constraints is zero,i.e.,
X fi .or =0 4
i
Then eq 3 becomes

z Fi®* ori=0
i
This equation is termed as principle of virtual work.

D’alembert’s principle:
Most of the systems we come across in mechanics are not in static equilibrium.Hence the

principle must be modified to include dynamic systems as well. According to Newton’s second law
of motion,

Fi=pi or Fi- pi=0 6
According to the above equation ,a moving system of particles can be considered to be in
equilibrium under the force (Fi - pi), i.e., the actual applied force Fi plus an additional force —pi
which is known as reversed effectiveb force on ith particle. Let us again assume that the forces of
constraint do no work. Then, we can generalize Eq. (5) by the use of Eq. (6) to the form.

Z(Fi-p).on=0

1

Eq (7) is the mathematical statement of D” Alembert principle.

It is to be noted here that we have restricted ourselves to the systems where the virtual work
done by the forces of constraints disappears. With this in mind we cabn drop the superscript a in
equation (2) i.e., D’Alembert’s principle may be written as

X(Fi-p).ori=0

1




Generalised Momentum
The generalized momentum conjugate to the generalized co-ordinate gk is defined as the
quantity oL .It is represented by px.
8qk o

ie., px=0L
Oqx

Lagrangian formulation of conservation theorems.

(a) Conservation theorem for generalized momentum
According to Lagrange’s equation,

d (L )-oL =0
dt Oqk Oqx
If the generalized co = ordindte gk is cyclic, then L
Oqx

Thus, the Lagrange equation of motion reduces to

“___(_i“_ 6’ L = O
dt [Jdqgx

dL = constant
qu

i.e.,  pkx = constant

Thus, whenever a coordinate gk does not appear explicitly in the Lagrangian function L,
corresponding linear momentum pk is a constant of the motion. Hence we can state as a general
conservation theorem that the generalized momentum conjugate to a cyclic coordinate is conserved.

Conservation theorem of energy.
Consider a conservative system. The Lagrangian L does not depend upon time explicitly.

Then L=T4q1q: Jk,

Hence, the total time derivative of L = L (qk, qx) is given by
dL=% AL gx+X 0L qk.
dt  *oqu K Oqu

Lagrange’s Eq.is | oL
dt




or

d
dt Oqk qk

We can rewrite Eq (1) as

Qy+ X OLgx=% d qx 6L
K Oqx Kdt  Oqx

orfld L-XqalL|=0
dt oqx

therefore, L- X qx JL_= constant
6qk
NowdlL =8(T-V)=0T=8(Z Vzmkqlk ) (Since , T =X Y mi g%)
Oqk Oqx Oqx  Oqk

Therefore, 6L = mk qx
Oqk

Eq (2) becomes L - =¥ myi g% = constant

Or L -2T = Constant or T-V = Constant
Or - (T+V) = constant
Therefore, T + V = E = total energy = constant.

Thus the energy conservation theorem states that, if the Lagrangian function does not contain
the time explicitly, the total energy of the conservative system is conserved.

Conservation theorem for Linear Momentum.

Consider a conservative system so that the potential energy V is dependent on position only
and the kinetic energy is independent of position, i.e.,

dV=0and dT =0 R 8

Oqk Oqx

Then, Lagrange equation of motion for such a coordinate is,

d(éL }[JL =0
dt| oqx | Oqx

., d av =0 (Using Eq (1))
dt [Oqx Oqk

1e




= d 4L v =q
dt |oqx gk

Now, if we show that Qk represents the component of total force along the direction of translation of
the system and px is the component of total linear momentum along the same direction, then Eq. (2)
will represent the equation of motion for linear momentum.

Generalised force is given by

Q=X F .ar
i aqk

If n is the unit vector along the direction of translation, then

Thus Qk=ZXZFi.n=nF

which represents the componentof total force along the direction of n.

The Kinetic energy, T =" X m; 1%

So the generalized momentum is

pk=0L=0T =X m;r;. Cri
Oqk  Oq Oqk

=X m;vi.or

O0qk

=XmVvi.n=n.XmvVj
i i

Which shows that px represents the component of total linear momentum along the direction
of translation.

Now we can say that the equation  px = Qx.

Is the equation of motion for total linear momentum of the system.
If Qx =0, px = 0 i.e., = constant.

This gives the conservation theorem for linear momentum. It states that if a given component

of the total applied force vanishes, the corresponding component of the linear momentum is
conserved.




